Readings

Reading

Jurafsky & Martin – Section 9.2 – The HMM Applied to Speech

Introduces some notation and the basic concepts of HMMs.

Jurafsky & Martin – Section 9.4 – Acoustic Likelihood Computation

To perform speech recognition with HMMs involves calculating the likelihood that each model emitted the observed speech. You can skip 9.4.1 Vector Quantization.

Holmes & Holmes – Chapter 9 – Stochastic Modelling

May be helpful as a complement to the essential readings.

Jurafsky & Martin (3rd Ed) – Hidden Markov models

An overview of Hidden Markov Models, the Viterbi algorithm, and the Baum-Welch algorithm