
Speech Processing:
Text-to-Speech:

Phonemes & Front-End
Module 5

Catherine Lai
19 Oct 2023

Upcoming assessments
Week 5: TTS frontend

Week 6: Waveform Generation

Week 7: No new content 🎉
● Assessment: TTS multiple choice test open Mon-Wed (on Learn)
● Labs will be on as usual Wed
● No lecture on Thursday

Week 8: Intro to ASR/Pattern Matching (Module 7)

● Assessment: TTS Assignment due Monday 6 November 2023, 12 noon
● Labs on Wednesday (shell scripting)
● Lecture on Thursday
● Start on ASR assignment in module lab

Rest of semester….
Week 9: Feature Engineering

Week 10: Hidden Markov Models

Week 11: HMM training for ASR

● Assessment: ASR multiple choice test Mon-Wed (on Learn)

Reading week:

● Assessment: Assignment 2 (ASR) due Thu 7/12/23 12 noon

No end of course exam! 🎉

Previously: Source-Filter model
We can describe the source filter model mathematically

● Source=impulse train: frequency of impulses determines F0
● Filter=Infinite Impulse Response filter: a weighted sum of previous inputs and

outputs

Effect of filters in the frequency domain

X

=

DFT of impulse train
shows F0 and it’s
harmonics

DFT of filter

DFT of filter applied to impulse train:
harmonic structure from the impulse train,
spectral envelope from teh filter

Computer, say ‘Text-to-Speech’
● So, in theory, we can use impulse trains and IIR filters to generate

recognisable phones
● If we put those phones together we can make words
● If we can make words, we can make sentences…

In theory!

[See Klatt Synthesizer demo]

https://www.source-code.biz/klattSyn/

Text-to-Speech
● Real dynamics of speech are hard to capture using source-filter based

models (e.g. formant synthesizers are intelligible but not natural sounding)

● Solution: use real speech where possible → Concatenative synthesis (more
details in Module 6)

Text-to-Speech
Two main components:

● Front-end: Analyze text, generate a linguistic specification of what to
actually generate

● Back-end: Waveform generation from the linguistic specification

This week focuses on the front end.

TTS Front end
We want to generate speech that is

● Intelligible: you can clearly perceive what words are being said
● Natural: sounds like human speech
● Appropriate: conveys the right meaning in a specific context

Front-end aim: derive a linguistic specification from text that includes the
necessary information to generate speech

TTS Front-end
Ideally, we want to develop a linguistic specification that guides what we generate

● Phones
● Syllables
● Words
● Phrases
● Utterances
● Discourses

From Letters to Phones

E d i n b u r g h

e d ɪ n b r ə

The mapping between letters used for writing (graphemes) and
pronunciation (phones) isn’t always straightforward (especially
for english)

Who has this pronunciation? Are
there other pronunciations?

From Words to Utterances: Phrasing

 I live in Edinburgh

 aɪ lɪv ɪn edɪnbrə

Once we have the pronunciations of individual words we can put them
together. But then which syllables get emphasized?

From Words to Utterances: Phrasing

 I live in Edinburgh

 (aɪ) (lɪv) (ɪn) (e)(dɪn)(brə)

Once we have the pronunciations of individual words we can put them
together. But then which syllables get emphasized?

Within a word, this is determined by lexical stress → has to be
learned about English words, but also changes in context

Communicating intent: question intonation

I live in Edinburgh?
 aɪ lɪv ɪn edɪnbrə

Beyond the individual phones that determine which words will be perceived, we
need to get the non-lexical characteristics of speech right.

This is prosody: very broadly the pitch, energy, and timing characteristics of
speech.

Communicating intent: question intonation

I live in Edinburgh?
 aɪ lɪv ɪn edɪnbrə

In English an utterance final pitch rise on a declarative sentence (often) signals
a question

Communicating intent: question intonation

I live in Edinburgh?
 aɪ lɪv ɪn edɪnbrə

In English an utterance final pitch rise on a declarative sentence (often) signals
a question

pause emphasis Final pitch rise

“Prosodic
break”

“Prosodic
prominence”

“Boundary tone”

Communicating intent: Contrast

I don’t live in Edinburgh! I work in Edinburgh!
aɪ dəʊnt lɪv ɪn edɪnbrə aɪ wərk ɪn
edɪnbrə
 ● Prosodic prominence (emphasis) is used to mark contrast.

● Prominence (usually) manifests on the lexically stressed syllable of
a word (in English)

contrast

Text Normalization

Text Normalization: Basic steps
Transform the text into a pronounceable state

● Tokenize: split characters in text into word like units
● Detect non-standard words: rewrite as standard words
● Resolve Ambiguity: e.g., POS tagging

What sort of ambiguity is relevant?
Q: What sort of ambiguity is relevant for generating correct pronunciations?

For example, do we care about:

● Words that have different meanings but sound the same (homophones)?
● Words that have the same spelling but sound different (homographs)?

Text Normalization: Tokenization
Our first step is to split the sequence of characters into tokens (roughly words).
For English, whitespace is a usually a good starting point

Example Text from BBC news:

Staff on the Caledonian Sleeper will hold two 24-hour strikes. One from 11:59
on Sunday 31 October and one on Thursday 11 November.

Unite Scotland has also said about 1,000 workers across the Stagecoach
Group had backed strike action at the end of October which would affect
COP26 bus travel in central Scotland.

Which tokens here need normalization?

Text Normalization: non-standard words
From the tokens, we need to detect non-standard words and convert them into
pronounceable forms:

Example Text from BBC news:

Staff on the Caledonian Sleeper will hold two 24-hour strikes. One from 11:59
on Sunday 31 October and one on Thursday 11 November.

Unite Scotland has also said about 1,000 workers across the Stagecoach
Group had backed strike action at the end of October which would affect
COP26 bus travel in central Scotland.

Is there a single rule we can use to map these
numbers to pronounceable words? Why or why not?

Text Normalization: non-standard words

Text from BBC news:

Staff on the Caledonian Sleeper will hold two twenty four hour strikes. One
from eleven fifty nine on Sunday thirty first of October and one on Thursday
eleventh of November.

Unite Scotland has also said about one thousand workers across the
Stagecoach Group had backed strike action at the end of October which would
affect COP twenty six bus travel in central Scotland.

We need to detect non-standard words and convert them into pronounceable
forms:

Non-Standard Words
● Numbers: e.g. 1,520, 1.50, 2021, 2,02
● Non-letter symbols: e.g. £, $, &
● Acronyms: e.g. COP, SEC, BBC, FTSE
● Abbreviations: e.g. Dr, St, kHz,

Pronunciations don’t always
correspond to the ordering of the
symbols:
£1.50 → One pound fifty

Different pronunciation for different
types of numbers: e.g. years versus
measurements: the year 2022 v 2022
cm

Different rules for different locales:
e.g. fifteen hundred (and) twenty

Acronyms may be pronounced as
separate letters or as “words”Lots of ambiguity!

Expressing rules computationally:
Finite state transducer
Convert one string into another:

See a “1”
Output nothing

See a “7”, output “seventeen”

State of
having
seen a 1

start end

See a “2”
 output “twenty

input = 1729

See a “9”, output “nine”

Output:
“Seventeen
twenty nine”

Expressing rules computationally:
Finite state transducer

end

Q: What strings does this FST
generate?

Q: How can we expand this to
cover all years from from
1066-1999? How about further?

Punctuation ambiguity
● TTS systems (still!) often work on a sentence by sentence basis
● So sentence segmentation is required
● But a full stop “.” doesn’t always represent the end of sentence and

sentences don’t always end with full stops:

e.g. “The lecturer lives in Fife Dr. Richmond is actually a linguist by training”

[Let’s see how festival handles this…]

Word sense ambiguity: Homographs
 Words that are written the same way can have different pronunciations:

● I polish my nails in Polish class

● She records her records in the office

● My bass guitar has a picture of a sea bass on it

Verb

Verb

Noun

Noun

Noun Noun

We can disambiguate
some cases by their Part
Of Speech (POS)

But other cases need more
contextual information for
disambiguation, e.g. nearby
words

How to resolve ambiguity?
Hand-written rules (can be implemented in Finite State Transducer - see video)

St. → [Capitalized Word] / Street / _

St. → _ / Saint / [Capitalized word]

● Alternative 1: Learn disambiguation rules from the data
○ e.g. decision trees (later today)

● Alternative 2: Learn probabilistic relationship from the data
○ e.g. Statistical Part of Speech Tagging (other courses!)

Natural language
ambiguity

https://twitter.com/RoyiRassin/status/1547813162811924480?s=20&t=C2IN5OX-r-Ha8DOyRX2wVg

 State of the art?

https://twitter.com/RoyiRassin/status/1547813162811924480?s=20&t=C2IN5OX-r-Ha8DOyRX2wVg

Deriving the linguistic specification
Now we have pronounceable words we want to derive:

Pronunciation:

● Pronunciation Dictionaries
● Letter-to-Sound (LTS) rules

Prosody:

● Prominence marking: pitch accents
● Break detection: pauses, boundary tones

Pronunciation Dictionaries
Use pre-existing pronunciation dictionaries to map words to phonetic
transcriptions

But what phone set should we use?

● IPA has more symbols than necessary for many language specific tasks.

○ Not so efficient for many languages!

● Also, not as easily machine readable (until recently)

● We usually use simplified phone sets developed with speech tech in mind

CMUDict - ARPABET
The CMU Pronouncing Dictionary (US English) uses the ARPABET phoneset (39 phones)

http://www.speech.cs.cmu.edu/cgi-bin/cmudict (you can lookup pronunciations here for US English!)

http://www.speech.cs.cmu.edu/cgi-bin/cmudict

CMUDict - ARPABET
EDIFY EH1 D AH0 F AY2
EDIFYING EH1 D AH0 F AY2 IH0 NG
EDIGER EH1 D IH0 G ER0
EDIN EH1 D IH0 N
EDINA AH0 D IY1 N AH0
EDINBORO EH1 D AH0 N B ER0 OW0
EDINBURGH EH1 D AH0 N B ER0 OW0
EDINGER EH1 D IH0 NG ER0
EDINGTON EH1 D IH0 NG T AH0 N
EDISON EH1 D IH0 S AH0 N
EDISON'S EH1 D IH0 S AH0 N Z
EDISONS EH1 D IH0 S AH0 N Z
EDISTO EH1 D IH0 S T OW0
EDIT EH1 D AH0 T
EDITED EH1 D AH0 T AH0 D
EDITED(1) EH1 D IH0 T IH0 D

1 big text file of
words and their
pronunciations

CMUDict
● CMUDict is dialect specific
● What do we do if we want to pronounce a word that’s not in the lexicon?
● Can we make a lexicon with greater generalizability?

Unilex
Unilex is an ‘accent-independent’ lexicon based on the Unisyn database

● Classifies phones by keywords e.g. ‘Foot’ vs ‘Strut’ are keywords
○ ‘Put’ → FOOT class
○ ‘Putt’ → STRUT class

● Use this to describe phonemic variation in English dialects/accents

● A single lexicon to encode different accents: run lexicon through accent
specific rules to produce accent specific lexica

Unilex - Edinburgh English (edi)
("edify" vb (((e) 1) ((d i) 0) ((f ae) 0)))
("edify" vbp (((e) 1) ((d i) 0) ((f ae) 0)))
("edifying" jj (((e) 1) ((d i) 0) ((f ae) 2) ((i n) 0)))
("edifying" vbg (((e) 1) ((d i) 0) ((f ae) 2) ((i n) 0)))
("edifyingly" rb (((e) 1) ((d i) 0) ((f ae) 2) ((i n) 0) ((l ii) 0)))

("edinburgh" nnp (((e) 1) ((d i m) 0) ((b r @) 0)))
("edinburgh's" nnp|pos (((e) 1) ((d i m) 0) ((b r @ z) 0)))
("edinburgh's" nnp|vbz (((e) 1) ((d i m) 0) ((b r @ z) 0)))
("edison" nnp (((e) 1) ((d i) 0) ((s n!) 0)))
("edit" nn (((e) 1) ((d i ?) 0)))
("edit" vb (((e) 1) ((d i ?) 0)))
("edit" vbp (((e) 1) ((d i ?) 0)))
("editability" nn (((e) 2) ((d i ?) 0) ((@) 0) ((b i l) 1) ((@) 0) ((? ii) 0)))
("editable" jj (((e) 1) ((d i ?) 0) ((@) 0) ((b l!) 0)))
("edited" vbd (((e) 1) ((d i ?) 0) ((i d) 0)))

Unilex - General American English (gam)
("edify" vb (((e) 1) ((t^ @) 0) ((f ai) 0)))
("edify" vbp (((e) 1) ((t^ @) 0) ((f ai) 0)))
("edifying" jj (((e) 1) ((t^ @) 0) ((f ai) 2) ((i ng) 0)))
("edifying" vbg (((e) 1) ((t^ @) 0) ((f ai) 2) ((i ng) 0)))
("edifyingly" rb (((e) 1) ((t^ @) 0) ((f ai) 2) ((i ng) 0) ((lw ii) 0)))

("edinburgh" nnp (((e) 1) ((t^ i m) 0) ((b @@r) 2) ((r ou) 0)))
("edinburgh's" nnp|pos (((e) 1) ((t^ i m) 0) ((b @@r) 2) ((r ou z) 0)))
("edinburgh's" nnp|vbz (((e) 1) ((t^ i m) 0) ((b @@r) 2) ((r ou z) 0)))
("edison" nnp (((e) 1) ((t^ i) 0) ((s n!) 0)))
("edit" nn (((e) 1) ((t^ @ t) 0)))
("edit" vb (((e) 1) ((t^ @ t) 0)))
("edit" vbp (((e) 1) ((t^ @ t) 0)))
("editability" nn (((e) 2) ((t^ @ t^) 0) ((@) 0) ((b i lw) 1) ((@) 0) ((t^ ii) 0)))
("editable" jj (((e) 1) ((t^ @ t^) 0) ((@) 0) ((b l!) 0)))
("edited" vbd (((e) 1) ((t^ @ t^) 0) ((@ d) 0)))
("edited" vbn (((e) 1) ((t^ @ t^) 0) ((@ d) 0)))

Dialect variation
How many different vowels in your own English dialect?

“Mary, marry me! Make me Merry!”

● Mary = marry?
● Marry = Merry?
● Mary = Merry?

Different phoneset for different tasks

● Edinburgh

● IPA: edɪmbrə

● ARPABET: EH1 D AH0 N B R AX0

● Unilex-edi: e d i m b r @

● Unilex-edi full: (((e)1) ((d i m)0) ((b r @)0))

Having a compact lexicon and rules to generate variants seems like a
good idea - but how to we figure out the rules?

We need some phonemic analysis...

Phonemes
Phonemes are abstract categories over actual speech sounds

● Contrastive units
● Distinguished by minimal pairs of words

○ e.g. unaspirated/aspirated stops aren’t distinguished in English: [pot] vs [phot]
○ e.g. unvoice/voice strops are: [pot] vs [bot]

Allophones
Allophones: the realization of a phoneme as an actual speech sound

● Different allophones are perceived as the same phoneme
● Predictable phonetic variation determined by context

From module 5 video: Phonemes and Allophones (R. Puderbaugh)

/n/ is realized with the place of articulation of the following consonant

Edinburgh

e d i m b r @

Rules and Decision Trees

Decision
Trees

We can represent the application of
rules as a decision tree.

Here’s a a hand-written decision tree
with arbitrary ordering of questions
based on the place assimilation rule for
pronunciation of /n/

Followed by /k/?

Followed by /f/?

Followed by /j/?

Followed by /b/?

Followed by /d/?

[ŋ]

[ɱ]

[ɲ]

[m]

[n]

questions
yes

yes

yes

yes

yes

no

no

no

no

https://seeingspeech.ac.uk/ipa-charts/#
https://seeingspeech.ac.uk/ipa-charts/#
https://seeingspeech.ac.uk/ipa-charts/#
https://seeingspeech.ac.uk/ipa-charts/#
https://seeingspeech.ac.uk/ipa-charts/#

Learning letter to sound rules
(Morpho-)phonological analysis is hard! Can we learn letter to sound rules directly
from the data?

Yes! Using machine learning methods

Learning decision trees
● Derive the questions from observed data
● Use counts over observed data to decide which questions to ask first

Following Context pronunciation count

b (“Edinburgh”) [m] 3

b (not “Edinburgh”) [n] 477

d [n] 6138

f [n] 1273

Following Context pronunciation count

io [ny] 197

i (not o) [n] 4537

(no boundary) k [ng] 1338

(boundary) k [n] 56

Counts of /n/ pronunciation in different contexts

Based, but not exactly, on unilex-edi

Decision
Trees

Followed by “d”?

yes no

before “d”, “n” is pronounced [n] In other contexts, there’s still a
range of potential pronunciations

Separate the data
depending on the
answer

Decision
Trees

Followed by “k”?

yes no

Before “k”, “n” is almost always
pronounced ng=[ŋ]

In other contexts, “n” is almost
always pronounced n=[n]

Question: Does asking this question first reduce our uncertainty
about the pronunciation more than the “d” question?

https://seeingspeech.ac.uk/ipa-charts/#

Reduction of uncertainty

Question: Does asking th “k” question reduce our uncertainty
about the pronunciation more than the “d” question?

Followed by “d”? Followed by “k”?

yes noyes no

Fairly certain what to do if the answer is
“yes” in both cases….

Reduction of uncertainty

More concentrated on [n]

Not followed
by “d”

Not followed
by “k”

Less concentrated on [n]

A distribution where the probability mass is highly concentrated on a single
option indicates less uncertainty than one where many options are likely

Let’s focus on the “no” answers for a
minute…

Entropy: a measure of uncertainty

More concentrated on [n]

Not followed
by “d”

Not followed
by “k”

Less concentrated on [n]

Entropy is highest when the probabilities over the possible events are equal,
i.e. when every option is equally surprising

Entropy as a measure of uncertainty

More concentrated on [n]

Not followed
by “d”

Not followed
by “k”

Less concentrated on [n]

Conversely, entropy is lowest when probability is concentrated on just one
event → if there’s only 1 choice, there’s no surprise when we see it

Entropy as a measure of uncertainty

More concentrated on [n] Less concentrated on [n]

Calculate Entropy using probabilities
over the set of potential options:

Not followed
by “d”

Not followed
by “k”

See also: extra lab notebook tts/tts-1-1-entropy

Entropy as expected surprisal

Probability of
event xi

Number of
potential
events “Surprisal” or “information

content” of the event
→ low probability events
are more surprising

Also more videos on this on speech.zone!
https://speech.zone/entropy-understanding-the-equation/

Sum over possible
events

Entropy: expected suprisal
of the probability
distribution

https://speech.zone/entropy-understanding-the-equation/

Decision
Trees

Followed by “k”?

yes no

We can continue to grow the tree by asking
questions on the data on each of the branches.

Preceded by syl boundary?

yes no

[n] [ng]

Followed by “i”?

yes no

Mostly [n], a few [ny]’s Mostly [n], a few [m]’s

Choose the question that reduces
uncertainty → Choose the split that
produces the greatest information gain

Decision
Trees

Followed by “k”?

yes no

We can continue to grow the tree by asking
questions on the data on each of the branches.

Preceded by syl boundary?

yes no

[n] [ng]

Followed by “i”?

yes no

Mostly [n], a few [ny]’s Mostly [n], a few [m]’s

Information gain = entropy before split - weighted
average of the entropy of post split partitions
→ Choose question (=split) that provides the
biggest information gain

Decision
Trees

Followed by “k”?

yes no

Continue until there’s not enough data at each
“leaf” to estimate probabilities or entropy is below
some threshold (or other stopping rules).

Preceded by syl boundary?

yes no

[n] [ng]

Followed by “i”?

yes no

Mostly [n], a few [ny]’s Mostly [n], a few [m]’s

TTS Pronunciation
Options for mapping written words to pronunciations (phones):

● Lookup phonetic transcript in a pronunciation dictionary (i.e., lexicon)
● Use hand-written letter-to-sound rules - requires expert knowledge
● Learn rules from the data - requires machine learning methods, e.g. decision

trees (state of the art: neural network models)

Deriving the linguistic specification
Pronunciation:

● Pronunciation Dictionaries
● Letter-to-Sound (LTS) rules

Prosody:

● Prominence marking: pitch accents
● Break detection: pauses, boundary tones

After determining the correct phone sequence, we also need to get the non-lexical
characteristics of speech right, i.e. prosody.

Prosody!

Aspects of Prosody
● Pitch : Fundamental frequency (F0)

○ Is it high or low?

● Loudness: Derived from wave amplitude, e.g. Intensity
○ Loud or soft? How much energy?

● Timing: segment durations, pauses
○ Short of long?

● Voice quality: creak, breath
○ What’s happening with your glottis?

Prosody

This is a simplified approach for
this course! Prosody is
complicated…and awesome!

Varying Prosodic Prominence
Same sentence, different prosody:

1. Emily DID bring a meringue
2. Emily DID bring a MERINGUE
3. Emily DID bring a meringue

Different emphasis falls on different words with emphasized words more
prosodically prominent than others: relatively higher pitch excursions, energy and
duration.

http://data.cstr.ed.ac.uk/clai/wav/mm_doubles12_EDC_1.wav
http://data.cstr.ed.ac.uk/clai/wav/mm_doubles12_EIC_1.wav
http://data.cstr.ed.ac.uk/clai/wav/mm_doubles12_EDS_1.wav

Varying Prosodic Prominence
Same sentence, different prosody:

1. Emily DID bring a meringue.
2. Emily DID bring a MERINGUE...
3. Emily DID bring a meringue?

But prominences can sound different:

Different pitch accents and boundary tones

http://data.cstr.ed.ac.uk/clai/wav/mm_doubles12_EDC_1.wav
http://data.cstr.ed.ac.uk/clai/wav/mm_doubles12_EIC_1.wav
http://data.cstr.ed.ac.uk/clai/wav/mm_doubles12_EDS_1.wav

Boundaries
I said to him when you left do you remember I told you
I said to him don’t forget Dave if you ever get in
trouble give us a call you never know your luck

Boundaries - Prosodic breaks
I said to him when you left do you remember I told you
I said to him don’t forget Dave if you ever get in
trouble give us a call you never know your luck

I said to him when you left, (do you remember? I told you) I said
to him: “Don’t forget Dave if you ever get in trouble give us a call.
You never know your luck.”

pause

pause
Lowered pitch register

Lowered pitch register

Speech is “punctuated” by prosodic breaks: most obvious perceived
as pauses, but also resets in pitch or changes in pitch register.

Strict Layer Hypothesis
[Selkirk 1984]

Figure from [Cole 2015]

Autosegmental-Metrical Theory of
English Phonology
[Pierrehumbert 1980, Beckman & Pierrehumbert 1988]

TTS systems usually assume a simplified version of intonational phonology:
just labelling of prominences (pitch accents) and boundaries: no higher
structure (yet!)

(A bit of) Intonational Phonology

Prosodic Labelling: ToBI

H*

L-

H%H*

L-

Pitch accents

phrase
accents

Boundary
tone

Prosody prediction
Predict prominences and boundaries from the text: attach pitch accent and
boundary tones, and break labels (NB=no break, BB=break) to words

 L*+H H-H%
NB NB NB BB
I live in Edinburgh
((ai)1) ((liv)1) ((in)1) ((e)1)((dim)0)((br@)0)

Tones
Breaks
Words
Phones+Syllables

“I live in Edinburgh?”

Prosody prediction
Predict prominences and boundaries from the text: attach pitch accent and break
labels to words

● Simple rule based pitch accent and break labelling:
○ e.g. prominence on content words
○ e.g. breaks (i.e. pauses) at punctuation

● Learned rules:
○ use linguistic features to predict prosodic labels e.g. with a decision tree

● Probabilistic/machine learning:
○ learn probabilities of prosodic features text + speech, from a lot of data

Prosody: Really?

Examples from the Switchboard Corpus [Godfrey et al. 1996]

You can’t predict all prosody
just from text!

Front-end summary
Convert raw text to pronounceable words

● Tokenization
● Non-standard words, e.g. numbers, acronyms
● Word sense disambiguation, e.g. POS tagging

Map words to phonetic transcriptions, i.e. phones

● Pronunciation dictionary
● Letter to Sound rules

Add prosodic information

● Prominences: Pitch accents
● Boundaries: Breaks, boundary tones

To generate speech
from text we must first
analyze the text.

We derive a linguistic
specification from
which we can generate
a waveform

Sproat (2022) in Computational Linguistics, https://doi.org/10.1162/coli_a_00439

Text
normalization
isn’t solved!!

https://doi.org/10.1162/coli_a_00439

Morphology still helps in neural TTS (state of the art)

 Taylor, J., Richmond, K. (2020) Enhancing Sequence-to-Sequence Text-to-Speech with Morphology. Proc. Interspeech 2020,
1738-1742, doi: 10.21437/Interspeech.2020-1547

Assignment Guidance

Assignment 1: Analyze a TTS voice
● Festival TTS system: Concatenative TTS (Unit selection)
● Pre-recorded voice database (cstr_edi_awb_arctic_multisyn)
● Units = diphones

Choice of units to concatenate depends on:

● Target cost: how well the unit matches the linguistic specification
● Join cost: how well edges of the units match

Your task
Find out how synthetic speech is generated in this specific Festival pipeline

● What is the purpose of each module?
● What does Festival actually do?
● How does the overall process differ from human speech generation? Where would we expect

to find errors?

Find errors in the TTS voice

● Describe the error
● Determine where in the pipeline it came from

Reflect on the pipeline as a whole

● What should you focus on in order to improve the voice?

Types of errors
● Text normalisation
● POS tagging/homographs
● Pronunciation (dictionary or letter-to-sound)
● Phrase break prediction
● Waveform generation (module 6)

Report - 1500 words
The report should have the following sections:

● Text normalisation
● POS tagging/homographs
● Pronunciation
● Phrase break prediction
● Waveform generation
● TTS pipeline discussion

6 sections, 10 marks each

Write-up
Sections 1-5: identify mistakes in the listed categories

● Concisely describe the mistakes (use figures/tables to help illustrate)
● Identify where the mistake originated from
● Provide evidence to support your analysis

Section 6: TTS Pipeline discussion

● Identify any general findings and implications of your investigations
● Give recommendations for how to improve the voice
● Identify tradeoffs involved in improvement solutions

Write-up
You may also get more marks for showing more depth of analysis: e.g.

● Further analysis/more evidence of mistakes’ origins, e.g. if it’s due to interactions
of modules

● Analysis of severity of mistakes: would it affect output frequently or only rarely?
● Further analysis of the error from a phonetics perspective (why does it sound

bad?)
● Discussion of potential solutions
● Other relevant insights into the errors!

There’s more guidance in the assignment specification on speech.zone

This week
● Get access to Festival: in actual AT lab or remote desktop

● Follow the assignment instructions and inspect what’s happening at each step of the
pipeline

● Think about potential sources of errors from the front-end: This voice definitely doesn’t
do all the things we’d like it to do!

● This is a deliberately error-prone voice!

This year (2023-24) you don’t need to submit a separate background section in your report,
but you may wish to at least make some notes/figures to consolidate your understanding of
what is happening in the pipeline.

Assignment 1: Festival TTS

Extra slides

Front-end output: Festival
In festival, the linguistic specification generated by the front-end is a set of
relations, e.g.:

● Token
● Word
● Phrase
● Syllable
● SylStructure
● Segment

These all hold different bits of of information, e.g. words, POS tags, break
positions, syllable boundaries….

TTS Front-end - Festival
Front-end:
festival> (set! myutt (Utterance Text "Put your own text here."))
festival> (Initialize myutt)
festival> (Text myutt)
festival> (Token_POS myutt)
festival> (Token myutt)
festival> (POS myutt)
festival> (Phrasify myutt)
festival> (Word myutt)
festival> (Pauses myutt)
festival> (PostLex myutt)

Back-end:
festival> (Wave_Synth myutt)

See assignment instructions in lab

Festival: Front-end Modules and Relations
Festival module Added relation Task

Text Token Whitespace tokenization

Token_POS basic token identification/homograph disambiguation

Token Word Token to word rules building the Word relation

POS Part of Speech tagger (e.g.HMM-based model)

Phrasify Phrase Predict phrase breaks (decision tree)

Word Syllable, Segment, SylStructure Lexical look up/LTS rules

Pauses Prediction of pauses (e.g. decision tree)

PostLex Post lexicon rules: modify segments based on their
context. E.g. vowel reduction, contractions, etc.

http://festvox.org/docs/manual-2.4.0/festival.html
http://festvox.org/bsv/

http://festvox.org/docs/manual-2.4.0/festival.html
http://festvox.org/bsv/

Festival: Front-end Modules and Relations
Festival Relations Description

Tokens Token properties

Word Word properties

Phrase Groups of words that form phrases

Syntax Relates on words via tree provided by parser

SylStructure Relates words to syllables and segments

Syllable Groups of phones that form syllables

Segment Phones

IntEvent Accents and boundary labels

Intonation Relates syllables to IntEvents

Easier just to
inspect the Festival
output

Not all relations are
generated in the
voice you are
analyzing for the
assignment!

‘I work in Edinburgh’
festival> (set! myutt (SayText "I work in Edinburgh."))

festival> (utt.relation.print myutt 'Word)
()
id _5 ; name I ; pos nn ; pos_index 0 ; pos_index_score 0 ; pbreak NB ;
id _6 ; name work ; pos_index 0 ; pos_index_score 0 ; pos nn ; pbreak NB ;
id _7 ; name in ; pos_index 4 ; pos_index_score 0 ; pos in ; pbreak NB ;
id _8 ; name Edinburgh ; pos_index 2 ; pos_index_score 0 ; pos nnp ; pbreak BB ;
Nil

festival> (utt.relation.print myutt 'SylStructure)
()
id _5 ; name I ; pos nn ; pos_index 0 ; pos_index_score 0 ; pbreak NB ;
id _6 ; name work ; pos_index 0 ; pos_index_score 0 ; pos nn ; pbreak NB ;
id _7 ; name in ; pos_index 4 ; pos_index_score 0 ; pos in ; pbreak NB ;
id _8 ; name Edinburgh ; pos_index 2 ; pos_index_score 0 ; pos nnp ; pbreak BB ;
id _9 ; name . ; pos_index 1 ; pos_index_score 0 ; pos punc ; pbreak BB ;
nil

Word and SylStructure
relations both tell us
something about words, but
looking at this view doesn’t
tell us the difference….

festival> (utt.relation_tree myutt 'SylStructure)
((("I"
 ((id "_5")
 (name "I")
 (pos "nn")
 (pos_index 0)
 (pos_index_score 0)
 (pbreak "NB")))
 (("syl" ((id "_11") (name "syl") (stress 1)))
 (("ae" ((id "_12") (name "ae") (end 0.23012498))))))
 (("work"
 ((id "_6")
 (name "work")
 (pos_index 0)
 (pos_index_score 0)
 (pos "nn")
 (pbreak "NB")))
 (("syl" ((id "_13") (name "syl") (stress 1)))
 (("w" ((id "_14") (name "w") (end 0.35974997))))
 (("@@r" ((id "_15") (name "@@r") (end 0.40056247))))
 (("r" ((id "_16") (name "r") (end 0.46806258))))
 (("k" ((id "_17") (name "k") (end 0.53968757))))))
 (("in"
 ((id "_7")
 (name "in")
 (pos_index 4)
….etc

(pos_index_score 0)
 (pos "in")
 (pbreak "NB")))
 (("syl" ((id "_18") (name "syl") (stress 1)))
 (("i" ((id "_19") (name "i") (end 0.57693738))))
 (("n" ((id "_20") (name "n") (end 0.64431256))))))
 (("Edinburgh"
 ((id "_8")
 (name "Edinburgh")
 (pos_index 2)
 (pos_index_score 0)
 (pos "nnp")
 (pbreak "BB")))
 (("syl" ((id "_21") (name "syl") (stress 1)))
 (("e" ((id "_22") (name "e") (end 0.8311252)))))
 (("syl" ((id "_23") (name "syl") (stress 0)))
 (("d" ((id "_24") (name "d") (end 0.9085626))))
 (("i" ((id "_25") (name "i") (end 0.9469375))))
 (("m" ((id "_26") (name "m") (end 1.0328753)))))
 (("syl" ((id "_27") (name "syl") (stress 0)))
 (("b" ((id "_28") (name "b") (end 1.1119378))))
 (("r" ((id "_29") (name "r") (end 1.1496253))))
 (("@" ((id "_30") (name "@") (end 1.2204378))))))
 (("."
 ((id "_9")
 (name ".")
 (pos_index 1)
 (pos_index_score 0)
 (pos "punc")
 (pbreak "BB")))))

Words are have word attributes: Id, name,
pos,...,pbreak

Each words is made up of syllables

Each syllable is made up of segments

 Taylor, J., Richmond, K. (2020) Enhancing Sequence-to-Sequence Text-to-Speech with Morphology. Proc. Interspeech 2020,
1738-1742, doi: 10.21437/Interspeech.2020-1547

Morphology still helps in neural TTS (state of the art)

Lexical Stress
● The syllable in a word that “attracts” prominence
● Chan change when we put words together?

e.g. Noun compounds: lot’s of influences

Phonological Tennessee Tennessee whiskey

Contrast/info structure A Kangaroo hunt A Kangaroo hunt

Syntax Chocolate cake icing Chocolate cake icing

Non-Standard Words: ambiguity

We can use our world language
knowledge to guess how to
pronounce the following:

● St Mark St Glasgow
● St Mark St, Glasgow
● St Mark St. Glasgow

But a computer needs to learn the
rules...

Phoneset choice
● Unilex is more generalizable than CMUDict
● Also more compact: 1 base lexicon + rules
● But we need to define rules to convert from one accent to another
● This leads us to revisit the concept of phoneme...

Concatenative synthesis (next week)
● Concatenate units of real speech together to form new words
● Select units based on linguistic specification
● Speech within each unit is guaranteed to sound as good as human!

Some Questions

● What sized units to use?
● How to ensure they join up well? What happens if they don’t?

