
Speech Processing:
Digital Speech Signals

Module 3
Catherine Lai

5 October 2021

Today
● Where are we now? (Interpreting spectrograms)
● Time Domain and Frequency Domain
● Digital speech signals
● Discrete Fourier Transform → What are spectrograms, really?

So far
● Module 1: Phonetics and visual representations of speech
● Module 2: Acoustics of Consonants and vowels

How can we characterise speech from
articulatory and acoustic perspectives?

From modules 1 & 2, you should
be able to:
● Describe how speech sounds

in terms of manner and
place of articulation

● Know enough vocal
anatomy/phonetics
terminology to read and
interpret the IPA chart

● You don’t need to memorize
all the symbols or to make all
the sounds!

● If you don’t have a phon
background it may take some
time to absorb. That’s ok!

● Try to build on and
consolidate the concepts
from module 1 & 2 through
the semester

Assessment:

● ONLINE TEST WEEK 5
Phon/Signals (15%): Open on Learn
Mon 12pm 16/10/23 - Wed 12pm
18/10/23

● Use these concepts in the
assignments to help give your
analyses more depth

m
an

ne
r

Place of articulationConsonants

Air stream

Vowels are mainly characterised by their height
and frontness (tongue position), and lip roundness

Computers can’t see into our mouths (generally speaking!) so we
want to derive features from the speech signal that we can use to
identify different speech sounds → articulatory/acoustic mapping

Vowels

Vowels are mainly characterised by their height
and frontness (tongue position), and lip roundness

articulatory/acoustic mapping: what can we infer about
articulation from the sound wave? What features of the sound
wave are informative of this?

Vowels

Study aid: Seeing Speech
An interactive IPA chart with MRI, X-ray and animations of speech sounds:

https://www.seeingspeech.ac.uk/ipa-charts/

Tip: Phonetics is generally easier to learn by doing! Try looking at the articulators in the video and try it yourself.
Record yourself and look at the spectrogram in Praat. You’ll pick up the terminology with practice (our tests are
open book anyway)!

https://www.seeingspeech.ac.uk/ipa-charts/

Acoustic phonetics

We can “see” differences in place of articulation and manner of speech sounds by
looking at how at the spectral characteristics of speech (i.e. the frequencies
present in the sound) and how it changes over time → spectrograms

From phonetics lecture notes by Louis Goldstein

Oral stops (aka plosives) at the start of a word can
be distinguished by formant transitions into the
following vowel

https://sail.usc.edu/~lgoldste/General_Phonetics/Consonants/Ca.html

Acoustic phonetics

This frequency information is key to both automatic speech recognition and
speech synthesis: We can determine what is being said without seeing the actual
articulations, and we can generate sounds with a vocal tract!

From phonetics lecture notes by Louis Goldstein

https://sail.usc.edu/~lgoldste/General_Phonetics/Consonants/Ca.html

Acoustic phonetics

Question of the week: We how do we go from sound in the real world to a
spectrogram on a computer?

From phonetics lecture notes by Louis Goldstein

https://sail.usc.edu/~lgoldste/General_Phonetics/Consonants/Ca.html

Sound in the Time Domain and the
Frequency Domain

Sound waves
Air particles bounce back and forth at different frequencies. This causes changes
in pressure in the air: particles squashed together → higher air pressure

https://media.npr.org/assets/img/2014/04/08/compressionwave.
gif

https://media.npr.org/assets/img/2014/04/08/compressionwave.gif
https://media.npr.org/assets/img/2014/04/08/compressionwave.gif

Sound waves in air
Air particles bounce back and forth at different frequencies: we observe a ‘wave’ of
compression (and rarefaction) travelling through the air

https://www.acs.psu.edu/drussell/Demos/waves/wavemotion.html

Compression ↦ “squished” ↦ higher pressure
Rarefaction ↦ “spread” ↦ low pressure

https://www.acs.psu.edu/drussell/Demos/waves/wavemotion.html

Sound waves: displacement and pressure

Air pressure is highest when the air particles are compressed (i.e. squished together). This produces a
sinusoidal pattern as pressure at a single point changes in time.

Figure by Dan Russell’s acoustics and vibration animations

https://www.acs.psu.edu/drussell/Demos/phase-p-u-sine/phase-p-u-sine.html

https://www.animations.physics.unsw.edu.au/waves-sound/sound/index.html

Sound waves: (air) pressure
We generally characterise sound waves in terms of changes in pressure in a
medium (usually air) caused by some physical source.

https://www.animations.physics.unsw.edu.au/waves-sound/sound/index.html
https://docs.google.com/file/d/18JVWULVf5NfCMbxcmtQGBTOt4whilabT/preview

Speech in the Time Domain
Time domain: amplitude (measured pressure relative to atmospheric pressure)
over time

Lab 1 learning outcome: It’s very hard to determine difference vowels and
consonants just from the time versus amplitude graph!

Spectrograms: The Frequency Domain through Time

The spectrogram shows the frequency characteristics of the waveform through
time. Each vertical bar represents frequencies present in a small window of time.

Individual frequencies represent “pure tone” sine waves: e.g., 200 Hz, 300 Hz

Spectrograms: Speech in the Frequency Domain

Time (s)

Frequency
(Hertz)

Dark bits in the spectrogram indicate specific frequency components are
present in the speech signal at a specific time

Amplitude

Viewing speech as a spectrogram

We recognise articulation in terms of frequency components of the sound wave over
short periods of time → use this to learn mapping between words and acoustics

stop stop

fricative

diphthong

fricative

vowel

High
vowel

nasal

High
vowel

Extra: Want to do more spectrogram reading? Check of the (no longer updated)
monthly mystery spectrogram site: http://home.cc.umanitoba.ca/~robh/index.html

http://home.cc.umanitoba.ca/~robh/index.html

Spectral slices: moments in time

Spectrum [a] Spectrum [i]Spectrogram [ai]

The overall shape of the spectrum (the spectral envelope) changes depending on articulator
positions. But the the size (and shape) of the slice can change the shape of spectrum!

See Module 2 lab!

Computer Hearing? ● In the human ear, different parts of the
cochlea are sensitive to sounds of different
frequencies.

● Pressure fluctuations at different frequencies
are detected and transmitted to the brain via
electrical signals

● For a computer, we use the Discrete Fourier
Transform to convert recordings from a time
series of pressure amplitude measurements
into frequencies

● But first we need to get the sounds into a
representation the computer can understand!

(A bit more on human hearing later in the course…)

Digital Speech Signals

Digital sound waves
● Microphones capture changes in air pressure to record sound
● Converted into a continuous electrical signal: “Analogue”

Problem: computers deal in discrete data:
1s and 0s (binary numbers)

We need to convert the continuous sound
recording into a digital representation

→ We need to sample the wave and store
amplitude values in binary

Analogue to digital conversion
To process speech on a computer we need to convert a continuous signal into a
series of discrete values

Picture of continuous wave

Discretized wave

Vector of values

A representation of a continuous sound wave

Analogue to digital conversion: Sampling
The sampling rate (samples/second = Hz), aka sampling frequency, determines
how often we record a value from wave

Picture of continuous wave

Discretized wave

Vector of values

Sampling period = 1/sampling rate (seconds)

Sampling rate differences
● 16000 Hz
● 8000 Hz
● 4000 Hz
● 2000 Hz

Binary Representation
Computers represent and process information in terms of binary numbers:

● 1-bit: 0, 1 (2 values)
● 2-bit: 00, 01, 10, 11 (2x2 = 4 values)
● 3-bit: 000, 001, 010, 011, 100, 101, 110, 111 (2x2x2 = 8 values)
● …
● 16-bit: (2^16 = 65536 values)

The number of bits you can use determines the precision with which you can
represent the signal

Quantization
To give the waveform a binary representation, we need to map amplitudes to
discrete bins. The number of bins determines how faithfully you can represent
the wave

Note the small range
in this example!
We need more bits if
we want to capture a
bigger dynamic range.

16 bits is
usually
ok!

11
10
01
00

2 bits 4 bits

8 bits

16 bits 8 bits

More examples: https://dspillustrations.com/pages/posts/misc/how-does-quantization-noise-sound.html

44100 Hz sampling rate:

https://dspillustrations.com/pages/posts/misc/how-does-quantization-noise-sound.html

Sampling and Aliasing
Frequencies above half the sampling rate (the Nyquist Frequency) will be
indistinguishable from frequencies below the Nyquist frequency (i.e., the
frequencies are aliased - you can’t tell what they really are!)

Question
What happens if we have frequency components in our recording that are higher
than the Nyquist Frequency?

e.g., if our sampling rate is 8000 Hz but the actual sound contains an 5000Hz
component will it actually appear in our digitized recording? What problems might
this cause?

Sampling and Aliasing
Frequencies above half the sampling rate (the Nyquist Frequency) will be
indistinguishable from frequencies below the Nyquist frequency (i.e., the
frequencies are aliased - you can’t tell who they really are!)

To be sure of our frequency analysis we first need to filter out high frequencies

Generating Spectrograms
● Recording of sound

○ Filtering (e.g. frequencies above the desired Nyquist Frequency)
● Digitization

○ Sampling (sampling rate)
○ Quantization (bit depth)
○ A discrete representation in the time domain

● Discrete Fourier Transform (windowed)
○ Maps from time domain to frequency domain
○ Applied to short windows of speech
○ Outputs magnitude and phase spectrum

Spectrogram: time vs frequency ‘heatmap’, where colour (darkness in Praat)
corresponds to the ‘strength’ of different frequencies component in the signal.

More on filters next week!

The Discrete Fourier Transform

Discrete Fourier Transform
The Discrete Fourier Transform (DFT) is mathematical procedure we can use to
determine the frequency content of a discrete signal sequence

Frequency (Hz)

m
ag

ni
tu

de

Time (s)

am
pl

itu
de

Time domain Frequency domain

A mathematical procedure we can used to determine the frequency content of a
discrete signal sequence

Mathematical view: for input x[n] with n=0,...,N-1 (N inputs)

For k=0,..,N-1 (N analysis frequencies)

Discrete Fourier Transform
“Wasn’t the Fourier
Transform about sine
waves???”

😲

A mathematical procedure we can used to determine the frequency content of a
discrete signal sequence

Mathematical view: for input x[n] with n=0,...,N-1 (N inputs)

For k=0,..,N-1 (N analysis frequencies)

Discrete Fourier Transform

Derived from Euler’s
Formula

An equivalent formulation of the
DFT using sines and cosines

You don’t have to memorize this equation! But we will try to develop the intuition
behind it…

Periodic function

A periodic function repeats in time

A more formal way of saying it:
For function f which takes a time t as input, the
output obeys:

f(t) = f(t + nT)

for some constant T (the period), for all times t and
integers n

The function outputs the same pattern over and
over again, predictably through time

Fourier Analysis

A periodic function repeats in time

A periodic function can be written as
a discrete sum of simple periodic
(sinusoidal) functions (i.e. sine and
cosine) of different frequencies

We can construct complex waveform by adding
together simple periodic functions (sinusoids) with
some scaling and shifting

Cosine and sine functions

Think of a sine
wave as a shifted
cosine wave and
vice versa

sinecosine

These are simple periodic functions. If we
play them they produce “pure tones”

300Hz

200Hz

Fourier Analysis Demo

http://www.falstad.com/fourier/Fourier.html

Question: How many sine waves do you need to make a square wave?

http://www.falstad.com/fourier/Fourier.html

Fourier Transform

We can decompose a periodic
waveform into a set of simple
periodic functions (i.e., pure
tones) of different frequencies.

Just like a prism splits light into
component colours

A spectrum of colours!

Fourier Transform

We can decompose a periodic
waveform into a set of simple
periodic waves (i.e., pure tones)
of different frequencies.

If we scale and shift those pure
tones appropriately we can
approximate the original
waveform by adding the scaled
and shifted waves together

8Hz

20Hz

36Hz

+

+

The Fourier Transform provides us with the “technology” to map between the time
domain to the frequency domain (spectrum)

● It decomposes the time series waveform into component frequencies
● Non-zero magnitudes indicate that you would include that frequency in reconstructing the

signal

Fourier Transform

Magnitude spectrum

Discrete Fourier Transform

● Input: a sequence of N values
○ e.g. amplitude values sampled in time

● Output: N complex numbers
○ Correspond to N sinusoids with frequencies spread between 0 and the

sampling rate
○ The output coefficients tell us how to scale and shift the corresponding

sinusoids so we can reconstruct the original input

Discrete Fourier Transform Outputs
The output coefficients tell us how to scale and shift the corresponding sinusoids so
we can reconstruct the original input

The complex number outputs can be interpreted in terms of:

● The magnitude spectrum: how much to scale the different pure tone frequency
components

● The phase spectrum: how much to shift the different pure tone frequency
components

DFT output as magnitude and phase

DFT
mag

phase

Magnitude spectrum

Phase spectrum

Questions: Spectral Slices
The spectral slice function in Praat performs the DFT on a selected window of
speech.

● What part of the DFT output does the spectral slice show us?
● What frequencies can we view in a Praat spectral slice?
● How does the size of the input window change the spectral slice?
● How does input size relate to wide and narrowband spectrograms?

How does it work?
Let’s call our input sequence x and the sinusoid associated with DFT[k], sk

● The DFT[k] is the inner product x and sk (notation: <x ,sk>, aka dot product)
○ You can interpret this as similarity or, very loosely, as correlation (but it’s not a statistical

property here)

● The sinusoids we are considering form an orthogonal basis:
○ The inner product of two of these sinusoids is non-zero only if their frequencies are the same

So, roughly, the inner product <x ,sk> picks out only bits of the input that have the
same frequency as the sinusoid sk (if so, with what scale and shift). If there is no
periodic component with that frequency the output DFT[k] will be zero.

Extra: See Module 3 Lab extension notebooks for
an example in gory detail.

DFT[8]

How does it work?
Let’s call our input sequence x and the sinusoid associated with DFT[k], sk

● Calculate the similarity between DFT[k] and input x

○ i.e., take the dot product of x and sk (notation: <x ,sk>, aka inner product)

○ Multiply the equivalent points in time for x and sk , the add it all up

● This measure tells us whether the input include a frequency component with the
frequency as the sinusoid sk (possibly scaled and shifted)

○ If sk is not present the output DFT[k] will be zero.

Extra: See Module 3 Lab extension notebooks for
an example in gory detail.

DFT[8]

DFT Analysis frequencies
● For N input values, we get N output analysis frequencies spread evenly

between 0 and the sampling rate fs:

● This formulation ensure the analysis sinsuoids form an orthogonal basis
since we are dealing with sampled sinuisoids.

What frequencies?
The sinusoids associated with DFT outputs have frequencies corresponding to
represent N values spread evenly between 0 and the sampling rate fs:

● These are frequencies that complete a whole number of periods in the input
window time.

● But we only use the first half of those outputs for analysis. Why?

Questions
If our input window is 100 samples how many DFT outputs will the DFT have?

What frequencies will the DFT outputs represent?

Questions
If our sampling rate is 8000 Hz and our input analysis window (frame) contains 80
samples

● How many DFT outputs will we get?
● What frequencies are represented by the DFT output (i.e., the magnitude

spectrum)?
● What frequencies in the input signal will we actually be able to detect?

Questions
If our sampling rate is 16000 Hz and our analysis window (frame) is 25 ms

● How many DFT outputs?
● What frequencies can we detect?

Leakage
What happens if the input frequency falls between the outputs? Leakage!

Positive magnitudes for the DFT outputs near the actual input frequency (try it in
the lab!)

If we want to be able to analyse lots of frequencies, we need a lot of input values

From DFT to Spectrogram
Spectrogram is a series of DFTs in time: it creates a
time-series of frequency domain features

● DFT maths assumes that a signal continues forever in
time

● Real world signals are (sort of) locally periodic
● So, we perform the DFT on short regions

(windows/analysis frames) in the signal, i.e., the Short
Time Fourier Transform (STFT)

● The type of window can change the output!

Window with abrupt
ending (rectangular
window)

Artifacts due to
discontinuity at edges
of the window

Spectrum shows
positive mag across
frequencies→ leakage

With the Hanning window, the spectral characteristics are
sharper, less leakage!

We can reduce artifacts
due to discontinuitues
by using a tapered
window, e.g. Hanning,
instead of a plain
rectangle

Extension:
Understanding the DFT equation

A mathematical procedure we can used to determine the frequency content of a
discrete signal sequence

Mathematical view: for input x[n] with n=0,...,N-1 (N inputs)

For k=0,..,N-1 (N analysis frequencies)

Discrete Fourier Transform
This is what you’ll see in
textbooks and computing
packages - see the Module 3 lab!

A mathematical procedure we can used to determine the frequency content of a
discrete signal sequence

Mathematical view: for input x[n] with n=0,...,N-1 (N inputs)

For k=0,..,N-1 (N analysis frequencies)

Discrete Fourier Transform

Derived from Euler’s
Formula

An equivalent formulation of the
DFT using sines and cosines

A different view of periodicity

You can see think of a sine wave as the vertical projection of a vector
rotating at a constant speed drawing out a circle (counter-clockwise). A
period is characterised by one complete 360 degree rotation (i.e., cycle).

A different view of periodicity: Complex Sinusoids

The rotating vector (on the left) is a complex sinusoid. It lives in the
complex plane! We describe points on the circle as Rejθ , where j=√-1 is
an imaginary number

The sine(t) here is the projection of
the imaginary component of the
complex sinusoid

A different view of periodicity: Complex Sinusoids

We describe points on the circle as Rejθ where R describes the magnitude
of the vector and ፀ describes the angle of rotation (i.e., the phase) from
(1,0)

ፀ = π/4 radians = 45 degrees

R=1

Rejθ

Sine and cosine
We now define sine and cosine in
terms of the vector rotation

● Sine is the vertical projection
of the rotating vector

● Cosine is the horizontal
projection of the rotating
vector

Infinite repetition in a finite space!

This is actually -sin(t) to
match the DFT formula

Note the clockwise rotation

Adding sinusoids: Superposition
We can add complex sinusoids in the same way as we add simple sine waves
together (time wise).

This complex number addition is actually what the DFT formula is expressing -
hence the complex numbers in the formula!

Superposition

From 3blue1brown: https://www.youtube.com/watch?v=-qgreAUpPwM

With enough complex
sinusoids, we can
approximate any
function to basically an
arbitrary degree of
precision.

But again, in the real
world, we don’t have
infinite anything!

https://www.youtube.com/watch?v=-qgreAUpPwM
http://www.youtube.com/watch?v=-qgreAUpPwM

Key Points

● In order to analyze speech computationally, we need to digitize it
○ Sampling rate
○ Quantization

● Digitization brings in constraints
○ Nyquist Frequency: limits the frequencies we can actual captures
○ Aliasing: makes higher frequencies appear the same as lower frequencies

Key Points

● Map from the time domain to the frequency domain using the DFT
○ Frequency domain gives more direct characterisation of articulation from the signal
○ Analysis frequencies are determined by input size and sampling rate
○ We can only analyze frequencies up to the half the sampling rate (the Nyquist

Frequency)

● Many engineering techniques have been developed to improve the
accuracy of the DFT output

○ Windowing, and many other techniques

● Speech technologies use (variations of) the spectrogram to learn the
relationship between speech, acoustics, and language automatically

Next week
● The source filter model, from a computational perspective

Extension:
The DFT equation in more detail

A mathematical procedure we can used to determine the frequency content of a
discrete signal sequence

Mathematical view: for input x[n] with n=0,...,N-1 (N inputs)

For k=0,..,N-1 (N analysis frequencies)

Discrete Fourier Transform

for input x[n] with n=0,...,N-1 (N inputs), for k=0,..,N-1 (N analysis frequencies)

Discrete Fourier Transform

A complex sinusoid rotating
at a specific frequency The input sequence

Dot-product: a measure of similarity
between two sequences

for input x[n] with n=0,...,N-1 (N inputs), for k=0,..,N-1 (N analysis frequencies)

Discrete Fourier Transform

A magnitude
(scale factor)

A phase angle
(shift factor)

A complex number

The DFT formula calculates the similarity between the input and the complex sinusoid of a specific
frequency. It’s output is a complex number that tells you how you would scale and shift that
sinusoid in order to reconstruct the original input (summing the complex sinusoids corresponding to
the analysis frequencies)

for input x[n] with n=0,...,N-1 (N inputs), for k=0,..,N-1 (N analysis frequencies)

Discrete Fourier Transform

A magnitude
(scale factor) A phase angle

(shift factor)

A complex number

The DFT outputs represent N complex sinusoids whose frequencies are multiples of the 1st
actual analysis frequency (i.e., DFT[1])

for input x[n] with n=0,...,N-1 (N inputs), for k=0,..,N-1 (N analysis frequencies)

Discrete Fourier Transform

A magnitude
(scale factor) A phase angle

(shift factor)

A complex number

The fact the analysis frequencies are integer multiples of the first one means the (sampled)
complex sinsuoids form are orthogonal: sinusoids of different frequencies have zero
similarity. This is what allows the DFT to pick out specific frequencies as being in the input
signal

DFT sinusoids

DFT[1]

DFT[2]

Input size N=16
So, N=16 DFT outputs

16 steps for 1 cycle, 50 Hz

16 steps for 2 cycles, 100 Hz

Think of this as landing on every 2nd
point of the DFT[1] phasor

Assume a sampling rate of
800 samples per second

Aliasing again

DFT[1]

DFT[15]

Input size N=16
So, N=16 DFT outputs

DFT[15] is taking 15 steps for
every 1 of DFT[1], so the phasor
appears to be going backwards!

‘Wagon-wheel effect’

Aliasing again

DFT[1]

DFT[15]

Input size N=16
So, N=16 DFT outputs

We can’t actually capture the
frequencies represented after
the DFT[N/2], the Nyquist
Frequency, because of the
limit in sampling.

If you look at the full DFT output you
will see that the top half mirrors the
bottom half, suggesting high
frequency components that aren’t
there (see module 3 lab)

This is why visualizers, like Praat,
just show up to the Nyquist
frequency

Aliasing again

DFT[1]
50 Hz

DFT[2]
100 Hz

DFT[7]
350 Hz

DFT[8]
400 Hz

DFT[15]
750 Hz?

DFT[14]
700 Hz?

DFT[9]
450 Hz?

Input size N=16
So, N=16 DFT outputs

Aliasing again

DFT[1]
50 Hz

DFT[2]
100 Hz

DFT[7]
350 Hz

DFT[8]
400 Hz

DFT[15]
750 Hz?
50 Hz

DFT[14]
700 Hz?
100 Hz

DFT[9]
450 Hz?
350 Hz

Input size N=16
So, N=16 DFT outputs

A mathematical procedure we can used to determine the frequency content of a
discrete signal sequence

Mathematical view: for input x[n] with n=0,...,N-1 (N inputs)

For k=0,..,N-1 (N analysis frequencies)

Discrete Fourier Transform: cos and sine version

Euler’s Formula

Some Extra Slides

DFT frequencies

DFT[1]

Input size N=16
So, N=16 DFT outputs

16 steps for 1 cycle

Assume a sampling rate of
800 samples per second

Sampling rate = 800 samples/second
Sampling time = 1/800 seconds

Q: How long does 1 cycle take?
A: the period T = 16 * 1/800 = 0.02 seconds

Q: What’s the frequency associated with DFT[1]
A: frequency f = 1/T = 50 Hz

Magnitude Spectrum: scale

The zero magnitudes here indicate that we don’t need these frequencies for reconstructing the input.
We do need the 8Hz, 20Hz and 36Hz frequencies!

Phase Spectrum: shift

We often ignore the phase spectrum in speech analysis as it doesn’t have much
effect on human perception

Only non-zero if we detect a shift is
necessary for reconstruction

Working out the Analysis Frequencies
● DFT[0] -> 1

○ Constant function (0 cycles because only 1 value)

● DFT[1] -> sinusoid which completes 1 cycle over the length of the input window
○ If N = number of input samples and fs = sampling rate
○ What’s the length of the input window in seconds? (T = N * (1/f_s))
○ What’s the frequency of a sinusoid that completes 1 cycle in that time? (1/T = 1/(N/f_s) = f_s/N)

● DFT[2] -> sinusoid which completes 2 cycles over the length of the input window

● …

Working out the Analysis Frequencies
DFT[k] ↦ sinusoid which completes k cycles over the length of the input window

freq(DFT[N/2]) -> (N/2 * f_s)/N = f_s/2

● Which is half the sampling rate is the Nyquist Frequency, so now we have to think
about aliasing!

● After sampling, sinusoids with frequencies higher than f_s/2 look the same as
lower frequency ones

 This means the full DFT output is actually mirrored around the Nyquist Frequency.
This is why we only look at the first half of the mag spectrum.

(See module 3 lab)

Watson, C. I., Harrington, J., & Evans, Z. (1998). An acoustic comparison between New Zealand and Australian English vowels.
Australian journal of linguistics, 18(2), 185-207.

Frequency Domain: Analyzing pronunciation differences
New Zealand vs Australian English

For any specific phone,
there is a lot of
variation between
speakers within and
between dialects
→ We need statistical
methods!

