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Today

Where are we now? (Interpreting spectrograms)

Time Domain and Frequency Domain

Digital speech signals

Discrete Fourier Transform — What are spectrograms, really?



So far

e Module 1: Phonetics and visual representations of speech
e Module 2: Acoustics of Consonants and vowels

How can we characterise speech from
articulatory and acoustic perspectives?



THE INTERNATIONAL PHONETIC ALPHABET (revised to 2015)

CONSONANTS (PULMONIC) © 2015 IPA
Bilabial |Labiodental| Dental IAlveolar Postalveolar | Retroflex | Palatal Velar Uvular | Pharyngeal | Glottal

Plosive p b t d [ (1 C j k g q G | ?

Nasl m| m n n, n| n| N~

Trill B T R

Tap or Flap \A r r

Fricative q) [3 f v 6 6 ‘ S Zl I 3 § ZL 9 J Xy X ¥ h q h ﬁ

Lateral i B

fricative

Approximant v A ,l J [L[

L 1

a;;;giimam l ]_ 1( L

Symbols to the right in a cell are voiced, to the left are voiceless. Shaded areas denote articulations judged impossible.

CONSONANTS (NON-PULMONIC)

Clicks Voiced implosives Ejectives
’
O Bilabial 6 Bilabial Examples:
t
| Dental dDemal»‘alveolar p Bilabial

! (Postjalveolar
* Palatoalveolar

" Alveolar lateral

j: Palatal

g- Velar
d Uvular

’
t Dental/alveolar
]
Velar

)
S Alyeolar fricative

OTHER SYMBOLS
M\ Voiceless labial-velar fricative

W Voiced labial-velar approximant

qvoicedlh'lrlvlqrr i fj

C Z Alveolo-palatal fricatives

_I Voiced alveolar lateral flap

Iand X

H Voiceless epiglottal fricative

S Voiced epiglottal fricative

Affricates and double articulations

can be represented by two symbols

joined by a tie bar if necessary.

VOWELS
Front C entral Back
Close 1 y H
Close-mid (& ¢ —— 90 ——Y 0
Open-mid E2(C— 3 G——A®D
x
Open as(E A— aeD

Where symbols appear in pairs, the one
to the right represents a rounded vowel.

SUPRASEGMENTALS
b w
Primary stress '
= Sfouna'tifon
1 Secondary stress

S R U r-14

From modules 1 & 2, you should
be able to:
e Describe how speech sounds
in terms of manner and
place of articulation

e Know enough vocal
anatomy/phonetics
terminology to read and
interpret the IPA chart

e You don’t need to memorize
all the symbols or to make all
the sounds!



THE INTERNATIONAL PHONETIC ALPHABET (revised to 2015)

CONSONANTS (PULMONIC) © 2015 IPA
Bilabial |Labiodental| Dental IAlveolar Postalveolar | Retroflex | Palatal Velar Uvular | Pharyngeal | Glottal
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Lateral
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Lateral
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Symbols to the right in a cell are voiced, to the left are voiceless. Shaded areas denote articulations judged impossible.
CONSONANTS (NON-PULMONIC) VOWELS
Clicks Voiced implosives Ejectives Front Ccnlr al Back
- Close e
O Bilabial 6 Bilabial Examples:
| Dental d Dental/alveolar p’ Bilabial
) Close-mid (& ¢ —90¢0—Y 0
! (Postjalveolar j: Palatal t Dental/alveolar
# Palatoalveolar g- Velar k’ Velar
) R — —
" Alveolar lateral d Uvular S Alveolar fricative Open-mid g8 3 a AeO
x
OTHER SYMBOLS
Open as(E A— aeD
M\ Voiceless labial-velar fricative C Z Alveolo-palatal fricatives Where symbols appear in pairs, the one
= i ) . to the right represents a rounded vowel.
W Voiced labial-velar approximant _I Voiced alveolar lateral flap
U Voiced labial-palatal app fj imul I T D 4 SUPRASEGMENTALS
1 i
H Voiceless epiglottal fricative Primary stress |
S Affricates and double articulations —~ ,fOUng ll_[@ll
('l: Voiced epiglottal fricative can be represented by two symbols ts kp | Secondary stress
~

joined by a tie bar if necessary.

S R U r-14

If you don’t have a phon
background it may take some
time to absorb. That’s ok!

Try to build on and
consolidate the concepts
from module 1 & 2 through
the semester

Assessment:

ONLINE TEST WEEK 5

Phon/Signals (15%): Open on Learn
Mon 12pm 16/10/23 - Wed 12pm
18/10/23

Use these concepts in the
assignments to help give your
analyses more depth



Consonants

Place of articulation

CONSONANTS (PULMONIC) © 2015 IPA
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Hard palate
—— Air stream
Alveolar ridge (velum) | CONSONANTS (NON-PULMONIC) |
Clicks Voiced implosives Ejectives
Teeth
ol Uvula O Bilabial 6 Bilabial Examples:
Upper lip ? lade . | Dental d Dental/alveolar p’ Bilabial
_ Oral cavity -
Lower |ip ! (Postjalveolar :]: Palatal t Dental/alveolar
root ’
. Palatoalveolar Velar k Velar
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’
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Vowels are mainly characterised by their height
Vowels and frontness (tongue position), and lip roundness

VOWELS
Front Central Back
Close 1 y—i H——— WelU
Nasal cavity 1Y )
Hard palate
Close-mid Ce ) 9500 — Y e0
veolar ridge 9
Teeth ‘
Upper lip Open-mid Cea(C—3eB—Ae)
Lower lip Oral cavity B
haryngeal cavity
Open ae(E A_ QeD

Where symbols appear in pairs, the one
to the right represents a rounded vowel.

Computers can’t see into our mouths (generally speaking!) so we
want to derive features from the speech signal that we can use to
identify different speech sounds — articulatory/acoustic mapping



Vowels are mainly characterised by their height
and frontness (tongue position), and lip roundness

Vowels

VOWELS
Front Central Back
Close 1 y— jed————WelU
Nasal cavity 1Y 0
Hard palate
Close-mid Ce ) 95¢0 Y e0
veolar ridge 2
Teeth Uvula .
Upper lip Open-mid e (C— 3\6 ——AeD
o g

Lo T . ral cavity P

Pharyngeal cavity \
tongue Open a CE a . D

Where symbols appear in pairs, the one
to the right represents a rounded vowel.

articulatory/acoustic mapping: what can we infer about
articulation from the sound wave? What features of the sound
wave are informative of this?



Study aid: Seeing Speech

An interactive IPA chart with MRI, X-ray and animations of speech sounds:

https://www.seeingspeech.ac.uk/ipa-charts/

] University of

eo:
t Beck. Voiceless palatal fricative. Seeing Speech.
Glasgow: University of Glasgow, 2018. Web. 3 October 2023.
https://seeingspeech.ac.ukfipa-charts/?
chart=1&datatype=1&speaker=T#location=231

Tip: Phonetics is generally easier to learn by doing! Try looking at the articulators in the video and try it yourself.
Record yourself and look at the spectrogram in Praat. You'll pick up the terminology with practice (our tests are
open book anyway)!


https://www.seeingspeech.ac.uk/ipa-charts/

Acoustic phonetics

HI* "buy” "die" ‘guy”

2500 —
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0 11 If ' ‘ 1 FITTTRLATE Il“

Time ——

From phonetics lecture notes by Louis Goldstein

We can “see” differences in place of articulation and manner of speech sounds by
looking at how at the spectral characteristics of speech (i.e. the frequencies
present in the sound) and how it changes over time — spectrograms


https://sail.usc.edu/~lgoldste/General_Phonetics/Consonants/Ca.html

Acoustic phonetics

aE “ouy" “die” guy

2R

m. ' ‘ Mllhnu‘h ‘M

I Il“
Time ——
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500 —

Frequency
(Hz)

<o

From phonetics lecture notes by Louis Goldstein

This frequency information is key to both automatic speech recognition and
speech synthesis: We can determine what is being said without seeing the actual
articulations, and we can generate sounds with a vocal tract!


https://sail.usc.edu/~lgoldste/General_Phonetics/Consonants/Ca.html

Acoustic phonetics

el I buy die

> | | " t

o~ [

O N I’ “

= I m |

= i

= 0 I ’n l‘ ‘qllhnn‘hlnlm
Time ——

From phonetics lecture notes by Louis Goldstein

Question of the week: We how do we go from sound in the real world to a

spectrogram on a computer?


https://sail.usc.edu/~lgoldste/General_Phonetics/Consonants/Ca.html

Sound in the Time Domain and the
Frequency Domain




Sound waves

Air particles bounce back and forth at different frequencies. This causes changes
in pressure in the air: particles squashed together — higher air pressure
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https://media.npr.org/assets/img/2014/04/08/compressionwave.
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https://media.npr.org/assets/img/2014/04/08/compressionwave.gif
https://media.npr.org/assets/img/2014/04/08/compressionwave.gif

Compression ~ “squished” = higher pressure

SOund waves in air Rarefaction ~ “spread” ~ low pressure

Air particles bounce back and forth at different frequencies: we observe a ‘wave’ of
compression (and rarefaction) travelling through the air

LX) ~°*.' O: %% o A
$e A 4. }.\f e Q0%
Compression Compression

particle Rarefaction

©2015, Dan Russell

https://www.acs.psu.edu/drussell/Demos/waves/wavemotion.html



https://www.acs.psu.edu/drussell/Demos/waves/wavemotion.html

Sound waves: displacement and pressure

wave direction I

_______________________________________________________________________________________

dispragement

.........................................................................................

e
compression
L

Figure by Dan Russell's acoustics and vibration animations

Air pressure is highest when the air particles are compressed (i.e. squished together). This produces a
sinusoidal pattern as pressure at a single point changes in time.


https://www.acs.psu.edu/drussell/Demos/phase-p-u-sine/phase-p-u-sine.html

Sound waves: (air) pressure

We generally characterise sound waves in terms of changes in pressure in a
medium (usually air) caused by some physical source.

Sound properties - Bell jar: sound transmission

drumming vacuum pump some low frequency components air entering jar drumming
. . < . v

https://www.animations.physics.unsw.edu.au/waves-sound/sound/index.html



https://www.animations.physics.unsw.edu.au/waves-sound/sound/index.html
https://docs.google.com/file/d/18JVWULVf5NfCMbxcmtQGBTOt4whilabT/preview

Speech in the Time Domain

Time domain: amplitude (measured pressure relative to atmospheric pressure)
over time

0.1922

.001956

-0.1211

Lab 1 learning outcome: It's very hard to determine difference vowels and
consonants just from the time versus amplitude graph!



Spectrograms: The Frequency Domain through Time
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The spectrogram shows the frequency characteristics of the waveform through
time. Each vertical bar represents frequencies present in a small window of time.



Spectrograms: Speech in the Frequency Domain

Amplitude W}Wﬂl
‘ ikl

Dark bits in the spectrogram indicate specific frequency components are
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Individual frequencies represent “pure tone” sine waves: e.g., 200 Hz, *300 Hz



Extra: Want to do more spectrogram reading? Check of the (no longer updated)
monthly mystery spectrogram site: http://home.cc.umanitoba.ca/~robh/index.html

Viewing speech as a spectrogram
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We recognise articulation in terms of frequency components of the sound wave over
short periods of time — use this to learn mapping between words and acoustics


http://home.cc.umanitoba.ca/~robh/index.html

See Module 2 lab!

Spectral slices: moments in time

0.430946 (2.320 /5) T 1880.12

40.0 dB p2.5dB
| ﬂ
r 1ﬂL /ht
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0.430946 = 167544 | 6127'231 — 0 R Visible nso19621§:o:z 8019.20] 14030.¢
TG et 0 Visible part 8005.63 hertz 8005.63 14044 S opar T @ 3 i
Spectrogram [ai] Spectrum [a] Spectrum [i]

The overall shape of the spectrum (the spectral envelope) changes depending on articulator
positions. But the the size (and shape) of the slice can change the shape of spectrum!



Computer Hearing?

Vestibular duct

Cochlear duct

- Bony labyrinth

- Membranous labyrinth

The Internal Ear

In the human ear, different parts of the
cochlea are sensitive to sounds of different
frequencies.

Pressure fluctuations at different frequencies
are detected and transmitted to the brain via
electrical signals

For a we use the Discrete Fourier
Transform to convert recordings from a time
series of pressure amplitude measurements
into frequencies

But first we need to get the sounds into a
representation the computer can understand!

(A bit more on human hearing later in the course...)



Digital Speech Signals



Digital sound waves

e Microphones capture changes in air pressure to record sound
e Converted into a continuous electrical signal: “Analogue”

Problem: computers deal in discrete data:
1s and Os (binary numbers)

We need to convert the continuous sound
recording into a digital representation

— We need to sample the wave and store
amplitude values in binary
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Analogue to digital conversion

To process speech on a computer we need to convert a continuous signal into a
series of discrete values

A sine wave in the time domain

100 -
0.75 -
0.50 -

0.25 -

Amplitude

-0.25 -
-0.50 -
-0

-1.00 -
0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
time (s)

A representation of a continuous sound wave



Analogue to digital conversion: Sampling

The sampling rate (samples/second = Hz), aka sampling frequency, determines
how often we record a value from wave

A sine wave: sampled at 8kHz
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Sampling period = 1/sampling rate (seconds)



Sampling rate differences

16000 Hz ®
8000 Hz ®
4000 Hz ©

2000 Hz o



Binary Representation

Computers represent and process information in terms of binary numbers:

e 1-bit: 0, 1 (2 values)
e 2-bit: 00, 01, 10, 11 (2x2 =4 values)
e 3-bit: 000, 001, 010, 011, 100, 101, 110, 111 (2x2x2 = 8 values)
o ...

e 16-bit: (26 = 65536 values)

The number of bits you can use determines the precision with which you can
represent the signal



44100 Hz sampling rate: ¥ 16 bits ¥ 8 bits
Quantization

To give the waveform a binary representation, we need to map amplitudes to
discrete bins. The number of bins determines how faithfully you can represent

the wave 2 bits 4 bits

A sine wave: sampled at 8kHz, quantized at 4bits

A sine wave: sampled at 8kHz, quantized at 2 bits 00 - oo wonuen. omense
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More examples: https:/dspillustrations.com/pages/posts/misc/how-does-quantization-noise-sound.html



https://dspillustrations.com/pages/posts/misc/how-does-quantization-noise-sound.html

Sampling and Aliasing

Frequencies above half the sampling rate (the Nyquist Frequency) will be
indistinguishable from frequencies below the Nyquist frequency (i.e., the
frequencies are aliased - you can't tell what they really are!)

20 - 20 -

15 - 15 -

10 - 10 -

05 -
05 -

00 -
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Amplitude

Amplitude
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-10-
_10_

_15
=15
-20- ) ) ) ) ) )

0.0 0.2 0.4 06 0.8 10

) -2.0 - ) ) | | ) )
Time (s) 0.0 02 04 06 0.8 10



Question

What happens if we have frequency components in our recording that are higher
than the Nyquist Frequency?

e.g., if our sampling rate is 8000 Hz but the actual sound contains an 5000Hz
component will it actually appear in our digitized recording? What problems might
this cause?



Sampling and Aliasing

Frequencies above half the sampling rate (the Nyquist Frequency) will be
indistinguishable from frequencies below the Nyquist frequency (i.e., the
frequencies are aliased - you can’t tell who they really are!)
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Amplitude

20 -

15 -

10 -
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-15 -

-20-

0.0 02 04 06 08 10
Time (s)

To be sure of our frequency analysis we first need to filter out high frequencies



More on filters next week!

Generating Spectrograms

e Recording of sound

o Filtering (e.g. frequencies above the desired Nyquist Frequency)
e Digitization

o Sampling (sampling rate)

o Quantization (bit depth)

o Adiscrete representation in the time domain
e Discrete Fourier Transform (windowed)

o Maps from time domain to frequency domain
o Applied to short windows of speech
o  Outputs magnitude and phase spectrum

Spectrogram: time vs frequency ‘heatmap’, where colour (darkness in Praat)
corresponds to the ‘strength’ of different frequencies component in the signal.



The Discrete Fourier Transform



Discrete Fourier Transform

The Discrete Fourier Transform (DFT) is mathematical procedure we can use to
determine the frequency content of a discrete signal sequence

0.5315

speechproc_phonlab2 _rvowels
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Time domain
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Frequency domain
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“‘Wasn’t the Fourier
Transform about sine
waves???”

A mathematical procedure we can used to determine the frequency content of a
discrete signal sequence

Discrete Fourier Transform

Mathematical view: for input x[n] with n=0,...,N-1 (N inputs)

DFTk| = z[n|e ?N

n=>0 © 0
For k=0,..,N-1 (N analysis frequencies) y



An equivalent formulation of the
DFT using sines and cosines

Discrete Fourier Transform

A mathematical procedure we can used to determine the frequency content of a
discrete signal sequence

Mathematical view: for input x[n] with n=0,...,N-1 (N inputs)

2 2
DET[k ZZE [COS %nk) 7 s (%nk)

Derived from Euler’s

For k=0,..,N-1 (N analysis frequencies) Formula

You don’t have to memorize this equation! But we will try to develop the intuition
behind it...



Periodic function

A periodic function repeats in time

A more formal way of saying it:
For function f which takes a time tas input, the
output obeys:

f(t) = f(t + nT)

for some constant T (the period), for all times t and
integers n

The function outputs the same pattern over and
over again, predictably through time
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Fourier Analysis

A periodic function repeats in time

A periodic function can be written as
of simple periodic

(sinusoidal) functions (i.e. sine and

cosine) of different frequencies

We can construct complex waveform by adding
together simple periodic functions (sinusoids) with
some scaling and shifting

component 1: 8 Hz

20-
15 -
10 -

05 -

0o 02 04 06 08 10

component 2: 20 Hz

L

component 3: 36 Hz

AAAAAAAAAAAAARAAAAAAAAANAN

waveform made from adding 3 sine waves



Cosine and sine functions

A cosine wave in the time domain
100 -

050 -
025 -

0.00 -

Amplitude

-1.00 -
0.0100 0.0125

0.0000 0.0025 0.0050 0.0075
time (s)
sine cosine and sine waves

Amplitude

0.0100 0.0125
time (s)

These are simple periodic functions. If we
play them they produce “pure tones”

" 200Hz
¥ 300Hz

0.0150 00175 0.0200

Think of a sine
wave as a shifted
cosine wave and
vice versa

0.0150 00175 0.0200



Fourier Analysis Demo

http://www.falstad.com/fourier/Fourier.html

Question: How many sine waves do you need to make a square wave?


http://www.falstad.com/fourier/Fourier.html

Fourier Transform

We can decompose a periodic
waveform into a set of simple
periodic functions (i.e., pure
tones) of different frequencies.

Just like a prism splits light into
component colours

white
sunlight

A spectrum of colours!

glass prism

© Encyclopadia Britannica, Inc.

waveform made from adding 3 sine waves

—red
T orange
T yellow

~green
T blue

— indigo

- — .
~ violet

s component 1: 8 Hz
15 -
10

Y

-15

component 2: 20 Hz

I

component 3: 36 Hz

Y



waveform made from adding 3 sine waves component 1: 8 Hz

Fourier Transform . - 8Hz
We can decompose a periodic i il

. - 200 ) ' y ! ) -2 - ! ! ! +
waveform into a set of simple T e

periodic waves (i.e., pure tones)
of different frequencies.

If we scale and shift those pure

tones appropriately we can T ememssee ¥
approximate the original .
waveform by adding the scaled o A S6HzZ

and shifted waves together

0.5 cos(2m.8t) + cos(2m.20t + 7w /2) + 0.3 cos(2m.36t)




Fourier Transform

The Fourier Transform provides us with the “technology” to map between the time
domain to the frequency domain (spectrum)WM

i

; - | Magnitude spectrum
5 VWWWWWY I p—

5% waveform made from adding 3 sine waves
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0- 990000000 00000000000 000000000000000 000000000000000600000CCCROOOLIEES
0 10 20 30 a0 50 60
Frequency (Hz)

e It decomposes the time series waveform into component frequencies
e Non-zero magnitudes indicate that you would include that frequency in reconstructing the

signal



Discrete Fourier Transform

e Input: a sequence of N values
o e.g. amplitude values sampled in time

e Output: N complex numbers
o Correspond to N sinusoids with frequencies spread between 0 and the
sampling rate
o The output coefficients tell us how to scale and shift the corresponding
sinusoids so we can reconstruct the original input



Discrete Fourier Transform Outputs

The output coefficients tell us how to scale and shift the corresponding sinusoids so
we can reconstruct the original input

The complex number outputs can be interpreted in terms of:

e The magnitude spectrum: how much to the different pure tone frequency
components
e The phase spectrum: how much to the different pure tone frequency

components



DFT output as magnitude and phase

{t/;j? Magnitude spectrum

o

0.5 cos(27.8t) + cos(2m.20t +(r/2) + 0.3 cos(27.36t) FRency (H2)




Questions: Spectral Slices

The spectral slice function in Praat performs the DFT on a selected window of
speech.

What part of the DFT output does the spectral slice show us?
What frequencies can we view in a Praat spectral slice?

How does the size of the input window change the spectral slice?
How does input size relate to wide and narrowband spectrograms?



nnnnnnnnnnnnnnnnn

How does it work? | e e s

eeeeeeeeeeeee

Let’s call our input sequence x and the sinusoid associated with DFT[K], s,

e The DFTIK] is the inner product x and s, (notation: <x,s, >, aka dot product)
o You can interpret this as similarity or, very loosely, as correlation (but it's not a statistical
property here)

e The sinusoids we are considering form an orthogonal basis:
o The inner product of two of these sinusoids is non-zero only if their frequencies are the same

So, roughly, the inner product <x,s, > picks out only bits of the input that have the
same frequency as the sinusoid s, (if so, with what scale and shift). If there is no
periodic component with that frequency the output DFT[k] will be zero.

Extra: See Module 3 Lab extension notebooks for
an example in gory detail.



nnnnnnnnnnnnnnnnn

How does it work? E |

eeeeeeeeeeeee

Let’s call our input sequence x and the sinusoid associated with DFT[K], s,

e Calculate the similarity between DFT[k] and input x
o i.e., take the dot product of x and s, (notation: <x,s,>, aka inner product)

o  Multiply the equivalent points in time for xand s, , the add it all up

e This measure tells us whether the input include a frequency component with the
frequency as the sinusoid s, (possibly scaled and shifted)

o If skis not present the output DFT[k] will be zero.

Extra: See Module 3 Lab extension notebooks for
an example in gory detail.



DFT Analysis frequencies

e For N input values, we get N output analysis frequencies spread evenly
between 0 and the sampling rate f:

Freq(DFTI[k]) = k]{T

e This formulation ensure the analysis sinsuoids form an orthogonal basis
since we are dealing with sampled sinuisoids.



What frequencies?

The sinusoids associated with DFT outputs have frequencies corresponding to
represent N values spread evenly between 0 and the sampling rate f:

Freq(DFTI|k]) = k](;

e These are frequencies that complete a whole number of periods in the input
window time.
e But we only use the first half of those outputs for analysis. Why?



Questions

If our input window is 100 samples how many DFT outputs will the DFT have?

What frequencies will the DFT outputs represent?



Questions

If our sampling rate is 8000 Hz and our input analysis window (frame) contains 80
samples

e How many DFT outputs will we get?

e \What frequencies are represented by the DFT output (i.e., the magnitude

spectrum)?
e \What frequencies in the input signal will we actually be able to detect?



Questions

If our sampling rate is 16000 Hz and our analysis window (frame) is 25 ms

e How many DFT outputs?
e \What frequencies can we detect?



Leakage
What happens if the input frequency falls between the outputs? Leakage!

Positive magnitudes for the DFT outputs near the actual input frequency (try it in
the lab!)

Leakage example: Magnitude response
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00 - h ; ; : ) ) ;
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If we want to be able to analyse lots of frequencies, we need a lot of input values



From DFT to Spectrogram

0.430946 (2.320 / s)

Spectrogram is a series of DFTs in time: it creates a
time-series of frequency domain features

e DFT maths assumes that a signal continues forever in
time

e Real world signals are (sort of) locally periodic

e So, we perform the DFT on short regions
(windows/analysis frames) in the signal, i.e., the Short
Time Fourier Transform (STFT)

e The type of window can change the output!
0.430946

1.036425 seconds



17.0dB

3871.69

49.2 dB

3871.69

18178.31

Visible part 22050.00 hertz

22050.00

Total bandwidth 22050.00 hertz

,-10.8 dB

Window with abrupt
ending (rectangular
window)



17.0dB

3871.69

3871.69

18178.31

,-10.8 dB

Visible part 22050.00 hertz

22050.00

Total bandwidth 22050.00 hertz

Artifacts due to
discontinuity at edges
of the window

Spectrum shows
positive mag across
frequencies— leakage



2690.40

14.2 dB

W,

With the Hanning window, the spectral characteristics are
sharper, less leakage!

We can reduce artifacts
due to discontinuitues
by using a tapered
window, e.g. Hanning,
instead of a plain
rectangle



Extension:
Understanding the DF T equation



This is what you'll see in
textbooks and computing

Discrete Fourier Transform packages - see the Module 3 lab!

A mathematical procedure we can used to determine the frequency content of a
discrete signal sequence

Mathematical view: for input x[n] with n=0,...,N-1 (N inputs)

N-1
DFTk| = Z x[n]e‘jzﬂTnk
=0

For k=0,..,N-1 (N analysis frequencies)



An equivalent formulation of the
DFT using sines and cosines

Discrete Fourier Transform

A mathematical procedure we can used to determine the frequency content of a
discrete signal sequence

Mathematical view: for input x[n] with n=0,...,N-1 (N inputs)
DFTIk Z x|n| |co Qﬂnk) j (27mk)
b — — ] SIN\ ———
R A

For k=0,..,N-1 (N analysis frequencies) Derived from Euler’s
Formula



A different view of periodicity
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You can see think of a sine wave as the vertical projection of a vector
rotating at a constant speed drawing out a circle (counter-clockwise). A
period is characterised by one complete 360 degree rotation (i.e., cycle).



A different view of periodicity: Complex Sinusoids

20 - 2 o . . .
The sine(t) here is the projection of

1 : the imaginary component of the
g AT B /‘\ complex sinusoid
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The rotating vector (on the left) is a complex sinusoid. lItlives in the
complex plane! We describe points on the circle as Re® , where IS
an



A different view of periodicity: Complex Sinusoids

i
R=1 Re

g : \..;. ,.-"J : R
’ B ! 0 ="/4 radiaris:, 45 degrees R N

T =y

We describe points on the circle as Re’® where R describes the magnitude
of the vector and 6 describes the angle of rotation (i.e., the phase) from
(1,0)



Sine and cosine

We now define sine and cosine in
terms of the vector rotation

e Sine is the vertical projection
of the rotating vector

e Cosine is the horizontal
projection of the rotating
vector

Infinite repetition in a finite space!

imaginary component
! &

=15, | \
-15 -10 -05
re

00

amplitude

o,
o
=2

00
amplitude

oo o5 10 15
eal component

2 3 a 5

This is actually -sin(t) to
match the DFT formula

Note the clockwise rotation



Adding sinusoids: Superposition

We can add complex sinusoids in the same way as we add simple sine waves
together (time wise).

This complex number addition is actually what the DFT formula is expressing -
hence the complex numbers in the formula!

3-

(NN
\




Superposition

With enough complex
sinusoids, we can
approximate any
function to basically an
arbitrary degree of
precision.

But again, in the real
world, we don'’t have
infinite anything!

From 3blue1brown: htt



https://www.youtube.com/watch?v=-qgreAUpPwM
http://www.youtube.com/watch?v=-qgreAUpPwM

Key Points

e In order to analyze speech computationally, we need to digitize it
o Sampling rate
o Quantization

e Digitization brings in constraints

o Nyquist Frequency: limits the frequencies we can actual captures
o Aliasing: makes higher frequencies appear the same as lower frequencies



Key Points

e Map from the time domain to the frequency domain using the DFT
o Frequency domain gives more direct characterisation of articulation from the signal
o Analysis frequencies are determined by input size and sampling rate
o We can only analyze frequencies up to the half the sampling rate (the Nyquist

Frequency)
e Many engineering techniques have been developed to improve the
accuracy of the DFT output

o Windowing, and many other techniques

e Speech technologies use (variations of) the spectrogram to learn the
relationship between speech, acoustics, and language automatically



Next week

e The source filter model, from a computational perspective



Extension:
The DFT equation in more detall



Discrete Fourier Transform

A mathematical procedure we can used to determine the frequency content of a
discrete signal sequence

Mathematical view: for input x[n] with n=0,...,N-1 (N inputs)

N-1
DFT[k] = Z :c[n]e_jz%%
r=()

For k=0,..,N-1 (N analysis frequencies)



Discrete Fourier Transform

for input x[n] with n=0,...,N-1 (N inputs), for k=0,..,N-1 (N analysis frequencies)

_ A complex sinusoid rotating
The input sequence at a specific frequency

DFT[k] = i x[n]e—f%@ﬂk/




Discrete Fourier Transform

for input x[n] with n=0,...,N-1 (N inputs), for k=0,..,N-1 (N analysis frequencies)

A magnitude /(Axﬁ_?tafsetan)gle
(scale factor) snitt factor
N=1
— 27rnk ]I‘vp
DFT|k| = E x[n] =\ Mile
n=>0

The DFT formula calculates the similarity between the input and the complex sinusoid of a specific
frequency. It's outputis a that tells you how you would scale and shift that
sinusoid in order to reconstruct the original input (summing the complex sinusoids corresponding to
the analysis frequencies)



Discrete Fourier Transform

for input x[n] with n=0,...,

DFT|k

A magnitude
(scale factor)

N-1

27m
=D _alnle”¥F

n=0

N-1 (N inputs), for k=0,..,N-1 (N analysis frequencies)

A phase angle
tshift factor)

=|M

o

The DFT outputs represent N complex sinusoids whose frequencies are multiples of the 1st
actual analysis frequency (i.e., DFT[1])



Discrete Fourier Transform

for input x[n] with n=0,...,N-1 (N inputs), for k=0,..,N-1 (N analysis frequencies)

A magnitude

(scale factor) A phase angle
N =T , (ehift factor)
«c LN 1.
DET[k] = E z[nle TN E =| M|l
n—

The fact the analysis frequencies are integer multiples of the first one means the (sampled)
complex sinsuoids form are orthogonal: sinusoids of different frequencies have zero
similarity. This is what allows the DFT to pick out specific frequencies as being in the input
signal



DFT sinusoids Input size N=16 Assume a sampling rate of
So, N=16 DFT outputs 800 samples per second

DFT[1] L : e 16 steps for 1 cycle, 50 Hz
r —_ - - N-1 )
- e —— DRI = 3 alule ¥}
g \k\\b\ L P n=0

DFT[2] . = 16 steps for 2 cycles, 100 Hz
H o - // \\\ /,/ R
\ s 0 \ 7 N-1 -
2 e / N ' DFT[2] = z[nle I N1X2
g ‘ I ,./ N ,// [ ] Z [ ] /

-10 -10- \-// \\(”/ n=0

Think of this as landing on every 2nd
point of the DFT[1] phasor



Aliasing again

Input size N=16
So, N=16 DFT outputs
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DFT[1] - L
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DFT[15] is taking 15 steps for

every 1 of DFT[1], so the phasor

appears to be going backwards!

‘Wagon-wheel effect’

imaginary component

e

-1.0

DFT[15]
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I I I Input size N=16
AIIaSIng agaln Scr)), N=16 DFT outputs If you look at the full DFT output you
will see that the top half mirrors the

bottom half, suggesting high
frequency components that aren’t

DFT[1 . ]

(] = \\ there (see module 3 lab)

T "1 / This is why visualizers, like Praat,

CHENREE e just show up to the Nyquist

I | frequency
DFT[15]

We can'’t actually capture the
frequencies represented after  "BEREE e e e
the DFT[N/2], the Nyquist "//
Frequency, because of the P
limit in sampling. - RSN el



Input size N=16
So, N=16 DFT outputs

Aliasing again
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Aliasing again

DFT[1]
50 Hz

DFT[2]
100 Hz

DFT[7]
350 Hz
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Input size N=16
So, N=16 DFT outputs
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Discrete Fourier Transform: cos and sine version

A mathematical procedure we can used to determine the frequency content of a
discrete signal sequence

Mathematical view: for input x[n] with n=0,...,N-1 (N inputs)
$ COb e — ] SIN\ ———
Jan(y

For k=0,..,N-1 (N analysis frequencies) Euler’s Formula



Some Extra Slides



DFT frequencies Input size N=16

So, N=16 DFT outputs

DFT[1]

Sampling rate = 800 samples/second
Sampling time = 1/800 seconds

Q: How long does 1 cycle take?
A: the period T = 16 * 1/800 = 0.02 seconds

Q: What's the frequency associated with DFT[1]
A: frequency f = 1/T = 50 Hz

Assume a sampling rate of
800 samples per second

16 steps for 1 cycle

N-1

DFT[1] = Z z[n]e VN

n=0



Magnitude

Magnitude Spectrum: scale

Magnitude Response
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The zero magnitudes here indicate that we don’t need these frequencies for reconstructing the input.
We do need the 8Hz, 20Hz and 36Hz frequencies!



Phase angle

Phase Spectrum: shift

Phase Spectrum
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We often ignore the phase spectrum in speech analysis as it doesn’t have much
effect on human perception



Working out the Analysis Frequencies

e DFT[O]-> 1
o  Constant function (0 cycles because only 1 value)
e DFT[1] -> sinusoid which completes 1 cycle over the length of the input window

o If N-=number of input samples and f, = sampling rate
o  What’s the length of the input window in seconds? (T = N * (1/f_s))
o  What’s the frequency of a sinusoid that completes 1 cycle in that time? (1/T = 1/(N/f_s) = f_s/N)

e DFTJ[2]-> sinusoid which completes 2 cycles over the length of the input window



Working out the Analysis Frequencies

DFT[k] ~ sinusoid which completes k cycles over the length of the input window
freq(DFT[N/2]) -> (N/2*f_s)/N =1f_s/2

e Which is half the sampling rate is the Nyquist Frequency, so now we have to think
about aliasing!

e After sampling, sinusoids with frequencies higher than f_s/2 look the same as
lower frequency ones

This means the full DFT output is actually mirrored around the Nyquist Frequency.
This is why we only look at the first half of the mag spectrum.

(See module 3 lab)



Frequency Domain: Analyzing pronunciation differences
New Zealand vs Australian English

FEMALE MALE
--»-- AE
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Figure 2. The centroid of the monophthong vowel targets from the NZE and AE for the female data

(left) and the male data (nghr).
Watson, C. |., Harrington, J., & Evans, Z. (1998). An acoustic comparison between New Zealand and Australian English vowels.

Australian journal of linguistics, 18(2), 185-207.



