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Today
● Where are we now? (Interpreting spectrograms)
● Time Domain and Frequency Domain
● Digital speech signals
● Discrete Fourier Transform → What are spectrograms, really?



So far
● Module 1: Phonetics and visual representations of speech
● Module 2: Acoustics of Consonants and vowels

How can we characterise speech from 
articulatory and acoustic perspectives? 



From modules 1 & 2, you should 
be able to: 
● Describe how speech sounds 

in terms of manner and 
place of articulation

● Know enough vocal 
anatomy/phonetics 
terminology to read and 
interpret the IPA chart

● You don’t need to memorize 
all the symbols or to make all 
the sounds!



● If you don’t have a phon 
background it may take some 
time to absorb.  That’s ok! 

● Try to build on and 
consolidate the concepts 
from module 1 & 2 through 
the semester

Assessment:

● ONLINE TEST WEEK 5
Phon/Signals (15%): Open on Learn 
Mon 12pm 16/10/23 - Wed 12pm 
18/10/23

● Use these concepts in the 
assignments to help give your 
analyses more depth
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Place of articulationConsonants

Air stream



Vowels are mainly characterised by their height 
and frontness (tongue position), and lip roundness

Computers can’t see into our mouths (generally speaking!) so we 
want to derive features from the speech signal that we can use to 
identify different speech sounds → articulatory/acoustic mapping

Vowels



Vowels are mainly characterised by their height 
and frontness (tongue position), and lip roundness

articulatory/acoustic mapping: what can we infer about 
articulation from the sound wave?  What features of the sound 
wave are informative of this?  

Vowels



Study aid: Seeing Speech
An interactive IPA chart with MRI, X-ray and animations of speech sounds:

https://www.seeingspeech.ac.uk/ipa-charts/

Tip: Phonetics is generally easier to learn by doing!  Try looking at the articulators in the video and try it yourself.  
Record yourself and look at the spectrogram in Praat.  You’ll pick up the terminology with practice (our tests are 
open book anyway)!  

https://www.seeingspeech.ac.uk/ipa-charts/


Acoustic phonetics

We can “see” differences in place of articulation and manner of speech sounds by 
looking at how at the spectral characteristics of speech (i.e. the frequencies 
present in the sound) and how it changes over time → spectrograms 

From phonetics lecture notes by Louis Goldstein 

Oral stops (aka plosives) at the start of a word can 
be distinguished by formant transitions into the 
following vowel

https://sail.usc.edu/~lgoldste/General_Phonetics/Consonants/Ca.html


Acoustic phonetics

This frequency information is key to both automatic speech recognition and 
speech synthesis: We can determine what is being said without seeing the actual 
articulations, and we can generate sounds with a vocal tract!  

 

From phonetics lecture notes by Louis Goldstein 

https://sail.usc.edu/~lgoldste/General_Phonetics/Consonants/Ca.html


Acoustic phonetics

Question of the week: We how do we go from sound in the real world to a 
spectrogram on a computer? 

 

From phonetics lecture notes by Louis Goldstein 

https://sail.usc.edu/~lgoldste/General_Phonetics/Consonants/Ca.html


Sound in the Time Domain and the  
Frequency Domain



Sound waves
Air particles bounce back and forth at different frequencies.  This causes changes 
in pressure in the air:  particles squashed together → higher air pressure

https://media.npr.org/assets/img/2014/04/08/compressionwave.
gif

https://media.npr.org/assets/img/2014/04/08/compressionwave.gif
https://media.npr.org/assets/img/2014/04/08/compressionwave.gif


Sound waves in air
Air particles bounce back and forth at different frequencies: we observe a ‘wave’ of 
compression (and rarefaction) travelling through the air

https://www.acs.psu.edu/drussell/Demos/waves/wavemotion.html 

 

Compression ↦ “squished” ↦  higher pressure
Rarefaction ↦ “spread” ↦ low pressure

https://www.acs.psu.edu/drussell/Demos/waves/wavemotion.html


Sound waves: displacement and pressure

Air pressure is highest when the air particles are compressed (i.e. squished together).  This produces a 
sinusoidal pattern as pressure at a single point changes in time. 

Figure by Dan Russell’s acoustics and vibration animations

https://www.acs.psu.edu/drussell/Demos/phase-p-u-sine/phase-p-u-sine.html


https://www.animations.physics.unsw.edu.au/waves-sound/sound/index.html 

Sound waves: (air) pressure 
We generally characterise sound waves in terms of changes in pressure in a 
medium (usually air) caused by some physical source. 

https://www.animations.physics.unsw.edu.au/waves-sound/sound/index.html
https://docs.google.com/file/d/18JVWULVf5NfCMbxcmtQGBTOt4whilabT/preview


Speech in the Time Domain
Time domain: amplitude (measured pressure relative to atmospheric pressure) 
over time

Lab 1 learning outcome: It’s very hard to determine difference vowels and 
consonants just from the time versus amplitude graph!



Spectrograms: The Frequency Domain through Time

The spectrogram shows the frequency characteristics of the waveform through 
time.  Each vertical bar represents frequencies present in a small window of time. 



Individual frequencies represent “pure tone” sine waves: e.g.,     200 Hz,      300 Hz

Spectrograms: Speech in the Frequency Domain

Time (s)

Frequency 
(Hertz)

Dark bits in the spectrogram indicate specific frequency components are 
present in the speech signal at a specific time

Amplitude



Viewing speech as a spectrogram

We recognise articulation in terms of frequency components of the sound wave over 
short periods of time → use this to learn mapping between words and acoustics

stop stop

fricative

diphthong

fricative

vowel

High 
vowel

nasal

High 
vowel

Extra: Want to do more spectrogram reading? Check of the (no longer updated) 
monthly mystery spectrogram site:  http://home.cc.umanitoba.ca/~robh/index.html 

http://home.cc.umanitoba.ca/~robh/index.html


Spectral slices: moments in time

Spectrum [a] Spectrum [i]Spectrogram [ai]

The overall shape of the spectrum (the spectral envelope) changes depending on articulator 
positions.  But the the size (and shape) of the slice can change the shape of spectrum!  

See Module 2 lab! 



Computer Hearing? ● In the human ear, different parts of the 
cochlea are sensitive to sounds of different 
frequencies. 

● Pressure fluctuations at different frequencies 
are detected and transmitted to the brain via 
electrical signals

● For a computer, we use the Discrete Fourier 
Transform to convert recordings from a time 
series of pressure amplitude measurements 
into frequencies

● But first we need to get the sounds into a 
representation the computer can understand!

(A bit more on human hearing later in the course…)



Digital Speech Signals



Digital sound waves 
● Microphones capture changes in air pressure to record sound
● Converted into a continuous electrical signal: “Analogue”

Problem: computers deal in discrete data: 
1s and 0s (binary numbers)

We need to convert the continuous sound 
recording into a digital representation 

→  We need to sample the wave and store 
amplitude values in binary 



Analogue to digital conversion
To process speech on a computer we need to convert a continuous signal into a 
series of discrete values

Picture of continuous wave

Discretized wave

Vector of values

A representation of a continuous sound wave



Analogue to digital conversion: Sampling
The sampling rate (samples/second = Hz), aka sampling frequency, determines 
how often we record a value from wave

Picture of continuous wave

Discretized wave

Vector of values

Sampling period = 1/sampling rate  (seconds)



Sampling rate differences
● 16000 Hz
● 8000 Hz
● 4000 Hz
● 2000 Hz



Binary Representation
Computers represent and process information in terms of binary numbers: 

● 1-bit: 0, 1                                                                                   (2 values)
● 2-bit: 00, 01, 10, 11                                                        (2x2  = 4 values)
● 3-bit: 000, 001, 010, 011, 100, 101, 110, 111             (2x2x2 = 8 values)
● …
● 16-bit:                                                                    (2^16 = 65536 values)

The number of bits you can use determines the precision with which you can 
represent the signal



Quantization
To give the waveform a binary representation, we need to map amplitudes to 
discrete bins.  The number of bins determines how faithfully you can represent 
the wave

Note the small range 
in this example! 
We need more bits if 
we want to capture a 
bigger dynamic range.

16 bits is 
usually 
ok! 

11
10
01
00

2 bits 4 bits

8 bits

16 bits 8 bits

More examples: https://dspillustrations.com/pages/posts/misc/how-does-quantization-noise-sound.html

44100 Hz sampling rate:

https://dspillustrations.com/pages/posts/misc/how-does-quantization-noise-sound.html


Sampling and Aliasing
Frequencies above half the sampling rate (the Nyquist Frequency) will be 
indistinguishable from frequencies below the Nyquist frequency (i.e., the 
frequencies are aliased - you can’t tell what they really are!) 



Question
What happens if we have frequency components in our recording that are higher 
than the Nyquist Frequency?

e.g., if our sampling rate is 8000 Hz but the actual sound contains an 5000Hz 
component will it actually appear in our digitized recording?  What problems might 
this cause? 



Sampling and Aliasing
Frequencies above half the sampling rate (the Nyquist Frequency) will be 
indistinguishable from frequencies below the Nyquist frequency (i.e., the 
frequencies are aliased - you can’t tell who they really are!) 

To be sure of our frequency analysis we first need to filter out high frequencies 



Generating Spectrograms
● Recording of sound 

○ Filtering (e.g. frequencies above the desired Nyquist Frequency)
● Digitization

○ Sampling (sampling rate)
○ Quantization (bit depth)
○ A discrete representation in the time domain

● Discrete Fourier Transform (windowed)
○ Maps from time domain to frequency domain
○ Applied to short windows of speech
○ Outputs magnitude and phase spectrum

Spectrogram: time vs frequency ‘heatmap’, where colour (darkness in Praat) 
corresponds to the ‘strength’ of different frequencies component in the signal.

More on filters next week! 



The Discrete Fourier Transform



Discrete Fourier Transform
The Discrete Fourier Transform (DFT) is mathematical procedure we can use to 
determine the frequency content of a discrete signal sequence

Frequency (Hz)
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Time domain Frequency  domain



A mathematical procedure we can used to determine the frequency content of a 
discrete signal sequence

Mathematical view: for input x[n] with n=0,...,N-1  (N inputs) 

For k=0,..,N-1 (N analysis frequencies)

Discrete Fourier Transform
“Wasn’t the Fourier 
Transform about sine 
waves???”

😲



A mathematical procedure we can used to determine the frequency content of a 
discrete signal sequence

Mathematical view: for input x[n] with n=0,...,N-1 (N inputs) 

For k=0,..,N-1  (N analysis frequencies)

Discrete Fourier Transform

Derived from Euler’s 
Formula

An equivalent formulation of the 
DFT using sines and cosines

You don’t have to memorize this equation! But we will try to develop the intuition 
behind it…



Periodic function

A periodic function repeats in time

A more formal way of saying it: 
For function f  which takes a time t as input, the 
output obeys: 

f(t) = f(t + nT) 

for some constant T (the period), for all times t and 
integers n

The function outputs the same pattern over and 
over again, predictably through time



Fourier Analysis

A periodic function repeats in time

A periodic function can be written as 
a discrete sum of simple periodic 
(sinusoidal) functions (i.e. sine and 
cosine) of different frequencies

We can construct complex waveform by adding 
together simple periodic functions (sinusoids) with 
some scaling and shifting



Cosine and sine functions

Think of a sine 
wave as a shifted 
cosine wave and 
vice versa

sinecosine

These are simple periodic functions.  If we 
play them they produce “pure tones”

300Hz

200Hz



Fourier Analysis Demo

http://www.falstad.com/fourier/Fourier.html 

Question: How many sine waves do you need to make a square wave? 

http://www.falstad.com/fourier/Fourier.html


Fourier Transform

We can decompose a periodic 
waveform into a set of simple 
periodic functions (i.e., pure 
tones) of different frequencies. 

Just like a prism splits light into 
component colours

A spectrum of colours!

 



Fourier Transform

We can decompose a periodic 
waveform into a set of simple 
periodic waves (i.e., pure tones) 
of different frequencies. 

If we scale and shift those pure 
tones appropriately we can 
approximate the original 
waveform by adding the scaled 
and shifted waves together  

8Hz

20Hz

36Hz

+

+



The Fourier Transform provides us with the “technology” to map between the time 
domain to the frequency domain (spectrum)

● It decomposes the time series waveform into component frequencies
● Non-zero magnitudes indicate that you would include that frequency in reconstructing the 

signal

Fourier Transform

Magnitude spectrum



Discrete Fourier Transform

● Input:  a sequence of N values 
○ e.g. amplitude values sampled in time

● Output: N complex numbers 
○ Correspond to N sinusoids with frequencies spread between 0 and the 

sampling rate
○ The output coefficients tell us how to scale and shift the corresponding 

sinusoids so we can reconstruct the original input 



Discrete Fourier Transform Outputs
The output coefficients tell us how to  scale and shift the corresponding sinusoids so 
we can reconstruct the original input

The complex number outputs can be interpreted in terms of:

● The magnitude spectrum: how much to scale the different pure tone frequency 
components

● The phase spectrum: how much to shift the different pure tone frequency 
components



DFT output as magnitude and phase

DFT
mag

phase

Magnitude spectrum

Phase spectrum



Questions: Spectral Slices
The spectral slice function in Praat performs the DFT on a selected window of 
speech.

● What part of the DFT output does the spectral slice show us?
● What frequencies can we view in a Praat spectral slice? 
● How does the size of the input window change the spectral slice? 
● How does input size relate to wide and narrowband spectrograms?



How does it work?
Let’s call our input sequence x and the sinusoid associated with DFT[k], sk

● The DFT[k] is the inner product x and sk  (notation:  <x ,sk>, aka dot product)
○ You can interpret this as similarity or, very loosely, as correlation (but it’s not a statistical 

property here)

● The sinusoids we are considering form an orthogonal basis: 
○ The inner product of two of these sinusoids is non-zero only if their frequencies are the same

So, roughly, the inner product <x ,sk> picks out only bits of the input that have the 
same frequency as the sinusoid sk (if so, with what scale and shift). If there is no 
periodic component with that frequency the output DFT[k] will be zero.

Extra: See Module 3 Lab extension notebooks for 
an example in gory detail. 

DFT[8]



How does it work?
Let’s call our input sequence x and the sinusoid associated with DFT[k], sk

● Calculate the similarity between DFT[k] and input x

○ i.e., take the dot product of x and sk  (notation:  <x ,sk>, aka inner product)

○ Multiply the equivalent points in time for x and sk  ,  the add it all up

● This measure tells us whether the input include a frequency component with the 
frequency as the sinusoid sk (possibly scaled and shifted)

○ If sk is not present  the output DFT[k] will be zero.

Extra: See Module 3 Lab extension notebooks for 
an example in gory detail. 

DFT[8]



DFT Analysis frequencies
● For N input values, we get N output analysis frequencies spread evenly 

between 0 and the sampling rate fs:

● This formulation ensure the analysis sinsuoids form an orthogonal basis 
since we are dealing with sampled sinuisoids.



What frequencies?
The sinusoids associated with  DFT outputs have frequencies corresponding to 
represent N values spread evenly between 0 and the sampling rate fs:

● These are frequencies that complete a whole number of periods in the input 
window time. 

● But we only use the first half of those outputs for analysis.  Why? 



Questions 
If our input window is 100 samples how many DFT outputs will the DFT have?

What frequencies will the DFT outputs represent?



Questions
If our sampling rate is 8000 Hz and our input analysis window (frame) contains 80 
samples

● How many DFT outputs will we get?
● What frequencies are represented by the DFT output (i.e., the magnitude 

spectrum)? 
● What frequencies in the input signal will we actually be able to detect?



Questions
If our sampling rate is 16000 Hz and our analysis window (frame) is 25 ms

● How many DFT outputs?
● What frequencies can we detect? 



Leakage 
What happens if the input frequency falls between the outputs? Leakage!

Positive magnitudes for the DFT outputs near the actual input frequency (try it in 
the lab!)

If we want to be able to analyse lots of frequencies, we need a lot of input values



From DFT to Spectrogram
Spectrogram is a series of DFTs in time: it creates a 
time-series of frequency domain features

● DFT maths assumes that a signal continues forever in 
time

● Real world signals are (sort of) locally periodic 
● So, we perform the DFT on short regions 

(windows/analysis frames) in the signal, i.e., the Short 
Time Fourier Transform (STFT)

● The type of window can change the output!



Window with abrupt 
ending (rectangular 
window)



Artifacts due to 
discontinuity at edges 
of the window

Spectrum shows 
positive mag across  
frequencies→ leakage



With the Hanning window, the spectral characteristics are 
sharper, less leakage! 

We can reduce artifacts 
due to discontinuitues 
by using a tapered 
window, e.g. Hanning, 
instead of a plain 
rectangle



Extension: 
Understanding the DFT equation



A mathematical procedure we can used to determine the frequency content of a 
discrete signal sequence

Mathematical view: for input x[n] with n=0,...,N-1  (N inputs) 

For k=0,..,N-1 (N analysis frequencies)

Discrete Fourier Transform
This is what you’ll see in 
textbooks and computing 
packages - see the Module 3 lab! 



A mathematical procedure we can used to determine the frequency content of a 
discrete signal sequence

Mathematical view: for input x[n] with n=0,...,N-1 (N inputs) 

For k=0,..,N-1  (N analysis frequencies)

Discrete Fourier Transform

Derived from Euler’s 
Formula

An equivalent formulation of the 
DFT using sines and cosines



A different view of periodicity

You can see think of a sine wave as the vertical projection of a vector 
rotating at a constant speed drawing out a circle (counter-clockwise).  A 
period is characterised by one complete 360 degree rotation (i.e., cycle). 

 



A different view of periodicity: Complex Sinusoids

The rotating vector (on the left) is a complex sinusoid.  It lives in the 
complex plane! We describe points on the circle as Rejθ , where j=√-1  is 
an imaginary number

 

The sine(t) here is the projection of 
the imaginary component of the 
complex sinusoid



A different view of periodicity: Complex Sinusoids

We describe points on the circle as Rejθ  where R describes the magnitude 
of the vector and  ፀ describes the angle of rotation (i.e., the phase) from 
(1,0)
 

ፀ = π/4 radians = 45 degrees

R=1

 

Rejθ



Sine and cosine
We now define sine and cosine in 
terms of the vector rotation

● Sine is the vertical projection 
of the rotating vector

● Cosine is the horizontal 
projection of the rotating 
vector

Infinite repetition in a finite space!

This is actually -sin(t)  to 
match the DFT formula

Note the clockwise rotation



Adding sinusoids: Superposition
We can add complex sinusoids in the same way as we add simple sine waves 
together (time wise).

This complex number addition is actually what the DFT formula is expressing - 
hence the complex numbers in the formula!  



Superposition

From 3blue1brown: https://www.youtube.com/watch?v=-qgreAUpPwM 

With enough complex 
sinusoids, we can 
approximate any 
function to basically an 
arbitrary degree of 
precision.

But again, in the real 
world, we don’t have 
infinite anything! 

https://www.youtube.com/watch?v=-qgreAUpPwM
http://www.youtube.com/watch?v=-qgreAUpPwM


Key Points

● In order to analyze speech computationally, we need to digitize it
○ Sampling rate 
○ Quantization

● Digitization brings in constraints
○ Nyquist Frequency: limits the frequencies we can actual captures
○ Aliasing: makes higher frequencies appear the same as lower frequencies



Key Points

● Map from the time domain to the frequency domain using the DFT
○ Frequency domain gives more direct characterisation of articulation from the signal
○ Analysis frequencies are determined by input size and sampling rate
○ We can only analyze frequencies up to the half the sampling rate (the Nyquist 

Frequency)

● Many engineering techniques have been developed to improve the 
accuracy of the DFT output

○ Windowing, and many other techniques 

● Speech technologies use (variations of) the spectrogram to learn the 
relationship between speech, acoustics, and language automatically



Next week
● The source filter model, from a computational perspective



Extension:
The DFT equation in more detail



A mathematical procedure we can used to determine the frequency content of a 
discrete signal sequence

Mathematical view: for input x[n] with n=0,...,N-1  (N inputs) 

For k=0,..,N-1 (N analysis frequencies)

Discrete Fourier Transform



for input x[n] with n=0,...,N-1  (N inputs), for k=0,..,N-1 (N analysis frequencies)

Discrete Fourier Transform

A complex sinusoid rotating 
at a specific frequency The input sequence

Dot-product: a measure of similarity 
between two sequences



for input x[n] with n=0,...,N-1  (N inputs), for k=0,..,N-1 (N analysis frequencies)

Discrete Fourier Transform

A magnitude
(scale factor)

A phase angle
(shift factor)

A complex number

The DFT formula calculates the similarity between the input and the complex sinusoid of a specific 
frequency.  It’s output is a complex number that tells you how you would scale and shift that 
sinusoid in order to reconstruct the original input (summing the complex sinusoids corresponding to  
the analysis frequencies)



for input x[n] with n=0,...,N-1  (N inputs), for k=0,..,N-1 (N analysis frequencies)

Discrete Fourier Transform

A magnitude
(scale factor) A phase angle

(shift factor)

A complex number

The DFT outputs represent N complex sinusoids whose frequencies are multiples of the 1st 
actual analysis frequency (i.e., DFT[1]) 



for input x[n] with n=0,...,N-1  (N inputs), for k=0,..,N-1 (N analysis frequencies)

Discrete Fourier Transform

A magnitude
(scale factor) A phase angle

(shift factor)

A complex number

The fact the analysis frequencies are integer multiples of the first one means the (sampled) 
complex sinsuoids form are orthogonal: sinusoids of different frequencies have zero 
similarity. This is what allows the DFT to pick out specific frequencies as being in the input 
signal 



DFT sinusoids

DFT[1]

DFT[2]

Input size N=16
So, N=16 DFT outputs

16 steps for 1 cycle, 50 Hz

16 steps for 2 cycles, 100 Hz

Think of this as landing on every 2nd 
point of the DFT[1] phasor

Assume a sampling rate of 
800 samples per second 



Aliasing again

DFT[1]

DFT[15]

Input size N=16
So, N=16 DFT outputs

DFT[15] is taking 15 steps for 
every 1 of DFT[1], so the phasor 
appears to be going backwards! 

‘Wagon-wheel effect’



Aliasing again

DFT[1]

DFT[15]

Input size N=16
So, N=16 DFT outputs

We can’t actually capture the 
frequencies represented after 
the DFT[N/2], the Nyquist 
Frequency, because of the 
limit in sampling. 

If you look at the full DFT output you 
will see that the top half mirrors the 
bottom half, suggesting high 
frequency components that aren’t 
there (see module 3 lab)

This is why visualizers, like Praat, 
just show up to the Nyquist 
frequency



Aliasing again

DFT[1]
50 Hz

DFT[2]
100 Hz

DFT[7]
350 Hz

DFT[8]
400 Hz

DFT[15]
750 Hz?

DFT[14]
700 Hz?

DFT[9]
450 Hz?

Input size N=16
So, N=16 DFT outputs



Aliasing again

DFT[1]
50 Hz

DFT[2]
100 Hz

DFT[7]
350 Hz

DFT[8]
400 Hz

DFT[15]
750 Hz?
50 Hz

DFT[14]
700 Hz?
100 Hz

DFT[9]
450 Hz?
350 Hz

Input size N=16
So, N=16 DFT outputs



A mathematical procedure we can used to determine the frequency content of a 
discrete signal sequence

Mathematical view: for input x[n] with n=0,...,N-1 (N inputs) 

For k=0,..,N-1  (N analysis frequencies)

Discrete Fourier Transform: cos and sine version

Euler’s Formula



Some Extra Slides



DFT frequencies

DFT[1]

Input size N=16
So, N=16 DFT outputs

16 steps for 1 cycle

Assume a sampling rate of 
800 samples per second 

Sampling rate = 800 samples/second
Sampling time = 1/800 seconds 

Q: How long does 1 cycle take? 
A: the period T = 16 * 1/800 = 0.02 seconds

Q: What’s the frequency associated with DFT[1]
A: frequency f = 1/T = 50 Hz



Magnitude Spectrum: scale

The zero magnitudes here indicate that we don’t need these frequencies for reconstructing the input.
We do need the 8Hz, 20Hz and 36Hz frequencies! 



Phase Spectrum: shift

We often ignore the phase spectrum in speech analysis as it doesn’t have much 
effect on human perception

Only non-zero if we detect a shift is 
necessary for reconstruction



Working out the Analysis Frequencies
● DFT[0] ->  1 

○ Constant function (0 cycles because only 1 value)

● DFT[1] -> sinusoid which completes 1 cycle over the length of the input window
○ If N = number of input samples and fs =  sampling rate
○ What’s the length of the input window in seconds? (T = N * (1/f_s))
○ What’s the frequency of a sinusoid that completes 1 cycle in that time? (1/T = 1/(N/f_s) = f_s/N)

● DFT[2] -> sinusoid which completes 2 cycles over the length of the input window

● …



Working out the Analysis Frequencies
DFT[k] ↦ sinusoid which completes k cycles over the length of the input window

freq(DFT[N/2]) -> (N/2 * f_s)/N = f_s/2

● Which is half the sampling rate is the Nyquist Frequency, so now we have to think 
about aliasing! 

● After sampling, sinusoids with frequencies higher than f_s/2 look the same as 
lower frequency ones

 This means the full DFT output is actually mirrored around the Nyquist Frequency.  
This is why we only look at the first half of the mag spectrum. 

(See module 3 lab)



Watson, C. I., Harrington, J., & Evans, Z. (1998). An acoustic comparison between New Zealand and Australian English vowels. 
Australian journal of linguistics, 18(2), 185-207.

Frequency Domain: Analyzing pronunciation differences 
New Zealand vs Australian English

For any specific phone, 
there is a lot of 
variation between 
speakers within and 
between dialects
→ We need statistical 
methods! 


