Module 4

Pronunciation & prosody

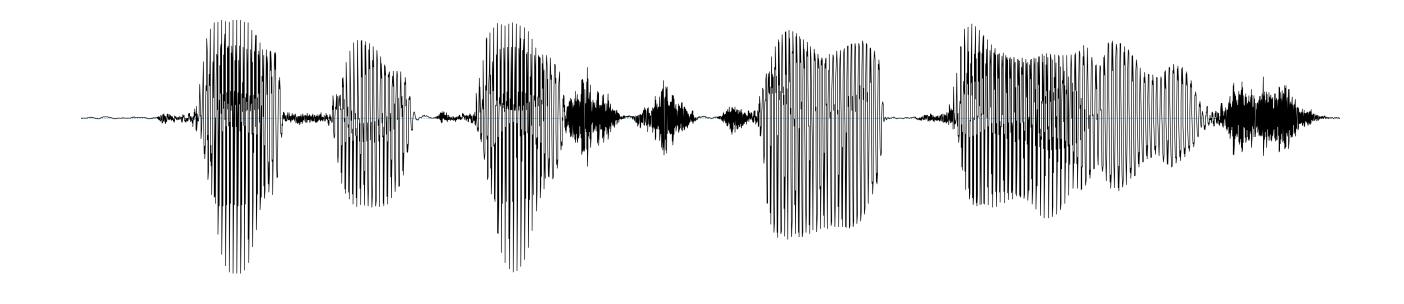
Roadmap

- Modules I-2: The basics
- Modules 3-5: Speech synthesis
- Modules 6-9: Speech recognition

- Block I Week 4
 - Module 3: text processing
- Block I Week 5
 - Class trip
 - Module 4: pronunciation & prosody
- Block I Week 6
 - Assignment Q&A
 - Module 5: waveform generation
- Block I Week 7
 - Submission of first assignment

Orientation

- <u>Text-to-speech pipeline architecture</u>
 - Normalise text


Predict pronunciation & prosody

Generate waveform

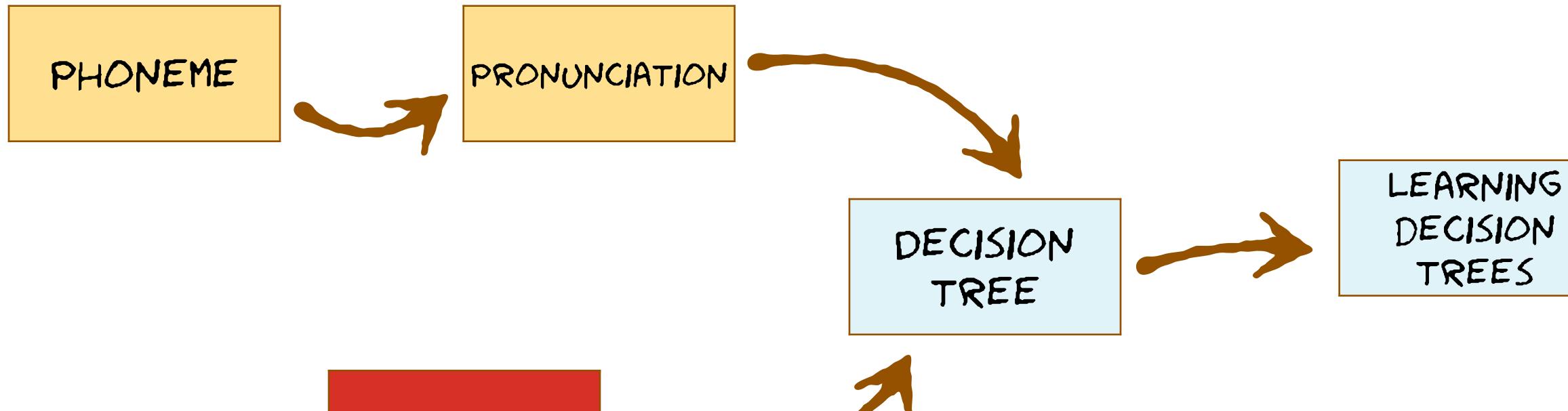
Coffee costs £2.

coffee costs two pounds.

SIL K AA F IY K AA S T S UW P AW N D Z SIL Т

What you should already know

- From the videos & readings
 - Letter to sound (LTS)
 - A worked example of LTS using a classification tree
 - Prosody prediction


- morphology
- POS
- dictionary lookup of word + POS
- syllables & lexical stress
- LTS (rules or model)
- post-lexical rules
- gathering and preparing training data
- choosing the predictors
- growing the tree (learning from data)
- placement of events (classification)
- deciding their types (classification)
- realisation (regression)

Today's topics - Module 4: pronunciation & prosody

			THEORY					APPLK	CATION		
		SPEECH		CICNAL		SPEECH SYN	THESIS		AUTOMATIC SPEE	CH RECOGNITION	
	SIGNALS	PRODUCTION	PERCEPTION	SIGNAL PROCESSING	PROBABILISTIC MODELLING	FRONT END	WAVEFORM GENERATION	FEATURE EXTRACTION	PATTERN MATCHING	HIDDEN MARKOV MODELS	CONNE SPEE
	TIME DOMAIN	SOUND SOURCE	PITCH	DIGITAL SIGNAL	DESCRIBING DATA	TOKENISATION & NORMALISATION	WAVEFORM CONCATENA TION	SERIES EXPANSION	EXEMPLAR	GENERATINE MODEL OF SEQUENCES	HIERAS
CONCEPTS	PERIODIC SIGNAL	HARMONICS	COCHLEA	SHORT-TERM ANALYSIS	DISCRETE & CONTINUOUS VARIABLES	PRONUNCIATION	DIPHONE	FEATURES	DISTANCE		SUB-W UNI
	FREQUENCY DOMAIN	VOCAL TRACT RESONANCE & FORMANTS	MEL SCALE	SPECTRAL ENVELOPE	JOINT, CONDITIONAL, BAYES' FORMULA	PROSODY		FEATURE ENGINEERING	SEQUENCE	HIDDEN STATE SEQUENCE	N-GR
MODELS &		RESONANT TUBE	FILTERBANK	IMPULSE TRAIN	GAUSSIAN	FINITE STATE TRANSDUCER		FEATURE VECTOR	SEQUENCE OF FEATURE VECTORS	HIDDEN MARKOV MODEL	
DATA STRUCTURES	IMPULSE	SOURCE- FILTER MODEL	PHONEME	PITCH PERIOD	GENERATINE MODEL	DECISION TREE			GRID	LATTICE	GRA
ALGORITHMS &				FOURIER ANALYSIS	FITTING A GAUSSIAN TO DATA	HANDWRITTEN RULES	overlap- Add	MFCCS	DYNAMIC PROGRAMMING (DTW)	DYNAMIC PROGRAMMING (VITERBI)	COMPOS ("COMPI
ANALYSIS				CEPSTRAL ANALYSIS	CLASSIFICATION	LEARNING DECISION TREES	TD-PSOLA			BAUM WELCH	APPROXI (PRUN

Today's topics - Module 4: pronunciation & prosody

PROSODY

Speech synthesis - pronunciation & prosody

- Machine Learning •
- Classification And Regression Trees (CARTs)
 - classification: understanding entropy as a measure of predictability
 - regression: measuring the predictability of a continuous variable •
 - stopping criteria

Step I - define the overall task we are going to solve

from the orthographic form: HOGWASH

predict the pronunciation: HH AA G W AA SH


Step 2 - break the task down into simple, solvable, sub-tasks

from one letter of the orthographic form:

predict zero, one or two phones of the pronunciation:

HOGWASH

AA G W AA SH HH

Step 3 - obtain the raw training data

- here are some words from the CMU dictionary that use the letter "A"
 - HOGWASH HH AA G W AA SH
 - CARWASH K AA R W AA SH
 - WARRANT W AO R AH N T
 - WARRANTY W AO R AH N T IY
 - HARDWARE HH AA R D W EH R
 - SOFTWARE S AO F T W EH R
 - WARES W EH R Z

- for Letter-to-Sound (LTS), this is simply a pre-existing dictionary

Step 4 - define the predictee - which phone are we going to predict from this letter?

H O G W A S H

HH AA G W AA SH

Step 5 - choose the predictors

H O G W A S H HH AA G W AA SH

Step 6 - get the training data ready for machine learning

	predictors						predictee
ppp	pp	Р		n	nn	nnn	
Ο	g	\mathbf{W}	a	S	h	_	aa
a	r	\mathbf{W}	a	S	h		aa
_	—	\mathbf{W}	a	r	r	a	ao
	_	W	a	r	r	a	ao
r	d	W	a	r	е	_	eh
f	t	W	a	r	е		eh
_	_	W	a	r	е	S	eh

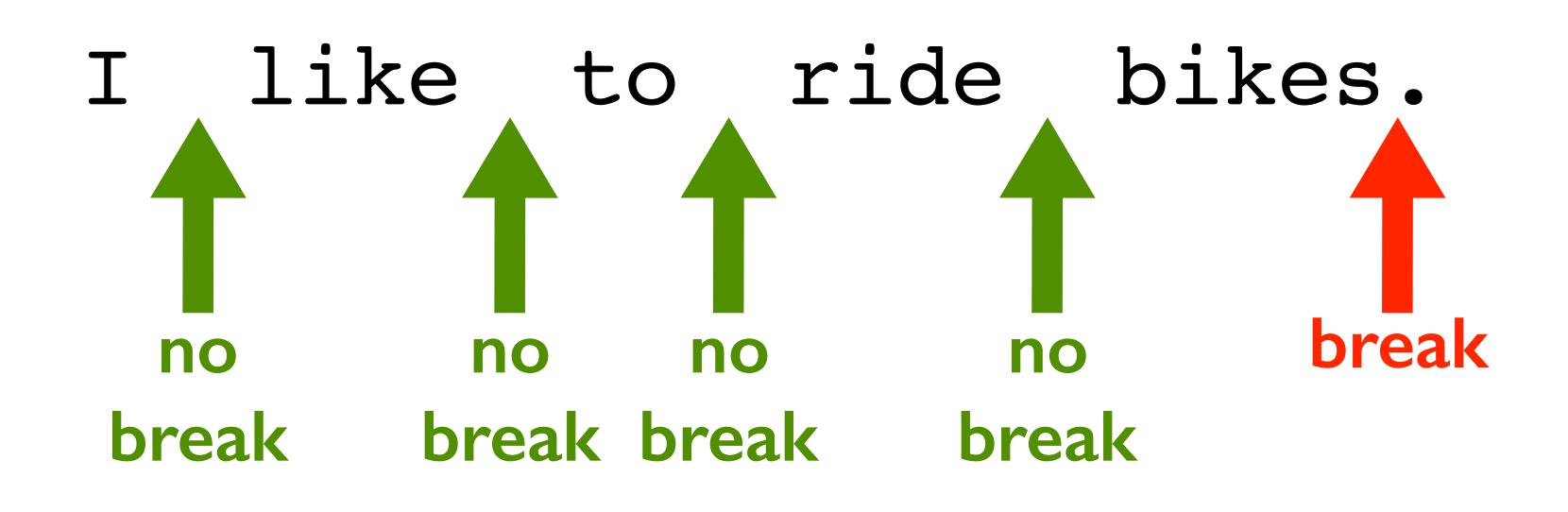
Speech synthesis - pronunciation & prosody

- Machine Learning
- Classification And Regression Trees (CARTs)
 - <u>classification: understanding entropy as a measure of predictability</u>
 - regression: measuring the predictability of a continuous variable •
 - stopping criteria

In-class exercise

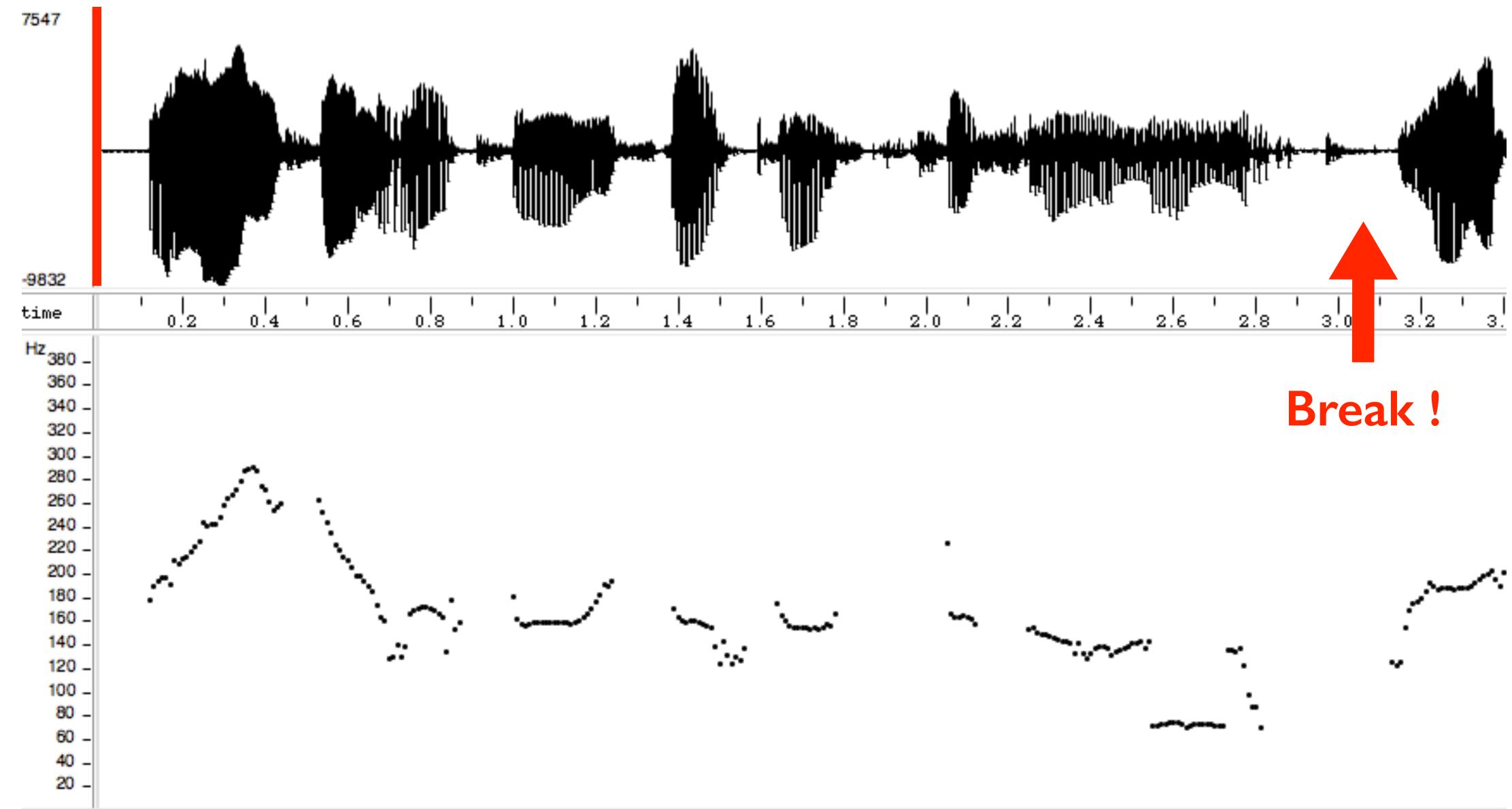
Building a decision tree for phrase-break prediction

Step I - define the overall task we are going to solve


For a sentence, predict where the phrase breaks should go.

I like to ride bikes. break

Step 2 - break the task down into simple, solvable, sub-tasks


For each word, predict whether there is phrase break after it.

Step 3 - obtain the raw training data this is going to be **expensive** because it will involve manually labelling spoken utterances

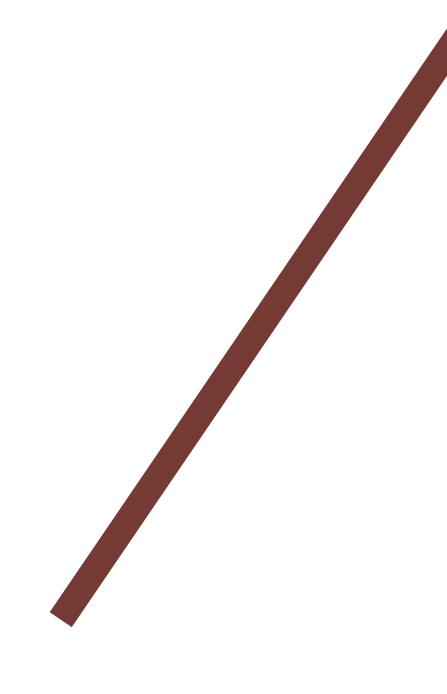
Breaks	BREAK			BREAK		
Words	Shaken	yet	not	stirred		
Breaks	BREAK		BREAK		BREAK	
Words	One	,	two	,	three	
Breaks		BREAK			BREAK	
Words	He	is	but	she's	not	!
Breaks	BREAK			BREAK		
Words	Apples	but	not	pears	•	
Breaks	BREAK				BREAK	
Words	Food	and	drink	are	nice	•
Breaks					BREAK	
Words		like	to	ride	bikes	•

Step 4 - define the predictee and the possible values it can take: BREAK —or— No break

Words		like	to	ride	bikes	•
Breaks	No break	No break	No break	No break	BREAK	No break
Words	Food	and	drink	are	nice	•
Breaks	BREAK	No break	No break	No break	BREAK	No break
Words	Apples	but	not	pears	•	
Breaks	BREAK	No break	No break	BREAK	No break	
Words	Не	is	but	she's	not	<u>!</u>
Breaks	No break	BREAK	No break	No break	BREAK	No break
Words	One	3	two	,	three	•
Breaks	BREAK	No break	BREAK	No break	BREAK	No break
Words	Shaken	yet	not	stirred		
Breaks	BREAK	No break	No break	BREAK	No break	

Step 5 - choose the predictors they can only be things that you will also know for the test data

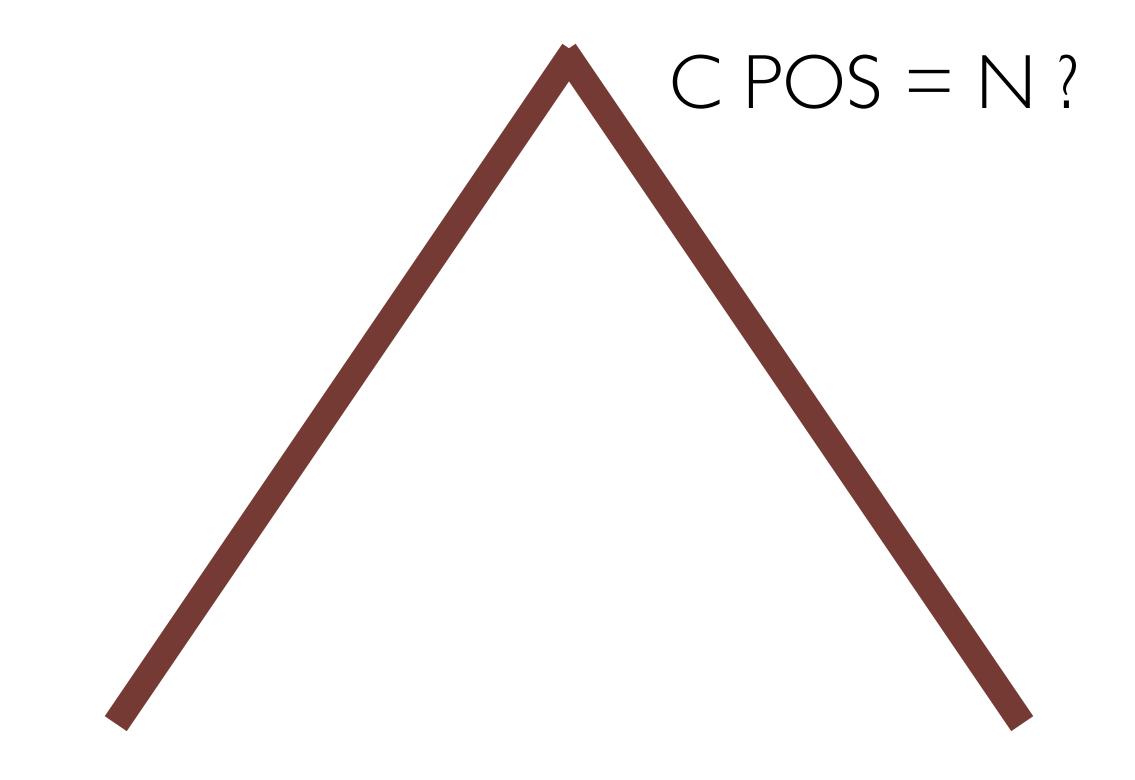
Words		like	to	ride	bikes	
POS	Ν	\bigvee	TO	V	Ν	PUNC
Breaks	No break	No break	No break	No break	BREAK	No break


Step 5 - choose the predictors

Words		like	to	ride	bikes	
POS	N	V	ТО	V	N	PUNC
Breaks	No break	No break	No break	No break	BREAK	No break
Words	Food	and	drink	are	nice	
POS	N	CC	N	\vee	JJ	PUNC
Breaks	BREAK	No break	No break	No break	BREAK	No break
Words	Apples	but	not	pears		
POS	N	CC	RB	N	PUNC	
Breaks	BREAK	No break	No break	BREAK	No break	
Words	He	is	but	she's	not	!
POS	N	V	CC	N	V	PUNC
Breaks	No break	BREAK	No break	No break	BREAK	No break
Words	One	,	two	,	three	
POS	CD	PUNC	CD	PUNC	CD	PUNC
Breaks	BREAK	No break	BREAK	No break	BREAK	No break
Breaks Words	BREAK Shaken	No break yet	BREAK not	No break stirred	BREAK	No break
					BREAK PUNC	No break

Step 6 - get the training data ready for machine learning

	0				0	
Words		like	to	ride	bikes	•
Predictor 1 : L POS						
Predictor 2 : C POS						
Predictor 3 : R POS						
Predictee	NO-BREAK	NO-BREAK	NO-BREAK	NO-BREAK	BREAK	NO-BREAK
Words	Food	and	drink	are	nice	
Predictor 1 : L POS						
Predictor 2 : C POS						
Predictor 3 : R POS						
Predictee	BREAK	NO-BREAK	NO-BREAK	NO-BREAK	BREAK	NO-BREAK
Words	Apples	but	not	pears	•	
Predictor 1 : L POS						
Predictor 2 : C POS						
Predictor 3 : R POS						
Predictee	BREAK	NO-BREAK	NO-BREAK	BREAK	NO-BREAK	
Words	He	is	but	she's	not	!
Predictor 1 : L POS						
Predictor 2 : C POS						
Predictor 3 : R POS						
Predictee	NO-BREAK	BREAK	NO-BREAK	NO-BREAK	BREAK	NO-BREAK
Words	One	,	two	,	three	
Predictor 1 : L POS						
Predictor 2 : C POS						
Predictor 3 : R POS						
Predictee	BREAK	NO-BREAK	BREAK	NO-BREAK	BREAK	NO-BREAK
Words	Shaken	yet	not	stirred	-	
Predictor 1 : L POS						
Predictor 2 : C POS						
Predictor 3 : R POS						


DECISION TREE

Make a list of all possible questions

LPOS =	CPOS =	R POS =
LPOS =	CPOS =	R POS =
LPOS =	CPOS =	R POS =
LPOS =	CPOS =	R POS =
LPOS =	CPOS =	R POS =
LPOS =	CPOS =	R POS =
LPOS =	CPOS =	R POS =
LPOS =	CPOS =	R POS =

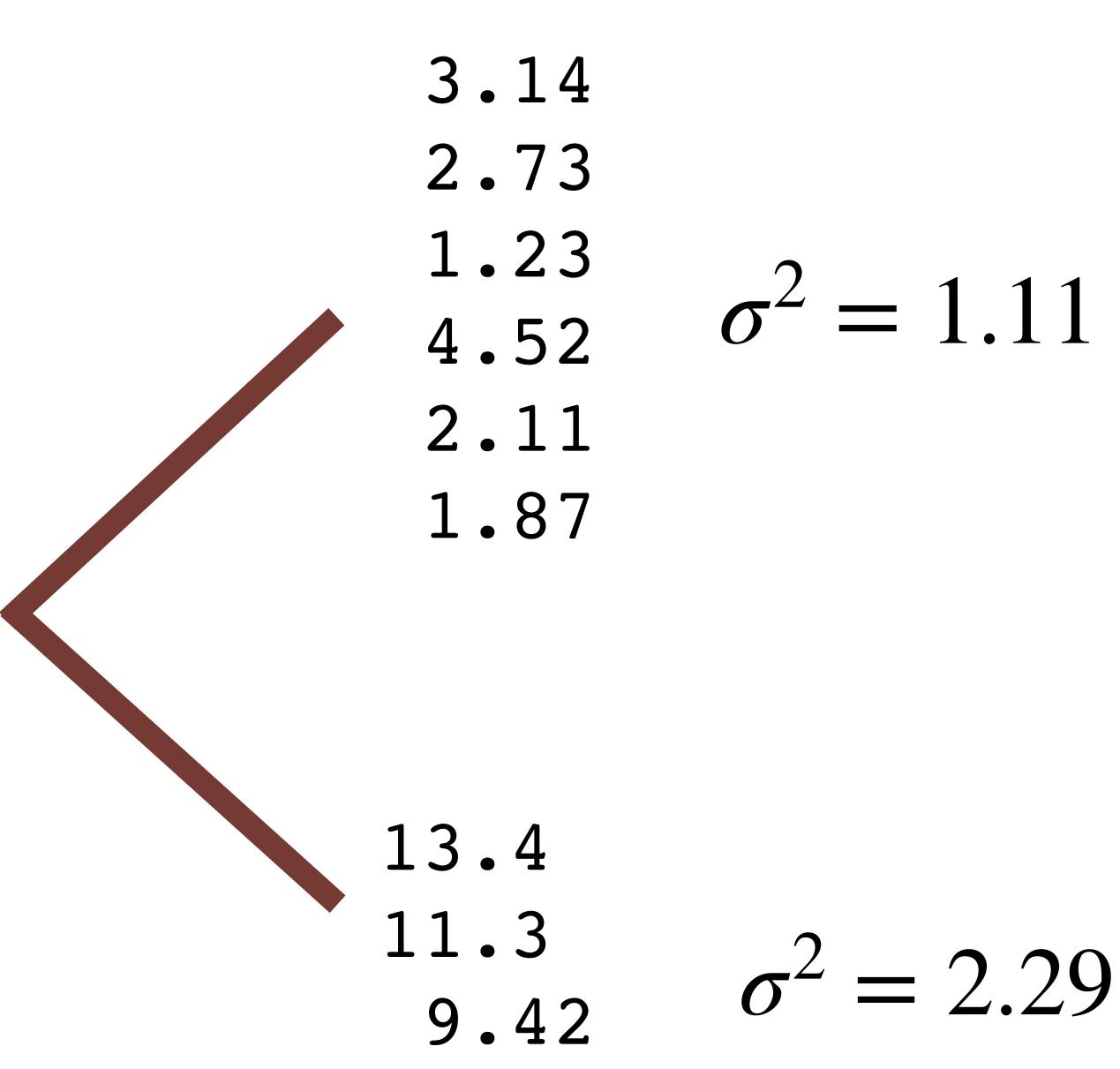
Try question "C POS = N ?"

Measure goodness of split for the question "C POS = N?"

Entropy at the Y node	4 BREAK	0.50	-0.50
	4 NO BREAK	0.50	-0.50
# data points	8		1.00 bits

Entropy at the N node	8 BREAK	0.31	-0.52
	18 NO BREAK	0.69	-0.37
# data points	26		0.89 bits

# data points in total	34	
Total entropy		0.92 bits


Try all possible questions, measuring goodness of split (as entropy, in bits)

L POS =	PUNC	C POS =	PUNC		R POS =	PUNC	0.47
L POS =	Ν	C POS =	Ν	0.92	R POS =	Ν	
L POS =	V	C POS =	V		R POS =	V	
L POS =	ΤΟ	C POS =	ТО		R POS =	ТО	
L POS =	CC	C POS =	CC		R POS =	CC	0.74
L POS =	JJ	C POS =	JJ		R POS =	JJ	
L POS =	RB	C POS =	RB		R POS =	RB	
L POS =	CD	C POS =	CD		R POS =	CD	

Speech synthesis - pronunciation & prosody

- Machine Learning
- Classification And Regression Trees (CARTs)
 - classification: understanding entropy as a measure of predictability
 - regression: measuring the predictability of a continuous variable
 - stopping criteria

RTs) s a measure of predictability <u>y of a continuous variable</u>

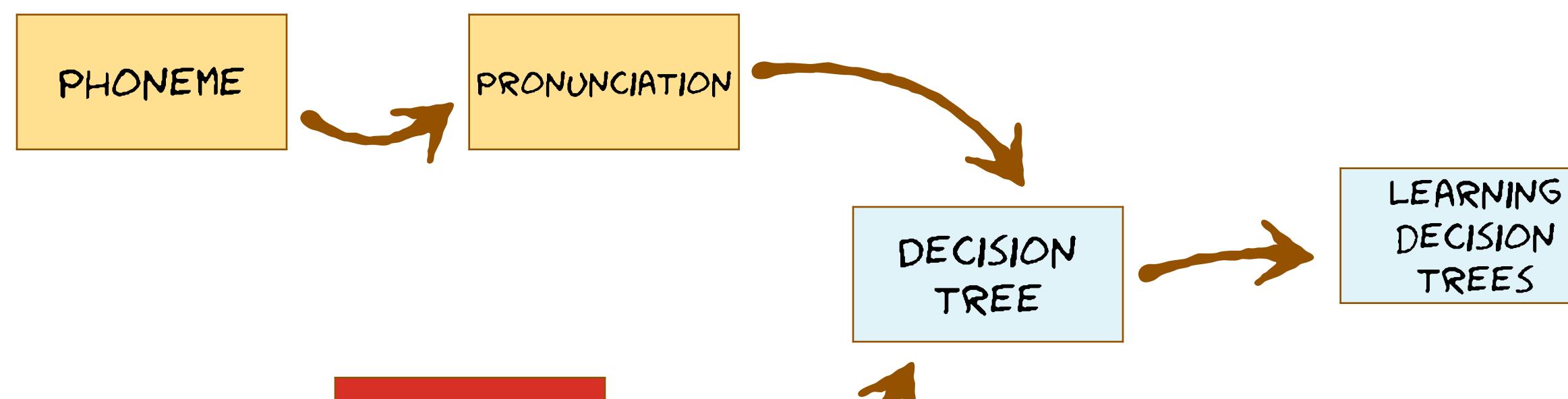
13.4 3.14 2.73 11.3 1.23 4.52 9.42 2.11

 $\sigma^2 = 18.7$

10.1 1.87

10.1

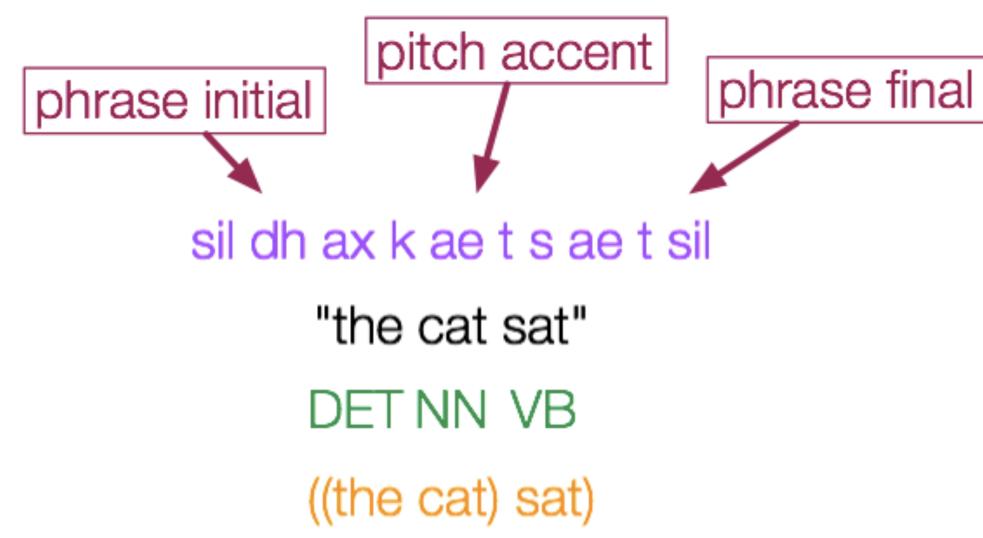
Speech synthesis - pronunciation & prosody


- Machine Learning
- Classification And Regression Trees (CARTs)
 - classification: understanding entropy as a measure of predictability
 - regression: measuring the predictability of a continuous variable •
 - stopping criteria •

Stopping criteria (we may use several)

- <u>Classification or Regression</u>
 - all data points have the same value for the predictee (job done!)
 - all data points have the same values for all predictors
 - equivalently: no available question can split them
 - number of data points in parent node is below a threshold
 - number of data points in a child node would fall below a threshold
- <u>Classification only</u>
 - cannot reduce **entropy** by more than some pre-specified amount
- <u>Regression only</u>
 - cannot reduce **variance** by more than some pre-specified amount

Today's topics - what we covered



PROSODY

What next?

- We have
- normalised the text
- predicted pronunciation
- predicted prosody
- That completes the **linguistic specification**
- Next, from that linguistic specification
 - it's time to generate a **waveform**

In Module 5