Module 5

Waveform generation

Roadmap

- Modules I-2: The basics
- Modules 3-5: Speech synthesis
- Modules 6-9: Speech recognition

- Block I Week 4
 - Module 3: text processing
- Block I Week 5
 - Class trip
 - Module 4: pronunciation & prosody
- Block I Week 6
 - Assignment Q&A
 - Module 5: waveform generation
- Block I Week 7
 - Submission of first assignment

Orientation

- Text-to-speech pipeline architecture
 - Normalise text
- Predict pronunciation & prosody
- Generate waveform
- start with recorded speech units
- manipulate them to
- join smoothly
- have the desired prosody

SIL K AA F IY K AA S T S T UW P AW N D Z SIL

What you should already know

- From the videos & readings
 - Concatenation of waveform fragments
 - Diphone units
 - Waveform manipulation
 - TD-PSOLA
 - Linear predictive model

choosing units that capture contextual effects i.e., **co-articulation**

can only modify duration and FO

can also modify the filter / spectral envelope / vocal tract shape

Today's topics - Module 5: waveform generation

			THEORY	,		APPLICATION					
	SPEECH			CIGNIAL	DOUDADILICTIC	SPEECH SYNTHESIS		AUTOMATIC SPEECH RECOGNITION			
	SIGNALS	PRODUCTION	PERCEPTION	PROCESSING	MODELLING	FRONT END	WAVEFORM GENERATION	FEATURE EXTRACTION	PATTERN MATCHING	HIDDEN MARKOV MODELS	CONN SPE
CONCEPTS	TIME DOMAIN	SOUND SOURCE	РІТСН	DIGITAL SIGNAL	DESCRIBING DATA	TOKENISATION & NORMALISATION	WAVEFORM CONCATENA TION	SERIES EXPANSION	EXEMPLAR	GENERATINE MODEL OF SEQUENCES	HIER
	PERIODIC SIGNAL	HARMONICS	COCHLEA	SHORT-TERM ANALYSIS	DISCRETE & CONTINUOUS VARIABLES	PRONUNCIATION	DIPHONE	FEATURES	DISTANCE		5013- 01
	FREQUENCY DOMAIN	VOCAL TRACT RESONANCE & FORMANTS	MEL SCALE	SPECTRAL ENVELOPE	JOINT, CONDITIONAL, BAYES' FORMULA	PROSODY		FEATURE ENGINEERING	SEQUENCE	HIDDEN STATE SEQUENCE	N-G
MODELS & DATA STRUCTURES	FILTER	RESONANT TUBE	FILTERBANK	IMPULSE TRAIN	GAUSSIAN	FINITE STATE TRANSDUCER		FEATURE VECTOR	SEQUENCE OF FEATURE VECTORS	HIDDEN MARKOV MODEL	
	IMPULSE RESPONSE	SOURCE- FILTER MODEL	PHONEME	PITCH PERIOD	GENERATIVE MODEL	DECISION TREE			GRID	LATTICE	ଟନ
ALGORITHMS & ANALYSIS				FOURIER ANALYSIS	FITTING A GAUSSIAN TO DATA	HANDWRITTEN RULES	OVERLAP- ADD	MFCCS	DYNAMIC PROGRAMMING (DTW)	DYNAMIC PROGRAMMING (VITERBI)	COMP(("COM
				CEPSTRAL ANALYSIS	CLASSIFICATION	LEARNING DECISION TREES	TD-PSOLA			BAUM WELCH	APPROX (PRL

Today's topics - Module 5: waveform generation

concatenating units

ADD

manipulation within units

Speech synthesis - waveform generation

- Extending diphone synthesis to unit selection
- Signal processing for waveform modification
 - Time-domain method:TD-PSOLA
 - Source-filter model-domain method: linear predictive filtering

Which candidate sequence will sound best?

Similarity between candidate sequence and the target sequence

- The ideal candidate unit sequence might comprise units taken from
 - identical linguistic contexts to those in the target unit sequence
- Of course, this will not be possible in general
 - so we must use less-than-ideal units from non-identical (i.e., **mismatched**) contexts
- We need to quantify how mismatched each candidate is, so we can choose amongst them
- The mismatch 'distance' or 'cost' between a candidate unit and the ideal (i.e., target) unit is measured by the *target cost function*

oin cost

- The join cost measures the **acoustic mismatch** between two candidate units • A typical join cost quantifies the acoustic mismatch across the concatenation point • e.g., spectral characteristics (parameterised as MFCCs, perhaps), FO, energy

- Festival's *multisyn* uses a sum of normalised sub-costs (weights tuned by ear)

Speech synthesis - waveform generation

- Extending diphone synthesis to unit selection
- Signal processing for waveform modification
 - Time-domain method:TD-PSOLA
 - Source-filter model-domain method: linear predictive filtering

Why do we need to manipulate the recorded speech?

- Diphone synthesis
 - we only have a single recorded example of each diphone
 - so, it won't have the correct F0 or duration
 - we want to to impose the F0 and duration predicted by the front end

- Unit selection (full details in the Speech Synthesis course)
 - to disguise the joins by '*lightly* smoothing' F0 and the spectral envelope in the local region around each join
 - imposing FO and duration predicted by the front end is optional

What does the front end produce as output?

Front end

text

"the cat sat"

linguistic specification

For diphone synthesis, must predict acoustic properties

Predicted acoustic properties

linguistic specification								
phones	sil	S	ay	m	ax	n	sil	
desired duration								
desired F0								

ax_n

Retrieve recorded diphones from the database

s_ay

ay_m

Retrieve recorded diphones from the database

recorded diphones from the database								
diphones	sil_s	s_ay	ay_m	m_ax	ax_n	n_sil		
recorded diphones								
duration								
FO								

Make a plan for manipulating FO and duration

actual vs. desired F0 and duration								
diphones	sil_s	s_ay	ay_m	m_ax	ax_n	n_sil		
recorded diphones								
actual duration								
desired duration								
actual F0								
desired F0								

Speech synthesis - waveform generation

- Extending diphone synthesis to unit selection
- Signal processing for waveform modification
 - Time-domain method:TD-PSOLA •
 - Source-filter model-domain method: linear predictive filtering

Step-by-step waveform generation: TD-PSOLA version

Speech synthesis - waveform generation

- Extending diphone synthesis to unit selection
- Signal processing for waveform modification
 - Time-domain method:TD-PSOLA
 - Source-filter model-domain method: linear predictive filtering

Using a model of speech to perform manipulation

- Convert speech waveform into
 - parameters of a source-filter model
 - e.g., LPC: filter co-efficients + F0 + voicing decision (V/UV)
- Discard waveforms
- Store model parameters
- At synthesis time
 - retrieve model parameters from database
 - modify parameters if required, then resynthesise

Step-by-step waveform generation: LPC version

- When building the voice
 - convert recorded waveforms into source + filter
 - source: F0 + voicing decision
 - filter: LPC coefficients
- When generating the waveform
 - manipulate source to achieve desired duration and FO
 - interpolate filter coefficients to match
 - reconstruct waveform from manipulated source + filter

- For each frame
 - fit the filter to the signal (captures the spectral envelope)
 - i.e., solve some equations to find the filter co-efficients
 - inverse filter the speech to obtain the residual
 - store the filter co-efficients and the residual signal (which is a waveform)

m_ax

source

y[t] = e[t] -

output speech

k=1

Step-by-step waveform generation: LPC version

- Retrieve filter co-efficients and residual signals from database
- Construct residual signal for utterance using concatenation
 - can manipulate F0 & duration with PSOLA method
- Interpolate filter co-efficients to be pitch-synchronous
- Pass residual signal through filter
 - update filter parameters once per pitch period

Step-by-step waveform generation: LPC version

manipulated diphones

Speech synthesis - waveform generation

• Putting the whole pipeline together

The classic two-stage pipeline of text-to-speech synthesis

text

Author of the ...

The linguistic specification

Extracting features from text using the front end

Author of the...

Text processing pipeline

Tokenize & Normalize

- Step I: divide input stream into tokens, which are potential words
- For English and many other languages
 - rule based
 - whitespace and punctuation are good features
- For some other languages, especially those that don't use whitespace
 - may be more difficult
 - other techniques required (out of scope here)

Tokenize & Normalize

In 2011, I spent £100 at IKEA on 100 DVD holders.

NYER MONEY

• Step 2: classify every token, finding Non-Standard Words that need further processing

NUM LSEQ ASWD

Tokenize & Normalize

• Step 3: a set of specialised modules to process NSWs of a each type

- \Box apply letter-to-sound
- \Rightarrow D. V. D. \Rightarrow dee vee dee

POS tagging

- Part-of-speech tagger
- Accuracy can be very high
- Trained on **annotated** text data
- Categories are designed for text, not speech

Director NN

- of IN
- the DT
- McCormick NP
- Public NP
- NPS Affairs
- Institute NP
- IN at
- U-Mass NP
- Boston, NP
- Doctor NP
- Ed NP
- Beard, \mathbf{NP}
- VBZ says
- DT the
- NN push
- IN for
- VBP do
- PP it
- PP yourself
- NN lawmaking

Pronunciation / LTS

- Pronunciation model
 - dictionary look-up, plus
 - letter-to-sound model
- <u>But</u>
 - need deep knowledge of the language to design the phoneme set
 - human expert must write dictionary


```
AHO K EY1 SH AHO N
                TY()
        AE1
ADWEEK
            M
                FHI L
           IY0
ADY
     FY
         ADZ
     AE1
         DZ
AE
   EY1
AEGEAN
        IHO JH IY1 AHO N
AEGIS
       IY1 JH AH0 S
AEGON
       EY1 G AAO N
AELTUS
        AE1 L T AH0 S
AENEAS
        AE1 N IYO AHO S
        AHO N IY1 IHO D
AENEID
           EY1 K W IHO T R AAO N
AEQUITRON
    EH1 R
AER
        EH1 R IYO AHO L
AERIAL
AERIALS
         EH1 R IYO AHO
                       LZ
AERIE EH1 R IYO
AERIEN EH1 R IYO AHO N
AERIENS EH1 R IYO AHO N Z
AERITALIA EH2 R IH0 T AE1 L Y AH0
AERO EH1 R OWO
```


Key concepts we now understand

- Breaking a complex problem down into simpler steps
- Combining many components into a single architecture
 - representing information in data structures
- The pros and cons of rules vs. learning from data
- Generalising to previously-unseen words or sentences
- Creating new utterances from fragments of pre-recorded speech
- Manipulating the pitch and duration of speech

Today's topics - what we covered

What next?

• Automatic speech recognition

- <u>Supported by foundation material on</u>
 - mathematics
 - probability

In Modules 6 to 9

In next week's foundation class