Module 5

Waveform generation



Roadmap

« Modules |-2: The basics * Block | Week 4
« Modules 3-5: Speech synthesis » Module 3:text processing
» Modules 6-9: Speech recognition * Block | Week 5

« Class trip

» Module 4: pronunciation & prosody

« Block | Week 6
» Assisnment Q&A
» Module 5: waveform generation

e Block | Week /

« Submission of first assignment




Orilentation

» |ext-to-speech pipeline architecture

* Normalise text oI, K AA F IY KAA S T S
* Predict pronunciation & prosody T UW P AW N D Z SIL

« Generate waveform

» start with recorded speech units

* manipulate them to J
* joIN smoothly HW‘MWMWM U‘NHWM

* have the desired prosody




VWhat you should already know

* From the videos & readings

choosing units that capture
contextual effects

» Concatenation of waveform fragments .e. co-articulation

» Diphone units

» Waveform manipulation can only modify duration and FO

« [D-PSOLA

» Linear predictive model

can also modify the filter /
spectral envelope / vocal tract
shape
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OVERLAP-
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manipulation within units



Speech synthesis - waveform generation

Extending diphone synthesis to unit selection
+ Signal processing for waveform modification
+[ime-domain method: I D-PSOLA

+ Source-filter model-domain method: linear predictive filtering




Which candidate sequence will sound best!?




SImilarity between candidate sequence and the target sequence

 [he ideal candidate unit sequence might comprise units taken from
* identical linguistic contexts to those In the target unit sequence
» Of course, this will not be possible In general
* 5O we must use less-than-ideal units from non-identical (1.e., mismatched) contexts

* We need to quantify how mismatched each candidate Is, so we can choose amongst
them

« [he mismatch ‘distance’ or‘cost’ between a candidate unit and the ideal (l.e., target) unit Is
measured by the target cost function




Join cost

* [he join cost measures the acoustic mismatch between two candidate units
A typical join cost quantifies the acoustic mismatch across the concatenation point

* e.g, spectral characteristics (parameterised as MFCCs, perhaps), FO, energy

* Festival's multisyn uses a sum of normalised sub-costs (weights tuned by ear)



Speech synthesis - waveform generation

Extending diphone synthesis to unit selection
+ Slgnal processing for waveform modification
+[ime-domain method: I D-PSOLA

+ Source-filter model-domain method: linear predictive filtering




Why do we need to manipulate the recorded speech!?

» Diphone synthesis
» we only have a single recorded example of each diphone

¢ 5O, It won't have the correct FO or duration

» we want to to impose the FO and duration predicted by the front end

« Unit selection (full details in the Speech Synthesis course)

» to disguise the joins by “lightly smoothing’ FO and the spectral envelope In the local
region around each join

» imposing FO and duration predicted by the front end Is optional
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~or diphone synthesis, must predict acoustic properties

pitch accent

phrase initial j phrase final
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’redicted acoustic properties

linguistic specification
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Retrieve recorded diphones from the database
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Retrieve recorded diphones from the database

recorded diphones from the database
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Make a plan for manipulating FO and duration

actual vs. desired FO and duration

diphones  sil_s S_ay ay_m m_ax ax_n n_sl
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Speech synthesis - waveform generation

Extending diphone synthesis to unit selection
+ Signal processing for waveform modification
+Time-domain method: [ D-PSOLA

+ Source-filter model-domain method: linear predictive filtering
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Speech synthesis - waveform generation

Extending diphone synthesis to unit selection
+ Signal processing for waveform modification
+[ime-domain method: I D-PSOLA

+ Source-filter model-domain method: linear predictive filtering




Using a model of speech to perform manipulation

« Convert speech waveform into

* parameters of a source-filter model
« e.g, LPC: filter co-efficients + FO + voicing decision (V/UV)

e Discard waveforms

» Store model parameters

« At synthesis time

* retrieve model parameters from database

* modity parameters If required, then resynthesise



Step-by-step waveform generation: LPC version

» When building the voice

e convert recorded waveforms into source + filter
» source: FO + voicing decision
e filter: LPC coefficients

» When generating the waveform

» manipulate source to achieve desired duration and FO
* Interpolate filter coefficients to match

* reconstruct waveform from manipulated source + filter



| PC: convert speech into model parameters
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| PC: convert speech into model parameters

M_aXx

* [For each frame
e fit the filter to the signal (captures the spectral envelope)
* e, solve some equations to find the filter co-efficients
* Inverse filter the speech to obtain the residual

» store the filter co-efficients and the residual signal (which Is a waveform)



| PC: convert speech into model parameters

source output speech
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Step-by-step waveform generation: LPC version

 Retrieve filter co-efficients and residual signals from database
« Construct residual signal for utterance using concatenation
» can manipulate FO & duration with PSOLA methodad
» Interpolate filter co-efficients to be pitch-synchronous
» Pass residual signal through filter

» update filter parameters once per pitch period

manipulated
diphones
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beech synthesis - waveform generation

Putting the whole pipeline together



The classic two-stage pipeline of text-to-speech synthesis

Front end
text lInguistic waveform
specification
Au t h or O f t h e Ay 'EEOI‘ ((;E tI;ITe o el "‘V"!'l\lll‘l'l‘!"" ,.‘Hihjx‘l"ﬂimWM]HHI‘mI‘1‘|[lllqw'l'l'lvl‘t'x“'.'.,.,,,‘ ,,”_A,A,,Hxllflﬂﬂ‘l”\'ll"l,
S yl/sy\l SY l \sy 1

ANRAN N

sil ao th er dh ax ...



The linguistic specification
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Extracting features from text using the front enc
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lext processing pipeline
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[Front end

Tokenize & Normalize

 Step |: divide input stream Into tokens, which are potential words

* For English and many other languages
» rule based

» whitespace and punctuation are good features

* For some other languages, especially those that don't use whitespace
* may be more difficult

» other techniques required (out of scope here)



(Front end
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» Step 2: classify every token, finding Non-Standard Words that need further processing

Tokenize & Normalize

In 2011, I spent £100 at IKEA on 100 DVD holders.

NYER MONEY ASWD NUM LSEQ



Tokenize & Normalize

[Front end

« Step 3:a set of specialised modules to process NSWs of a each type

2011 & NYER
£100 © MONEY =
IKEA © ASWD
100 = NUM
DVD = LSEQ D

twenty eleven
one hundred pounds
apply letter-to-sound

[

one hundred
D. V. D. & dee vee dee



POS tagging

» Part-of-speech tagger

 Accuracy can be very high

* [rained on annotated text data

» Categories are designed for text, not speech
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Pronuncilation / LTS

 Pronunclation model

* dictionary look-up, plus

e letter-to-sound model
« But

* human expert must write dictionary
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AERIE EH1 R IYO
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AERITALIA EH2 R IHO T AE1 L Y AHO
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Key concepts we now understanc

» Breaking a complex problem down into simpler steps
« Combining many components into a single architecture
* representing information in data structures
 [he pros and cons of rules vs. learning from data
« (Generalising to previously-unseen words or sentences
« Creating new utterances from fragments of pre-recorded speech

« Manipulating the pitch and duration of speech
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VWhat next!?

» Automatic speech recognition In Modules 6 to 9

 Supported by foundation material on

¢ mathematics

- N next week's foundation class
* probabllity



