
Module 3

Text processing

Roadmap

• Modules 1-2: The basics
• Modules 3-5: Speech synthesis
• Modules 6-9: Speech recognition

• Block 1 Week 4
• Module 3: text processing

• Block 1 Week 5
• Class trip
• Module 4: pronunciation & prosody

• Block 1 Week 6
• Assignment Q&A
• Module 5: waveform generation

• Block 1 Week 7
• Submission of first assignment

Orientation

• Speech
• a continuous 1-dimensional signal
• phonemes (categories of speech sounds)

• Text
• messy stuff !
• needs “tidying up” (normalisation)

• Predicting speech from text
• via an intermediate representation

CONSONANTS (PULMONIC) © 2015 IPA

 Bilabial Labiodental Dental Alveolar Postalveolar Retroflex Palatal Velar Uvular Pharyngeal Glottal

Plosive
Nasal
Trill
Tap or Flap
Fricative
Lateral

fricative
Approximant
Lateral

approximant

Symbols to the right in a cell are voiced, to the left are voiceless. Shaded areas denote articulations judged impossible.

THE INTERNATIONAL PHONETIC ALPHABET (revised to 2015)

Typefaces: Doulos SIL (metatext); Doulos SIL, IPA Kiel, IPA LS Uni (symbols)

What you should already know

• From the videos & readings
• text-to-speech pipeline
• dealing with Non-Standard Words

(NSWs)

Front end
Waveform
generator

Text processing pipeline

Front end

LTS Phrase
breakstokenize POS

tag intonation

Today’s topics - Module 3: text processing

Theory Application

Speech
Signal

processing
Probabilistic
modelling

Speech Synthesis Automatic Speech Recognition

Signals Production Perception Front end
Waveform

generation
Feature

extraction
Pattern
matching

Hidden Markov
Models

Connected
speech

Concepts

Time domain
Sound
source

Pitch Digital signal Describing data
Tokenisation &
normalisation

Waveform
concatena

tion

Series
expansion

Exemplar
Generative
model of
sequences

Hierarchy

Periodic
signal

Harmonics Cochlea
Short-term

analysis

Discrete &
continuous
variables

Pronunciation Diphone FeatureS Distance
Sub-word

unit

Frequency
domain

Vocal tract
resonance &
formants

Mel scale
Spectral
envelope

Joint,
conditional,

Bayes’ formula
Prosody

Feature
engineering

Sequence
Hidden state
sequence

N-grams

Models &
data

structures

Filter
Resonant

tube
Filterbank Impulse train Gaussian

Finite state
transducer

Feature
vector

Sequence of
feature
vectors

Hidden Markov
Model

Impulse
response

Source-
filter model

Phoneme Pitch period
Generative

model
Decision tree Grid Lattice Graph

Algorithms &
analysis

Fourier
analysis

Fitting a
Gaussian to

data

Handwritten
rules

Overlap-
add

MFCCs
Dynamic

programming
(DTW)

Dynamic
programming

(Viterbi)

Composition
(“compiling”)

Cepstral
analysis

Classification
Learning

decision trees
TD-PSOLA Baum Welch

Approximation
(pruning)

Tokenisation &
normalisation

Finite state
transducer

Handwritten
rules

Today’s topics - Module 3: text processing

Tokenisation &
normalisation

Finite state
transducer

Handwritten
rules

Speech synthesis - text processing

• Representing linguistic information using data structures
• Designing features for classifying Non-Standard Words (NSWs) into categories
• Writing algorithms to expand NSWs

How to represent linguistic information? Data structures

• The Heterogeneous Relation Graph (HRG) formalism (as used in Festival)
• Basic data structure to represent a linguistic item: feature structure

• an unordered list of key-value pairs (like a Python dictionary)

72 Text segmentation and organisation

The subsequent pronunciation module might then produce output like

The|the|/dh ax/ man|man|/m ae n/ lived|lived|/l ih v ax d/

in|in|/ax n/ Oak|oak|/ow k/ St|street|/s t r iy t/ .|null

The advantage of addition systems is that it is often hard to know in advance of devel-
opment what each module requires as input, and if we delete information we run the
risk of supplying a module with impoverished input. For example, we might find that the
phrasing module (which is called after the text-normalisation module) requires punctua-
tion, which can clearly not be used if the information has been deleted. The trouble with
string-based addition systems is that they can become unwieldy rather quickly. Even in
the example above, with a short sentence and the operation of only two modules, we see
that the string is rather difficult to read. Furthermore, each module will have to parse this
string, which becomes increasingly more complicated as the string becomes richer.

It is common therefore for modern systems to adopt an approach that follows the
addition paradigm, but does so in a way that allows easier and clearer access to the
information. Two of the most widely used formalisms are the heterogeneous relation
graph or HRG formalism [441], used in the Festival system, and the delta system [201],
used in a number of commercial and academic systems.

Both these are based on the idea of building data structures based on linguistic items.2

An item can be any single linguistic unit, including a word, phone, syllable, pitch accent
or other entity. The item is a feature structure, which is a data structure common in
computational linguistics that defines a collection of properties as an unordered list of
key–value pairs, also known as attribute–value pairs. Attributes must be atomic and
drawn from a finite set of defined values. Attributes must also be unique within the
feature structure, so that, when given an attribute, at most one value will be found. From
a computer-science perspective, feature structures are very similar to associative arrays
or maps, and can also be though of as lookup tables or dictionaries. In mathematics,
they can be thought of as finite partial functions; that is, functions that have a finite
domain and for which not all domain values are defined. An example feature structure
is given below:

word :

⎡

⎢⎢⎢⎢⎢⎣

NAME abuse1

POS noun
TEXT abuse
PRON /@ buws/

⎤

⎥⎥⎥⎥⎥⎦
(4.1)

In the above example, all the values are atomic. It is also possible to have feature struc-
tures themselves as values, which is useful for grouping particular types of information

2 For clarity, we will adopt HRG terminology throughout our explanation.

Downloaded from Cambridge Books Online by IP 129.215.17.188 on Sun Jul 24 08:08:09 BST 2016.
http://dx.doi.org/10.1017/CBO9780511816338.006

Cambridge Books Online © Cambridge University Press, 2016

Example taken from Taylor - Section 4.5

Nesting: values can themselves be feature structures

Example taken from Taylor - Section 4.5

4.5 Text-to-speech architectures 73

together:

phone:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

NAME p
STRESS 1

DISTINCTIVE FEATURES

⎡

⎢⎢⎢⎣

VOICED f alse
MANNER stop
PLACE bilabial

⎤

⎥⎥⎥⎦

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.2)

These items represent a single linguistic entity. Since there are usually several of
these in each sentence we need an additional data structure to store these. In the HRG
formalism, relations are used to group items of a similar type. In the standard HRG
formalism, we have three types of relation: list, tree and ladder. Many types of linguistic
data are best stored in lists, and this is how word, syllable and phone information is
normally stored. Other types of linguistic data are most suited to trees, and this is how
syntax, prosodic phrasing and syllable structure can be stored. Less common is the use
of ladders, which are used to represent connections between linguistic data that are not
organised hierarchically, as in a tree. The ladder structure can be used to implement
the data structures of autosegmental phonology [179], which is used for instance to
represent the relationship between syllables and intonation accents. The three types of
structure are shown in Figure 4.1.

One way of configuring the data structures is to have a separate relation for the output
of each module, so that overwriting the output of previous modules is avoided. While
straightforward, this configuration can makes the utterance structure very dependent on
the particular TTS set-up, so that a module that performs pronunciation in one step would
generate one relation, whereas one that implements lexical lookup, letter-to-sound rules
and post-lexical processing as three separate modules would generate three relations.
An alternative is to separate relations from particular modules and instead use relations
to store information for each linguistic type, so we can have a “phone” relation that
comprises a list of phone items, a syllable relation, word relation, intonation relation and
so on.

The relations are graphs of nodes arranged in the form of lists, trees and ladders. Each
node can be linked to an item, and in this way the relation can show the contents of
the items and the relationship between them. Named links such as next(), previous(),

(c)(b)(a)

Figure 4.1 The three types of relation: (a) list relation, (b) tree relation and (c) ladder relation.

Downloaded from Cambridge Books Online by IP 129.215.17.188 on Sun Jul 24 08:08:09 BST 2016.
http://dx.doi.org/10.1017/CBO9780511816338.006

Cambridge Books Online © Cambridge University Press, 2016

How to represent linguistic information? Data structures

• The Heterogeneous Relation Graph (HRG) formalism (as used in Festival)
• Basic data structure to represent a linguistic item: feature structure

• an unordered list of key-value pairs (like a Python dictionary)
• Relations between linguistic items

4.5 Text-to-speech architectures 73

together:

phone:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

NAME p
STRESS 1

DISTINCTIVE FEATURES

⎡

⎢⎢⎢⎣

VOICED f alse
MANNER stop
PLACE bilabial

⎤

⎥⎥⎥⎦

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.2)

These items represent a single linguistic entity. Since there are usually several of
these in each sentence we need an additional data structure to store these. In the HRG
formalism, relations are used to group items of a similar type. In the standard HRG
formalism, we have three types of relation: list, tree and ladder. Many types of linguistic
data are best stored in lists, and this is how word, syllable and phone information is
normally stored. Other types of linguistic data are most suited to trees, and this is how
syntax, prosodic phrasing and syllable structure can be stored. Less common is the use
of ladders, which are used to represent connections between linguistic data that are not
organised hierarchically, as in a tree. The ladder structure can be used to implement
the data structures of autosegmental phonology [179], which is used for instance to
represent the relationship between syllables and intonation accents. The three types of
structure are shown in Figure 4.1.

One way of configuring the data structures is to have a separate relation for the output
of each module, so that overwriting the output of previous modules is avoided. While
straightforward, this configuration can makes the utterance structure very dependent on
the particular TTS set-up, so that a module that performs pronunciation in one step would
generate one relation, whereas one that implements lexical lookup, letter-to-sound rules
and post-lexical processing as three separate modules would generate three relations.
An alternative is to separate relations from particular modules and instead use relations
to store information for each linguistic type, so we can have a “phone” relation that
comprises a list of phone items, a syllable relation, word relation, intonation relation and
so on.

The relations are graphs of nodes arranged in the form of lists, trees and ladders. Each
node can be linked to an item, and in this way the relation can show the contents of
the items and the relationship between them. Named links such as next(), previous(),

(c)(b)(a)

Figure 4.1 The three types of relation: (a) list relation, (b) tree relation and (c) ladder relation.

Downloaded from Cambridge Books Online by IP 129.215.17.188 on Sun Jul 24 08:08:09 BST 2016.
http://dx.doi.org/10.1017/CBO9780511816338.006

Cambridge Books Online © Cambridge University Press, 2016

Taylor - Figure 4.1

List - for example, relation between the words in a sentence

4.5 Text-to-speech architectures 73

together:

phone:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

NAME p
STRESS 1

DISTINCTIVE FEATURES

⎡

⎢⎢⎢⎣

VOICED f alse
MANNER stop
PLACE bilabial

⎤

⎥⎥⎥⎦

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.2)

These items represent a single linguistic entity. Since there are usually several of
these in each sentence we need an additional data structure to store these. In the HRG
formalism, relations are used to group items of a similar type. In the standard HRG
formalism, we have three types of relation: list, tree and ladder. Many types of linguistic
data are best stored in lists, and this is how word, syllable and phone information is
normally stored. Other types of linguistic data are most suited to trees, and this is how
syntax, prosodic phrasing and syllable structure can be stored. Less common is the use
of ladders, which are used to represent connections between linguistic data that are not
organised hierarchically, as in a tree. The ladder structure can be used to implement
the data structures of autosegmental phonology [179], which is used for instance to
represent the relationship between syllables and intonation accents. The three types of
structure are shown in Figure 4.1.

One way of configuring the data structures is to have a separate relation for the output
of each module, so that overwriting the output of previous modules is avoided. While
straightforward, this configuration can makes the utterance structure very dependent on
the particular TTS set-up, so that a module that performs pronunciation in one step would
generate one relation, whereas one that implements lexical lookup, letter-to-sound rules
and post-lexical processing as three separate modules would generate three relations.
An alternative is to separate relations from particular modules and instead use relations
to store information for each linguistic type, so we can have a “phone” relation that
comprises a list of phone items, a syllable relation, word relation, intonation relation and
so on.

The relations are graphs of nodes arranged in the form of lists, trees and ladders. Each
node can be linked to an item, and in this way the relation can show the contents of
the items and the relationship between them. Named links such as next(), previous(),

(c)(b)(a)

Figure 4.1 The three types of relation: (a) list relation, (b) tree relation and (c) ladder relation.

Downloaded from Cambridge Books Online by IP 129.215.17.188 on Sun Jul 24 08:08:09 BST 2016.
http://dx.doi.org/10.1017/CBO9780511816338.006

Cambridge Books Online © Cambridge University Press, 2016Taylor - Figure 4.1

Tree - for example, relation between words, syllables and phones

4.5 Text-to-speech architectures 73

together:

phone:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

NAME p
STRESS 1

DISTINCTIVE FEATURES

⎡

⎢⎢⎢⎣

VOICED f alse
MANNER stop
PLACE bilabial

⎤

⎥⎥⎥⎦

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.2)

These items represent a single linguistic entity. Since there are usually several of
these in each sentence we need an additional data structure to store these. In the HRG
formalism, relations are used to group items of a similar type. In the standard HRG
formalism, we have three types of relation: list, tree and ladder. Many types of linguistic
data are best stored in lists, and this is how word, syllable and phone information is
normally stored. Other types of linguistic data are most suited to trees, and this is how
syntax, prosodic phrasing and syllable structure can be stored. Less common is the use
of ladders, which are used to represent connections between linguistic data that are not
organised hierarchically, as in a tree. The ladder structure can be used to implement
the data structures of autosegmental phonology [179], which is used for instance to
represent the relationship between syllables and intonation accents. The three types of
structure are shown in Figure 4.1.

One way of configuring the data structures is to have a separate relation for the output
of each module, so that overwriting the output of previous modules is avoided. While
straightforward, this configuration can makes the utterance structure very dependent on
the particular TTS set-up, so that a module that performs pronunciation in one step would
generate one relation, whereas one that implements lexical lookup, letter-to-sound rules
and post-lexical processing as three separate modules would generate three relations.
An alternative is to separate relations from particular modules and instead use relations
to store information for each linguistic type, so we can have a “phone” relation that
comprises a list of phone items, a syllable relation, word relation, intonation relation and
so on.

The relations are graphs of nodes arranged in the form of lists, trees and ladders. Each
node can be linked to an item, and in this way the relation can show the contents of
the items and the relationship between them. Named links such as next(), previous(),

(c)(b)(a)

Figure 4.1 The three types of relation: (a) list relation, (b) tree relation and (c) ladder relation.

Downloaded from Cambridge Books Online by IP 129.215.17.188 on Sun Jul 24 08:08:09 BST 2016.
http://dx.doi.org/10.1017/CBO9780511816338.006

Cambridge Books Online © Cambridge University Press, 2016

Taylor - Figure 4.1

Ladder - for example, relation between syllables and pitch accents

Taylor - Figure 4.1

4.5 Text-to-speech architectures 73

together:

phone:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

NAME p
STRESS 1

DISTINCTIVE FEATURES

⎡

⎢⎢⎢⎣

VOICED f alse
MANNER stop
PLACE bilabial

⎤

⎥⎥⎥⎦

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.2)

These items represent a single linguistic entity. Since there are usually several of
these in each sentence we need an additional data structure to store these. In the HRG
formalism, relations are used to group items of a similar type. In the standard HRG
formalism, we have three types of relation: list, tree and ladder. Many types of linguistic
data are best stored in lists, and this is how word, syllable and phone information is
normally stored. Other types of linguistic data are most suited to trees, and this is how
syntax, prosodic phrasing and syllable structure can be stored. Less common is the use
of ladders, which are used to represent connections between linguistic data that are not
organised hierarchically, as in a tree. The ladder structure can be used to implement
the data structures of autosegmental phonology [179], which is used for instance to
represent the relationship between syllables and intonation accents. The three types of
structure are shown in Figure 4.1.

One way of configuring the data structures is to have a separate relation for the output
of each module, so that overwriting the output of previous modules is avoided. While
straightforward, this configuration can makes the utterance structure very dependent on
the particular TTS set-up, so that a module that performs pronunciation in one step would
generate one relation, whereas one that implements lexical lookup, letter-to-sound rules
and post-lexical processing as three separate modules would generate three relations.
An alternative is to separate relations from particular modules and instead use relations
to store information for each linguistic type, so we can have a “phone” relation that
comprises a list of phone items, a syllable relation, word relation, intonation relation and
so on.

The relations are graphs of nodes arranged in the form of lists, trees and ladders. Each
node can be linked to an item, and in this way the relation can show the contents of
the items and the relationship between them. Named links such as next(), previous(),

(c)(b)(a)

Figure 4.1 The three types of relation: (a) list relation, (b) tree relation and (c) ladder relation.

Downloaded from Cambridge Books Online by IP 129.215.17.188 on Sun Jul 24 08:08:09 BST 2016.
http://dx.doi.org/10.1017/CBO9780511816338.006

Cambridge Books Online © Cambridge University Press, 2016

Speech synthesis - text processing

• Representing linguistic information using data structures
• Designing features for classifying Non-Standard Words (NSWs) into categories
• Writing algorithms to expand NSWs

Design some features that might be useful for classifying NSWs
Normalization of non-standard words 293

TABLE I. Taxonomy of non-standard words used in hand-tagging and in the text normalization
models

EXPN abbreviation adv, N.Y, mph, gov’t
alpha LSEQ letter sequence CIA, D.C, CDs

ASWD read as word CAT, proper names
MSPL misspelling geogaphy

NUM number (cardinal) 12, 45, 1/2, 0·6
NORD number (ordinal) May 7, 3rd, Bill Gates III
NTEL telephone (or part of) 212 555-4523
NDIG number as digits Room 101

N NIDE identifier 747, 386, I5, pc110, 3A
U NADDR number as street address 5000 Pennsylvania, 4523 Forbes
M NZIP zip code or PO Box 91020
B NTIME a (compound) time 3·20, 11:45
E NDATE a (compound) date 2/2/99, 14/03/87 (or US) 03/14/87
R NYER year(s) 1998, 80s, 1900s, 2003
S MONEY money (US or other) $3·45, HK$300, Y20,000, $200K

BMONEY money tr/m/billions $3·45 billion
PRCT percentage 75%, 3·4%

SPLT mixed or “split” WS99, x220, 2-car
(see also SLNT and PUNC examples)

SLNT not spoken, word boundary or emphasis character:
M word boundary M.bath, KENT*RLTY, really
I PUNC not spoken, non-standard punctuation: “***” in
S phrase boundary $99,9K***Whites, “. . . ” in DECIDE. . . Year
C FNSP funny spelling slloooooww, sh*t

URL url, pathname or email http://apj.co.uk, /usr/local, phj@tpt.com
NONE should be ignored ascii art, formatting junk

anticipated differences in algorithms for transforming (or expanding) tokens to a sequence of
words, where a “token” is a sequence of characters separated by white space (see Section 6.2
for more on defining tokens).
Four different categories are defined for tokens that included only alphabetic characters:

expand to full word or word sequence (EXPN), say as a letter sequence (LSEQ), say as a
standard word (ASWD) and misspelling (MSPL). The ASWD category includes both standard
words that are simply out of the vocabulary of the dictionary used for NSW detection and
acronyms that are said as a word rather than a letter sequence (e.g.NATO). The EXPN category
is used for expanding abbreviations such as fplc for fireplace, but not used for expansions
of acronyms/abbreviations to their full name, unless it would be more natural to say the
full expansion in that genre. For example, IBM is typically labeled as LSEQ (vs. EXPN for
International Business Machines), while NY is labeled as EXPN (New York). Similarly, won’t
is not labeled as an expansion, but gov’t should be. Of these four categories, the problem
of expanding the EXPN class of tokens is of most interest in our work, since pronouncing
ordinary words and detecting misspellings has been handled in other work.
Several categories are defined for tokens involving numbers. We identified four main ways

to read numbers: as a cardinal (e.g. quantities), an ordinal (e.g. dates), a string of digits (e.g.
phone numbers), or pairs of digits (e.g. years). However, for ease of labeling and because
some categories can optionally be spoken in different ways (e.g. a street address can be read
as digits or pairs), we defined categories for the most frequent types of numbers encountered.
We chose not to have a separate category for Roman numerals, but instead to label them

Table I from Sproat et al,
“Normalization of non-standard words”
Computer Speech and Language
(2001) 15, 287–333
doi:10.1006/csla.2001.0169

Speech synthesis - text processing

• Representing linguistic information using data structures
• Designing features for classifying Non-Standard Words (NSWs) into categories
• Writing algorithms to expand NSWs

Write an algorithm to expand LSEQ (letter sequence) to words

• Your algorithm must handle these examples
• IBM
• DVD
• UN
• ABC

Write an algorithm to expand NUM (cardinal number) to words

• Your algorithm must handle these examples
• 7
• 21
• -9
• 3.1
• 99.9

Write an algorithm to expand PRCT (percentage) to words

• Your algorithm must handle these examples
• 50%
• -30%
• 4.5%

Today’s topics - what we covered

Tokenisation &
normalisation

Finite state
transducer

Handwritten
rules

What next?

In Module 4

In Module 5

• From the normalised text
• predict pronunciation

• product prosody

• That completes the
linguistic specification

• From the linguistic specification
• generate a waveform

