
Token Passing: a Simple Conceptual Model for ConnectedSpeech Recognition SystemsS.J. YoungN.H.RussellJ.H.S ThorntonCambridge University Engineering DepartmentJuly 31, 1989AbstractThis paper describes a simple but powerful abstract model in which connectedword recognition is viewed as a process of passing tokens around a transition network.The advantages of this unifying view are many. The various apparently di�erentconnected word algorithms can be represented within the same conceptual frameworksimply by changing the network topology, the application of grammatical constraintsis straightforward, and perhaps most importantly, the entire structure is independentof the actual underlying pattern matching technology. To illustrate the power of thisconceptual model, the paper concludes by describing some work done under the UKAlvey-sponsored VODIS Project in which the Token Passing paradigm enabled theOne Pass algorithm to be straightforwardly extended to include the generation ofmultiple alternatives and context free syntactic constraints.1 IntroductionIn a recent paper, Godin and Lockwood [1989] investigated the One Pass (OP) [Vintsyuk 1971,Bridle et al 1982] and Level Building (LB) [Myers & Rabiner 1981] connected word algo-rithms in some depth and eventually showed that when syntax constraints were applied,the two algorithms were essentially identical. Godin and Lockwood's paper is based uponthe conventional formulation in which within-template matching is viewed as �nding aminimum cost path through a matrix of local distances whereas between-template match-ing is viewed as extending a path from one template to the next. The problem withthis viewpoint is that it is rather speci�c to DTW technology and although the OP andLB algorithms are fundamentally similar, the actual code used to implement them isnevertheless di�erent. Thus, for example, given a Level Building DTW-based connectedspeech recogniser, it will not, in general, be entirely straightforward to convert it to a OnePass Hidden Markov Model (HMM) recogniser. More crucially, since within-template andbetween-template matching are treated di�erently, extending the higher level processingto include, say, more complex grammatical constraints is not trivial.This paper describes a simple conceptual model of connected word1 recognition based1the term word here denotes the basic recognition unit used which may be a word but could equallywell be a diphone, phoneme, etc. 1



on Token Passing within a transition network structure. With this model, which is equallyapplicable to DTW and HMM recognition, it will be shown that the OP and LB algorithmsare just simple topological variants. Furthermore, because the model is so simple, it iseasy to extend to include the generation of alternative solutions and more complex highlevel control mechanisms.The paper is organised as follows. The general Token Passing model and its relationshipto the various existing algorithms is described in section 2. In section 3, some extensions ofthe model to include context free grammar constraints and the generation of alternativesare described. Finally, in section 4, the application of the model in a working laboratorysystem is presented along with some experimental results on the use of multiple alternativesand various modes of grammatical constraint.2 The Token Passing Model2.1 Isolated Word RecognitionConsider �rst isolated word recognition. In the Token Passing model, each vocabularyword is represented by a word model which is a �nite state network of the form shownin Figure 1. Associated with each pair of connected states i and j in a word model isa transition cost pij , and associated with each state j is a local cost function dj(t). Theunknown speech signal is assumed to be in the usual form of a sequence of vectors x1 : : :xTand occupation of state j at time t implies that the cost of matching the associated speechvector xt is dj(t).Each possible sequence of states through the model i = i0; i1; : : : ; iT , where i0 is theinitial state, represents one possible alignment of the model with the speech signal. Thetotal cost S(i) of this alignment is given byS(i) = TX�=1(pi��1;i� + di� (�)) (1)In speech recognition, the similarity between a model and the unknown speech is assumedto be inversely proportional to the minimum cost alignment. Let sj(t) be the minimumcost alignment between the segment x1 : : :xt of the unknown speech and the model startingin state i0 and ending in state j. By the principle of optimality, this cost can be computedby the recursion sj(t) = mini fsi(t� 1) + pijg+ dj(t) (2)thereby giving an e�cient way of computing the required minimum value of S(i), that isSmin(i) = minj fsj(T )g (3)where j is any allowable �nal state of the word model.All of the above is entirely straightforward and well-known. Indeed, the similaritybetween this model and a hidden Markov model is particularly self-evident. However,the distinction is maintained here purposefully to emphasise that token passing is notrestricted to HMM's. This is discussed further in section 2.22
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Figure 1: Structure of a Word ModelEquation 2 would normally be evaluated by representing sj(t) as a matrix as shown inFigure 2, and calculating the matrix elements column by column. This style of evaluationis the basis of the Godin and Lockwood paper. The central point of this paper, however,is that an alternative style of evaluation based on token passing leads to much simpler andmore powerful generalisation.Let each state of a word model be capable of holding a moveable token where eachtoken, for the moment at least, holds a single alignment cost so that at time t, the token instate j holds the value sj(t). In terms of these tokens, the algorithm implied by equation 2can be reformulated (somewhat informally) as follows:Initialisation:Each model initial state holds a token with value 0;All other states hold a token with value 1Algorithm:for t:= 1 to T dofor each state i doPass a copy of the token in state i to all connectingstates j, incrementing its s value by pij + dj(t);end;Discard the original tokens;for each state i do�nd the token in state i with the smallest svalue and discard the restend;end;Termination:Examine all �nal states, the token with the smallest s valuegives the required minimum matching score.3
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Figure 2: Matrix of Partial Alignment CostsThis token passing algorithm is illustrated in Figure 3. It corresponds to a time syn-chronous search strategy in which the alignments represented by the tokens are eachadvanced by one frame of the input for every cycle of the main loop. Notice here that thepossibility of having multiple initial and �nal states has been allowed, this is not necessaryfor isolated word recognition but will be needed later.2.2 Relation to DTW and HMM-based Pattern MatchingAs noted above, the correspondence between the token passing model and hidden Markovmodels is obvious and direct. For a HMM with transition probabilities aij and outputprobabilities bj(x), if each transition cost pij is set equal to � log aij and each local costdj(t) is set equal to � log bj(x) then equation 2 becomessj(t) = maxi fsi(t� 1) + log aijg+ log bj(x) (4)and sj(t) now denotes the maximum log probability of the model being in state j aftergenerating the sequence x1 : : :xT . Equation 4 is the standard Viterbi decoder equationfor a HMM [Levinson et al 1983].For DTW, each state of the word model is associated with a frame of the referencetemplate and a topology similar to that shown in Figure 1 is assumed. In this case,thetransition costs pij are set equal to �xed penalties of H for the case i = j and V forthe case i = j � 2. As shown in Figure 4, H denotes an additive horizontal penalty andV denotes an additive vertical penalty designed to penalise paths through the distance4
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Figure 3: Basic Token Passing Algorithmmatrix which stray too far away from the diagonal. Each local cost dj(t) is set equal tod(j; t) the local distance between frame j of the reference template and frame t of theunknown. Equation 2 now becomessj(t) = mini 8><>: sj(t � 1) +Hsj�1(t � 1) +0sj�2(t � 1) +V 9>=>;+ d(t; j) (5)and sj(t) now denotes the partial minimum accumulated distance between the �rst tframes of the unknown and the �rst j frames of the reference. Equation 5 is the stan-dard asymmetric Dynamic Programming decision rule used in one form or another by allconnected word algorithms.The fact that both DTW and HMM-based recognition share similar formulae has beennoted by others [Bridle 1984, Juang 1984]. DTW is e�ectively a special case of HMMrecognition.2.3 Connected Word RecognitionGiven the token passing framework outlined in section 2.1, the extension to connectedword recognition is trivial. The individual word models are simply connected togetherinto a looped composite model as shown in Figure 5. The same token passing algorithmstill applies although it is now e�ectively implementing the One-Pass (OP) algorithm.The transition costs associated with the external arcs of the looped model can be usedto reect the relative frequencies of each word occurring if this is known, or made equalotherwise. 5
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In practice, of course, for connected word recognition, we wish to know the identityof the best matching word sequence not just the overall alignment cost. To cater forthis, the basic token passing algorithm is extended as follows. The tokens themselves arenow assumed to hold a path identi�er as well as the partial alignment cost s. This pathidenti�er is simply a pointer to a record of word boundary information which will be calleda Word Link Record (WLR). At each time t, the following steps are taken in addition tothose listed in the basic algorithm abovefor each token propagated via an external arc at time t docreate a new WLR containing<token contents, t, identity of emitting word model>;change the path identi�er of the propagating token topoint to this new recordendThis extension to the algorithm is illustrated in Figure 6. As can be seen, its e�ect isthat during token propagation, potential word boundaries are recorded in a linked liststructure such that on completion at time T , the path identi�er held in the token withthe minimum alignment cost can be used to trace back through the linked list to �nd thebest matching word sequence and the corresponding word boundary locations.
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2.4 Relation to Existing Connected Word AlgorithmsAs already noted, the basic looped composite model shown in Figure 5 and reproducedagain in Figure 7(a) corresponds directly to the One Pass (OP) algorithm. The LevelBuilding (LB) algorithm is implemented by connecting the models in a left to right se-quence as shown in Figure 7(b). Comparing this with the equivalent OP algorithm it isclear that the OP algorithm is much more e�cient since both time and space complexityare proportional to the number of word model instances. Also, it is interesting to note thatthe LB algorithm as originally de�ned by Myers calculates all 1-length sequence matches,then all 2-length sequence matches, and so on, whereas the token passing implementationshown in Figure 7b calculates all levels in parallel. This implies that the nested loops inMyers' algorithm can be reordered; Godin and Lockwood [1989] show that this is indeedpossible.
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(b) Level BuildingFigure 7: The One Pass and Level Building TopologiesFigures 8(a) and 8(b) illustrate that the application of �nite state (or regular grammar)syntactic constraints in the token passing scheme is achieved trivially by connecting theword models together in such a way that only the required word sequences are allowed.Once syntax constraints are applied, the distinction between the OP and LB algorithmsdisappears since the choice of topology now depends more on the requirements of syn-tax than on preferences for one algorithm over another. Thus, although the syntax inFigure 8(a) could be said to be OP-like whereas that in Figure 8(b) could be said to beLB-like, the real distinction is whether the more precise constraint o�ered by (b) is worththe extra computation and memory implied by the 4-fold increase in word model instances.The OP and LB algorithms can therefore be viewed as di�erent special cases of the TokenPassing algorithm with Finite State syntax constraints.8
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toFigure 8: Styles of Syntax Control2.5 Word Model AbstractionIn the preceding sections, it has been shown that the token passing approach allows boththe OP and LB connected word algorithms to be implemented using a single algorithmsimply by choosing an appropriate network topology. Furthermore, the individual wordmodels apply equally well to both Dynamic Time Warp and Hidden Markov Model tech-nologies.A crucial aspect of the token passing view is that the way the individual word modelscontribute to the overall recognition process is determined entirely by the ow of tokensinto them and all the book-keeping necessary to record word boundary positions and wordidentities depends only on the ow of tokens out of them. Thus, it is clear that any internalprocessing carried out within a word model can be separated from the between-modelprocessing. Hence, it is possible to view word models as abstract units which take tokens asinput and produce tokens as output. In the following section, this abstraction will be usedto simplify the description of more complex connected word algorithms where the actualoperation of the word models is represented simply by a procedure step word models(t)which means that one cycle of the main loop of the algorithm given in section 2.1 isexecuted.In the token passing scheme, each token e�ectively represents a minimum cost partialalignment of a sequence of word models against that part of the unknown speech whichhas currently been seen. The propagation of a token from one word model to anothercorresponds to adding that further model to the sequence, and viewed like this it is clearthat controlling the ow of tokens between word models corresponds to the implementationof grammatical constraints.Thus, as shown in Figure 9, treating word models as abstract pattern matching unitsenables a standard interface to be de�ned between the high level processing components9
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Figure 9: Separation of High Level Control from Low Level Pattern Matching(syntax constraints, parsing, dialogue control, etc) of a system and the low level patternmatching. The existence of this standard interface allows a speech recognition architectureto be built which is essentially independent of the underlying pattern matching technologyused since it does not matter how the step word models procedure is actually implemented.Externally, all that is required is that at time t each word model consumes the token at itsinput representing the best match between some sequence of models and the segment ofinput speech from 1 to t�1, and then outputs a token representing the best match betweensome sequence of models ending with that model and the segment of input speech from 1to t. As an example, this approach was taken in the Alvey VODIS project [Young 1986,Young et al 1988]. The initial VODIS architecture was built around word models basedon DTW matching and implemented in hardware but follow-on work has concentrated onHMM-based word models with minimal change to the overall system.3 Extensions to the ModelIn any continuous speech recognition system, proper use of syntactic constraints is vitalto achieving acceptable recognition performance. These constraints are usually applieda priori by limiting the connections between word models as described above. The netresult of applying syntactic knowledge in this way is that the system computes the bestmatching sequence of word models that conform to the regular grammar implied by the�nite state network of word model connections. For certain types of application where theinput language is small and users can be trained to adhere to it, this basic scheme worksvery well. However, where more ambitious grammars are needed or where users cannotbe trained to speak within the prescribed syntactic forms (such as in a database inquiry10



system for use by the general public), there are problems.A regular grammar covering a large input language may fail to provide su�cientlytight constraints. This is particularly true when the input language is actually speci�ed interms of context free rules (which are much more intuitive to the application designer) andthen compiled automatically into an approximately equivalent �nite state network. Sinceany �nite state (i.e. regular) grammar whose language includes all the strings of somedesired context free language must in general also include many strings not in the contextfree language, compilation will inevitably imply a weakening of constraints. Thus, theremay be some advantage in being able to apply context free constraints directly withinconnected word algorithms.However, systems which rely on strong a priori syntactic constraints are not robustagainst speakers who stray outside of the prescribed grammar. An alternative approachis therefore to extend the basic connected word algorithm to generate a lattice of wordalternatives rather than the single best matching sequence. Syntactic knowledge can thenbe applied in an a posteriori parsing phase rather than by a priori constraints giving moreexibility in the design of error recovery strategies.In this section, the implementation of direct context free constraints and the generationof alternatives will be described. Although these two mechanisms appear to be mutuallyexclusive, this is not, in fact, the case. Generating multiple alternatives in combinationwith strong a priori syntactic constraints simply means that all the alternatives will begrammatically correct. Subsequent semantic/pragmatic processing may, however, still beable to bene�t from the availability of alternatives. Furthermore, with multiple alterna-tives, it is important to be able to focus the generation process on those parts of theutterance that are most likely to contain important information. This can be done easilyin conjunction with a direct context free constraint mechanism since each non-terminalof the grammar dominates a de�nite substring of terminals. Hence, a speci�cation of thenumber of alternatives to allow can be associated with each non-terminal. There is nocorresponding entity in a �nite state grammar making it much more di�cult to controlthe generation alternatives.In fact, the optimal combination of the two mechanisms seems to be to use a weakenedset of context free rules for the a priori constraints, generate multiple alternatives and thenuse the full set of rules for a posteriori parsing. This is discussed further in the Section 4.3.1 Direct Context Free Grammar ConstraintsFor the direct context free grammar constraint mechanism described here, it is assumedthat the allowed input language is de�ned by a set of extended BNF production rules[Wirth 1976]. In order to apply context free grammar constraints within the token passingscheme, these grammar rules are compiled into a set of linked syntax networks of the formillustrated by Figure 10.The nodes of each syntax network are of three types: links, terminals, and non-terminals. Link nodes are used to store tokens and are the points where recognitiondecisions are recorded. Terminal nodes correspond to word models and non-terminalnodes refer to separate sub-syntax networks representing the RHS of the correspondinggrammar rule. Neither word models nor subsyntax networks are shared and hence there isa unique instance of a word model or sub-syntax network for every reference to a terminal11
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or non-terminal in the rules. Notice that this implies that recursive rules, whose expansionwould require in�nitely many instances, cannot be allowed. The extended BNF formalismfor the grammar rules, however, allows loops and branches to be included and these canbe handled within the constraint scheme without any di�culty so there is little real lossof expressive power.The three types of node are combined in such a way that every arc connects eithera terminal or a non-terminal to a link node, or vice versa. Each syntax network hasexactly one entry, one exit and zero or more internal link nodes. Every terminal andnon-terminal node will have exactly one arc leading into it, whereas each link node mayhave any number. Link nodes can thus be viewed as �lters which remove all but the best(ie lowest cost) tokens passing through them.Given the above representation of the context free grammar constraints, implementa-tion of connected word recognition using the token passing framework is relatively straight-forward. The basic idea is that tokens propagate through the networks just as in the �nitestate case, however, when a token enters a non-terminal node it is transferred down to theentry node of the corresponding sub-syntax, and when a token enters a terminal node itis transferred to the entry node of the corresponding word model. Similarly, when tokensreach the exit of word models and sub-syntaxes, they are transferred back up to the nodewhich owns them. This ow of tokens is illustrated in Figure 10. The dotted line acrossthis �gure corresponds to the Standard Interface shown earlier in Figure 9. The ow oftokens across this interface will be such that the sequence of word models visited by anytoken will conform to the context free grammar rules.In more detail, the algorithm for connected word recognition with context free grammarrule constraints is as follows:Initialisation:Store a token with cost s = 0 in the entry node of the top level syntax;Store a token with cost s =1 in all other link nodesAlgorithm:for t:= 1 to T doPropagate entry tokens(top level);Copy tokens from all terminal nodes into the entry nodesof the corresponding word models;Step word models(t);Copy the tokens from exit nodes of all word models back tothe corresponding terminal nodes;Propagate exit tokens(top level)end;Termination:The token stored in the exit node of the top level syntaxgives the required best matching word model sequence.The two procedures which handle token propagation Propagate entry tokens and Prop-agate exit tokens are recursively de�ned as follows:13



Propagate entry tokens(s: syntax):for each link node l in syntax s dofor each node n following l doCopy token in l into n;if n is non-terminal thenCopy token in n to entry node ofcorresponding sub-syntax;Propagate entry tokens(n)endend;Store a token with cost s =1 in lend;Propagate exit tokens(s: syntax):for each link node l in syntax s dofor each node n preceding l doif n is non-terminal thenPropagate exit tokens(n);Copy token in exit node of sub-syntax n back tocorresponding non-terminal nodeend;Filter tokens(n; l)end;Record decisions(l)end;If the context free grammar is stochastic then each arc of the syntax networks willcarry a transition cost exactly the same as within the word models. The token propagationprocedures must then be modi�ed to add these costs to the tokens as they are propagated.The procedure Filter tokens is called once for each node n preceding a given link l. Itsimply examines the token in l and if the cost of the token in l exceeds that of the tokenin n then the token in l is replaced by the token in n. The procedure Record decisions iscalled once for each link l after all token �ltering has been completed. It simply creates aWLR for the token in l (see Section 2.3) and changes the path identi�er of that token topoint to the new WLR.On completion of the above algorithm, the exit node of the top level syntax will holda token whose path identi�er points to a WLR corresponding to the last word in therecognised sequence. Tracing back from this WLR to preceding WLR's via their pathidenti�ers then yields the actual recognised word sequence.3.2 Generating Multiple AlternativesObtaining multiple alternative word matches in the basic Token Passing scheme is achievedby recording the N-best (i.e. lowest cost) tokens emitted at each syntactically distinct wordboundary instead of just the best. Note, however, that only the best token is actuallypropagated as before. Since the total cost at each potential word boundary is recordedin the Word Link Records, the cost for each individual word n can easily be determined14



by subtracting the cost at word boundary n � 1 from the cost at word boundary n. Oncompletion of the recognition processing, the WLR's can be converted to a lattice ofalternative word matches and then processed by a Chart parser [Winograd 1983]. Thisprocess is illustrated in Figure 11.
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Figure 11: Recording Multiple Word MatchesTo generate multiple alternatives with the system of direct context free constraintsdescribed above, it is only necessary to modify the Filter tokens and Record decisionsprocedures. The Filter tokens procedure now maintains a list of up to N tokens for eachlink node l. For each terminal or non-terminal node n preceding l, the token in n is onlyadded to the list for l if there are not already N lower cost tokens stored in l. Afterall processing by Filter tokens for link node l has been completed, the Record decisionsprocedure creates a WLR for each token stored in l linking them together by an additionalalt �eld. It then discards all tokens except the best and changes the path identi�er of thatbest token to point to the corresponding WLR. The number of tokens saved at a link nodecan be set individually for each corresponding rule enabling the generation of alternativesto be focussed on the semantically rich regions of the input. Thus, for example, in Figure10 the parameter nb attached to the non-terminals journey and place indicate that thebest two alternatives for a journey and the best three alternatives for a place should besaved.The Word Lattices generated by the above procedures do not necessarily include the N-best matching sequences since the Token Passing system (in common with the conventionalOne Pass algorithm) is such that a word match is available for every possible end-point15



but not every possible start-point. This is an intrinsic feature of the algorithm whichis essential to its e�ciency. When tokens enter the same node, they compete and onlythe best is propagated. If the actual N-best matching sequences are required then wordmatches must be computed for every possible start and end point. The N-best sequencescan then be found by dynamic programming [Young 1984]. Such a procedure is, however,computationally expensive. Although sub-optimal, the procedure described here is verycheap to compute and, in practice, does appear to generate useful alternatives.4 An Example ApplicationThe preceding sections have described the Token Passing approach to the design of con-nected word recognition systems and have shown how it can be extended to generatemultiple alternatives. In this section, an application of Token Passing in the design ofa Voice Operated Database Inquiry System (VODIS) will be briey described and someexperimental results presented to indicate the relative advantages of the various possiblecombinations of a priori and a posteriori syntactic processing.4.1 The VODIS ProjectThe UK Alvey-sponsored VODIS project was a three year collaborative venture betweenBritish Telecom, Logica and Cambridge University Engineering Department. The projectwas not concerned with recognition algorithm development per se, rather it was concernedwith those aspects of voice-based system design which arose from its intended use asa telephone-based conversational question/answer system for the general public. Theexample application area tackled was that of Train Timetable Inquiries.Figure 12 shows a block diagram of the �nal VODIS architecture. The central control ofthe VODIS system resides in a frame-based Dialogue Controller (DC) [Young & Proctor 1989].The DC operates in cycles asking the user questions and processing the replies until hisor her query is fully understood.The system's knowledge of syntax and semantics is in the form of Context Free Gram-mar rules stored in the Rule Database. At the start of each recognition cycle, the DCactivates two distinct contextually relevant rule subsets in the Rule Database. One ofthese subsets is used to apply a priori syntactic constraints to the subsequent patternmatching and the other is used for the a posteriori parsing.The actual speech recognition takes place at two levels: word level and phrase level.At the word level, the input speech is matched frame synchronously with the word modelsusing the DTW variant of the basic Token Passing scheme described in section 2. Tohandle interword pauses, each word model has been augmented to include an optionalpreceding looped silence state. Also, each word model has a �xed cost per frame Wildcardconnected in parallel with it to place an upper limit on the cost of a match. At the phraselevel, the ow of tokens between word models is controlled by transition networks builtautomatically from the grammar and multiple alternatives are recorded as described insection 3.Once the input speech has been consumed, the recorded word boundary informa-tion in the WLR lists is converted to a Chart of word alternatives and processed by aChart Parser. This Chart Parser is a modi�ed form of the standard Bottom-Up algorithm16
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[Winograd 1983] in which the concept of an active edge and an agenda has been dispensedwith. Instead, inactive edges are built and vertices are processed in a �xed right to leftorder. When a complete parse is required (i.e. all syntactically valid interpretations arewanted), this modi�ed algorithm is functionally identical to the standard algorithm butexecutes an order of magnitude faster and uses less memory.When the full chart has been built, it will consist of a large number of arcs (or edges inChart Parsing terminology) spanning segments of the input. The Parser initially assignsa cost to each terminal edge equal to the matching cost computed by the correspondingword model. Each higher level spanning edge is then assigned a score equal to the sumof the edges that it subsumes. That is, for an edge labelled with non-terminal X whichsubsumes a sequence of edges Y1Y2 : : : Yn corresponding to the syntax rule X = Y1Y2 : : : Yn[see Figure 13(a)] the cost SX assigned to edge X is given bySX = NXi=1 SYi (6)In practice, the situation shown in Figure 13(b) is the more usual case where matches foronly a subset of the constituents of X have been found. For cases such as this, a constantcost per input frame � is added for all frames for which there are no spanning arcs, thatis, if only the edges Yj to Yk have a cost below the Wildcard threshold thenSX = kXi=j SYi + �0@T (X)� kXi=j T (Yi)1A (7)where T (A) denotes the length of the edge labelled with A.The value of � is chosen such that it is greater than the average cost per input framefor a correct word match and less than that for an incorrect one. This method of dealingwith unexplained segments of the input is one of many that have been investigated and,as well as being the simplest, it is also the most e�ective.Once costs have been assigned to all edges in the chart, the lowest cost phrase structuresbuilt in the parsing process are extracted. In doing this, the parser does not insist that anedge spans the entire input. For example, in Figure 13(c) both W and X are possible syn-tactic interpretations of the input. The cost for X is computed using equation (6), that isSX =P5i=1 SYi , whereas the cost for W is computed using equation 7 with T (X) set equalto the total number of frames in the inputM , that is SX =P4i=2 SYi+� �M �P4i=2 T (Yi)�.This procedure ensures that syntactically valid segments of the input which match well butwhich cannot be made part of a fully spanning syntactic interpretation are not ignored.Finally, semantic interpretation is performed by stripping the �nal parse tree of seman-tically irrelevant branches and then matching it against slots in the frame-based DialogueController.4.2 E�ects on Performance of Syntactic ConstraintsThe separation of the rules in the VODIS system has allowed the e�ects on recognitionperformance of the balance between a priori and a posteriori processing to be investigated.The �rst version of VODIS and the one used for full-scale user trials [Cookson 1988]18
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employed conventional �nite state syntax constraints. This system worked very well withusers who knew the preprogrammed syntax rules but performance dropped rapidly withnaive untrained users and the system was forced to adapt rapidly to an isolated wordstyle of interaction. The later version described above allows the rules used for a prioriconstraints to be weakened whilst still retaining a full set of grammar rules for the aposteriori parsing and semantic interpretation.To investigate the e�ects of syntactic constraints, the performance of the system wasmeasured with the following di�erent constraint mechanismsFState Finite State a priori constraints derived from the context free task grammar asused in the original VODIS system.CF Context Free a priori constraints derived directly from the task grammar.WeakCF Context free constraints derived from a set of weak rules, consistent with thetask grammar, which enforce function word-content word ordering but no higherlevel structure. A Wildcard is placed between phrasal rules to account for unknownwords.Null No a priori constraints.In all cases, the parsing and semantic interpretation were identical. In the FState case, noalternatives were generated and only fully spanning syntactic interpretations of the inputwere allowed. In all other cases, 3 alternatives were recorded at all semantically importantnodes and 2 alternatives were recorded otherwise.The test material consisted of 20 syntactic sentences (the S set) which conformed tothe task grammar and 20 non-syntactic sentences (the NS set) which did not conform butwere semantically similar. The latter NS set were extracted from transcripts of real BritishRail enquiries, hence although they were grammatically unusual, they were neverthelessrealistic. Note also that as well as being ungrammatical, 40% of the vocabulary used wasunknown to the system.The results are presented in Tables 1 and 2 for two speakers IC and ST who read eachof the sentences as realistically as possible. The DTW recogniser was trained individuallyfor each speaker. The performance is given in terms of slot recognition rate rather thanword recognition rate since this is the only meaningful quantity which can be measured forthis type of system. A full de�nition of a slot lies beyond the scope of this paper since it isintrinsically recursive and closely tied to our method of Dialogue Control implementation.However, a slot corresponds roughly to a single item of information in the utterance,hence, by way of example, the sentence "I want to leave from Peterborough at about nineto travel to York" has 5 slots:1. leave ( { as opposed to arrive2. about ( { as opposed to before or after3. time(digit(nine)))) { the time4. fromplace(Peterborough) { departure place5. toplace(York) { destination place20



Spkr Test FState CF WeakCF NullIC S 82 85 82 72ST S 93 92 92 90IC NS 10 34 45 41ST NS 18 31 54 51Table 1: Percentage Slot Recognition Rate (Best alternative only)Spkr Test CF WeakCF NullIC S 92 89 82ST S 94 97 97IC NS 38 49 48ST NS 33 57 54Table 2: Percentage Slot Recognition Rate (Best 2 alternatives)In all cases, recognition rate is calculated as Nc=(Nt+Ni):100 where Nc is the number ofslots correctly recognised, Nt is the total number of slots and Ni is the number of insertionerrors.From Table 1 it can be seen that for the syntactic S set of sentences, there is littledi�erence between conventional �nite state (FState) constraints and direct context free(CF) constraints. For the non-syntactic NS set, however, there is a dramatic drop inperformance for both, with the FState case being the worst. In this case, the betterperformance of the CF case is mainly due to the more sophisticated parsing made possibleby the availability of alternatives. When the a priori constraints are weakened as inthe WeakCF case, there is little change in performance on the S set but a considerableimprovement in the NS case. For no constraints at all as in the Null case, performanceis less sensitive to ungrammaticality but it always falls below that of the WeakCF case.Hence, the strategy of using weak a priori syntactic constraints in conjunction with full aposteriori parsing on a lattice of alternative word matches appears to o�er the most robuststrategy for this type of conversational speech system.Table 2 shows the e�ects of including the second best global interpretation of the inputin the slot matching algorithm. In this case, the same overall pattern of results emergesbut there is a small but signi�cant improvement in every case. Thus, depending on thedesign of the Dialogue Controller, the generation of semantic alternatives may also beuseful.5 ConclusionsThis paper has described a simple conceptual model of connected speech recognition basedon Token Passing. The advantages of this approach are �rstly that it allows low level pat-tern matching to be abstracted in such a way that there is a clean interface between wordlevel and phrase level processing. This has the great practical bene�t of enabling the higherlevels of a speech recognition system to be independent of the actual pattern matchingtechnology used. The second main advantage of the Token Passing view is that it is verystraightforward. In our view, most of the characteristics of connected word algorithms21



discussed by Godin and Lockwood [1989] are largely self-evident from the Token Passingviewpoint. Furthermore, reasoning about complex extensions is considerably simpli�edand as examples of these at the phrasal level, the incorporation of direct context freegrammar constraints and semantically focussed multiple alternative generation have beendescribed.Finally, some performance issues with regard to the use of syntactic constraints havebeen presented. Using the VODIS system as a model, the relative e�ects of tight and weaka priori syntax constraints have been investigated. Where users are likely to use inputforms whose syntax lies outside of the preprogrammed task grammar, performance dropsdramatically with conventional tight a priori constraints. However, a combination of weaka priori syntactic constraints and full a posteriori parsing on a lattice of alternative wordmatches appears to be much more robust. The availability of semantic alternatives gives asmaller performance improvement but may still be worthwhile if the Dialogue Controllercan be designed to exploit it.AcknowledgementThe VODIS Project was funded by the UK Alvey Directorate and was a collaborativeventure between British Telecom Research Laboratories, Logica UK and Cambridge Uni-versity Engineering Department. The assistance and support of the cooperating partnersis gratefully acknowledged.References[Bridle 1984] Bridle JS. Stochastic Models and Template Matching: some important rela-tionships between 2 apparently di�erent techniques for ASR. Proc IOA AutumnConf, Vol 6, Pt 4.[Bridle et al 1982] Bridle JS, Brown MD, Chamberlain RM. An Algorithm for ConnectedWord Recognition. Proc ICASSP, pp899-902, Paris, France.[Cookson 1988] Cookson S. Final Evaluation of VODIS. Proc 7th FASE Symposium(Speech 88), pp1311-1320.[Godin & Lockwood 1989] Godin C, Lockwood P. DTW Schemes for Continuous SpeechRecognition: a Uni�ed View. Computer Speech and Language, Vol 3, No2,pp169-198.[Juang 1984] Juang B-H. On the Hidden Markov Model and Dynamic Time Warping forSpeech Recognition - A Uni�ed View. AT and T Technical Journal, Vol 63, No7, pp1213-1243.[Levinson et al 1983] Levinson SE, Rabiner LR, Sondhi MM.An Introduction to the Appli-cation of the Theory of Probabilistic Functions of a Markov Process to AutomaticSpeech Recognition. BSTJ, Vol 62, No 4, pp1035-1074.22
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