FP7-287678 SIMPLE4ALL deliverable D4.2

Aalto University

Deliverable D4.2

Online learning for improving one, or more than one
component

The research leading to these results has received funding from the European Community’s Seventh
Framework Programme (FP7/2007-2013) under grant agreement number 287678.

—

SEVENTH FRAMEWORK
PROGRAMME
Participant no. Participant organisation name Part. short name Country
1 (Coordinator) University of Edinburgh UEDIN UK
2 Aalto University AALTO Finland
3 University of Helsinki UH Finland
4 Universidad Politécnica de Madrid UPM Spain
5 Technical University of Cluj-Napoca UTCN Romania

Version 1 (14/05/2014) 1 page 1 of 12

FP7-287678 SIMPLE4ALL deliverable D4.2

Project reference number FP7-287678

Proposal acronym SIMPLE4ALL

Status and Version Complete, proofread, ready for delivery: version 1

Deliverable title Online learning for improving one, or more than one component
Nature of the Deliverable Report (R)

Dissemination Level Public (PU)

This document is available from http://simpledall.org/publications/
WP contributing to the deliverable WP4

WP / Task responsible WP4 / Task T4.2
Editor Mikko Kurimo (AALTO)
Editor address mikko.kurimo @aalto.fi

Author(s), in alphabetical order Mircea Giurgiu, Dhananjaya N Gowda, Stig-Arne Gronroos,
Reima Karhila, Mikko Kurimo, Juan Manuel Montero Martinez,
Peter Smit, Adriana Stan, Oliver Watts

EC Project Officer Leonhard Maqua

Abstract

This is the second deliverable of WP4 and it describes work done in M25 — M30 for the second task T4.2. The
workplan was structured into topics where either one or more than one component of the TTS system are optimised
by learning from user feedback. The main results for single component optimisation are interactive construction
of letter-to-sound rules, polarity prediction, and semi-supervised morphological analysis. Work on topics where
multiple components are optimised — a much harder task — based on user feedback is still in progress, but plans
have become significantly more concrete and we expect to complete the planned experiments before the end of
the project. These experiments include monitoring TTS quality while improving the system, analysing consistency
among users in their feedback on the nature of a system’s errors, and correction of non-native pronunciation using
native spoken feedback.

Version 1 (14/05/2014) 2 page 2 of 12

FP7-287678 SIMPLE4ALL deliverable D4.2

Contents
1 Introduction 4
2 Optimisation of a single component 4
2.1 Interactive construction of letter-to-sound rules for Malay using active learning 4
22 Diarization e e e e e e e 4
2.3 MOITESSOT . . . v v e e e e e e e e 4
2.3.1 Morfessor FlatCat e e e 5
24 Polarity Prediction e e e e e e 5
2.5 Polarity and emotional speech L. L e 6
3 Optimisation of more than one component 8
3.1 An objective measure of TTS quality trained on user feedback 8
3.2 Speech-based feedback L e e 8
3.2.1 Experiment on listener agreement on the nature of errors o L. 9
3.2.2 Correction of non-native pronunciation using native spoken feedback oL, 10
4 Conclusion 11
References 12
Appendix: Published Demo Paper (EACL 2014) 13
Appendix: Submitted Conference Paper (Interspeech 2014) 18
Appendix: Submitted Conference Paper (Coling 2014) 24

Version 1 (14/05/2014) 3 page 3 of 12

FP7-287678 SIMPLE4ALL deliverable D4.2

1 Introduction

Progress in WP4 during the last six months has followed the lines agreed at in project-wide meetings held in Cluj
in October 2013. Plans for the final six months of the project were made in project-wide meetings held in Madrid
in April 2014.

In the course of the work it has become clear that ultimate goal of WP4 — the online learning of every component
of a full system, based on end-user feedback — is very ambitious and probably too hard to achieve within one project.
However, progress has been made in improving one or more components of a system based on user feedback and
it must be emphasised that these approaches do of course also improve the end-to-end performance of a full TTS
system.

As agreed earlier in the project, work has progressed on multiple fronts in parallel in order to investigate a
wide variety of ideas about what kind of user feedback could be collected and learned from. This method provided
successful results (see D4.1), so has been continued. During the final months of the project we will determine
the feasibility and desirability of integrating some of the best learning-from-feedback methods into the final public
release of our tools.

This is the second deliverable of this WP, and describes the work done for the second task of this WP. Much of
the work reported here was already started during Year 2 with some preliminary results being reported in D4.1.

Although this deliverable describes the continuation of the same lines of research that were included in D4.1
as on-going and planned work, the structure of D4.2 is different to that of D4.1. The content has here been divided
into optimisation of one component (Section 2) and more than one component (Section 3). The simple reason for
this is to better match the original Description of Work. Results that have already been published or submitted for
publication are described simply by appending the corresponding manuscript to this deliverable, as suggested by
the reviewers at the Year 2 review. This deliverable contains, in addition to reports of completed or ongoing work,
plans for experiments which will take place in the final 6 months of the project.

Because WP2 (development of the unsupervised TTS front-end) finished in month M24, some of the work that
still needed to be done has continued within WP4. The work described here on morphological analysis and polarity
prediction concerns improving performance by learning from user feedback, so fits naturally into WP4.

2 Optimisation of a single component

2.1 Interactive construction of letter-to-sound rules for Malay using active learning

The work on interactive construction of letter-to-sound rules for Malay mentioned in Deliverable 4.1 has been
finalised and was submitted to Interspeech 2014. The submitted paper is appended to the current document (see
Section 4).

2.2 Diarization

This topic was not continued further after deliverable D4.1 and there is nothing to report here. The performance of
the diarization system is now considered good enough for our purposes.

2.3 Morfessor

Since the release of Morfessor 2.0 [1], a demo interface has been built and the toolkit has been demonstrated at the
EACL conference [2]. The conference paper is included as an appendix to this deliverable.

Currently the focus of Morfessor work has shifted to finding suitable techniques for data selection. The first
technique considered is the selection of words for which annotation should be requested. If this selection can
be done in an unsupervised manner it will reduce the number of annotated words needed to produce a given
improvement in the model.

Version 1 (14/05/2014) 4 page 4 of 12

FP7-287678 SIMPLE4ALL deliverable D4.2

Another technique being considered is that of finding unsupervised measures for identifying incorrect or foreign
words in the dataset that is used to train Morfessor. When these words are identified, removal might improve the
model after retraining, or the information can be used for other purposes, e.g. as information that propagates
through the SIMPLE4ALL synthesis system.

If these techniques prove successful in informal evaluation, they will be evaluated more formally both against
standard morphological error measures (e.g., segmentation boundary precision and recall) and by their performance
in applications like the SIMPLE4ALL front-end.

2.3.1 Morfessor FlatCat

The work on Morfessor FlatCat was submitted to the Coling 2014 conference. The draft is attached as an appendix
of the current document (Section 4).

2.4 Polarity Prediction

Experimental results of dimensional and categorical models on a sentence polarity prediction task using English
corpora (SemEval, MovieReview, ISEAR) were previously presented in [3]. That work has been extended by the
use of statistical measures (chi-square and relevance factor) to characterise words’ semantic orientation and by
evaluating the categorical polarity prediction model on two Spanish corpora: a corpus of Avatar movie reviews and
one of Spanish tweets. Detailed results are presented in Deliverable D5.2 (Section 4).

However, the dimensional model described relies substantially on extensive hand-labelled resources — in par-
ticular, the English systems made use of a set of canonical values of valence, arousal, and dominance which were
hand-coded for 14,000 English lemmas. Another line of work therefore aims to overcome the need for such ex-
tensive hand-labelling. We reduce the amount of supervision needed to create such polarity lexicons by using
user feedback to incrementally adapt a polarity model. Initial small sets of seed words with positive and negative
polarity are assumed. Unsupervised learning is used to suggest lists of similar words; users are asked to provide
feedback regarding the rating of a found word as being positive or negative. In this way, a WordNet-style affective
database for a new language can be generated in a lightly-supervised way. The candidate words presented to the
user are selected by using a vector space model (VSM). The current focus is on finding the best way to present
candidate words to the user so that a large number of relevant words are labeled.

To study the feasibility of the approach in different languages we have used text databases in English (Wall
Street Journal news — 1.2 million tokens, and Wikipedia text — 250,000 tokens), Romanian (a collection of online
news — 2.7 million tokens), and Spanish (Avatar movie reviews — 170,000 tokens). In a preprocessing stage, text
is split into sentences, then numbers, dates and special characters are removed, and words either made up of fewer
than 3 characters or found in a user-provided stopword list are discarded. Then, vector space models of word types
in the corpus are built. We have generated various representations by modifying the number of words with which
co-occurrence is counted (between 50 to 300, in steps of 50).

Some examples of discovered candidate words for several polar seed words are presented below. Words in bold
typeface are initial seed words; other seed words are chosen by the user from the candidate list in the previous
iteration of learning:

Version 1 (14/05/2014) 5 page 5 of 12

FP7-287678 SIMPLE4ALL deliverable D4.2

Positive seeds | Candidates generated

great incredible, wonderful, good, terrific, fantastic, loved, amazing, enjoyable, touching, superb
incredible awesome, fantastic, loved, touching, excellent, good, delightful, watched, obviously, underrating
amazing terrific, decent, exceptional, everything, brilliant, superb, gave, wonderful, good, full

enjoyable shown, watched, loved, party, saw, found, splatter, date, obvious, worthy

Negative seeds | Candidates generated

madness connection, complicated, tearful, violent, flood, thieves, flashy, actual, returning, counterparts
thieves mute, fabulious, cancer, useless, unexplainable, therapy, selfcentered, ranger, proofs

problem splatter, hates, cheek, informative, acceptance, balanced, loose, forgotten, widow

offend react, choke, miserable, incited, disturbed, capitalism, angry, comedians, react

During this pilot experiment in user feedback we have noticed the following things:

e positive words are discovered in a larger numbers than negative ones (this could be because of the nature and
content of the text corpus used)

e among the discovered word candidates for a negative seed there are many neutral words, or even positive
words; user feedback will be particularly important in such cases;

e after several iterations asking for user feedback we have noticed that the system tends to select words which
have been already ranked. To avoid such situations we will look for methods to identify new words which
are in a different region of the vector space.

Ongoing work will focus on fine-tuning of the VSM, evaluating the possibility of using Morfessor for unsu-
pervised word stemming, developing an interface for presenting the user with candidate words, and getting user
feedback via an online interface.

2.5 Polarity and emotional speech

In order to incorporate polarity prediction into a text-to-speech system, our proposal is to transplant emotions into
the neutral speech of the selected speaker in our application, and modulate the emotional strength of the synthesised
sentences over the course of the text to be synthesised. However, the relationship between text polarity and speech
emotion needs to be established and fine-tuned for every domain of application, and user-feedback is a flexible
approach for this fine-tuning process.

The overall architecture of the polarity-based emotional TTS system is a cascade of four modules:

e a polarity predictor,

e a domain-dependent polarity smoothing filter,

e a domain-dependent polarity-to-emotion mapper,

e an emotional TTS synthesiser with controllable emotional strength.

The filter aims to smooth the variations in polarity from one sentence to another, taking into account the overall
polarity of the text or paragraph, and not only the predicted polarity of each sentence. The implemented approach
can be formulated as follows: given a sequence of sentences S = {sj...s,...Sx }, the corresponding sequence of
polarities P = {p1...pn...pn} (Figure 2.5a, left) and the average polarity P, the inter-sentence polarity difference

Pn — Pn—1 1s smoothed by means of a non-linear smoothing function F'. Currently, F' is a generalised parametric
logistic function:

1
1 —+ eB(‘pn*Pn—ﬂ*M))l/U

F(pn _pnfl) - ((D

Version 1 (14/05/2014) 6 page 6 of 12

FP7-287678 SIMPLE4ALL deliverable D4.2

+ +l

Figure 2.5a: Predicted polarity contour (left) and filtered polarity contour (right).

Finally, the filtered polarity contour (Figure 2.5a, right) is obtained by applying the following formula to the pre-
dicted values:

kn =P+ (pn — P)F(pn — pn-1)) 2)

Although the parameters of the smoothing function could be automatically estimated from polarity values corrected
with user feedback gathered via our graphical user interface (input boxes in the User column in Figure 2.5b), this
can also be done using an automatically estimated post-processing regression.

The mapper is another domain-dependent key component of the architecture. The mapper is modelled as a
linear regression function which converts the filtered polarity values into emotional strength values appropriate to
the sentences and the application domain. This regression function can be automatically estimated from values
found using user feedback obtained via the GUI (from the input boxes in the synthesis column).

Regarding the emotional synthesiser, the GUI allows a target speaker (such as UEM on the bottom of Fig-
ure 2.5b) to be selected for the synthesis of the sentence sequence. Once the GUI has been fully implemented, the
evaluation will be carried out in the remaining time of the project.

Simple4All =
File Help

%‘W/‘z Type text to synthetize

Esta es una frase positiva. Esta es una frase neutra. Esta es una frase negativa,

k
Accept Cancel

Global sentiment: NEU

Global score(min:-1; max:1) 0.00
Text Polarity(min:-1; max:1)
Texts Predicted User Synthesis

Esta es una frase positiva.... 0.60 0.64 0.49
Esta es una frase neutra.... o] 0.08 0.08
Esta es una frase negativa.... -0.60 -0.54 -0.36

o Filter UEM v TTS

Figure 2.5b: Graphical user interface for emotional TTS.

Version 1 (14/05/2014) 7 page 7 of 12

FP7-287678 SIMPLE4ALL deliverable D4.2

3 Optimisation of more than one component

3.1 An objective measure of TTS quality trained on user feedback

A problem when developing and tuning TTS systems is that no well-established method of automatically rating the
quality of TTS output exists; this is in contrast to, for example, ASR where word error rate is a well-established
measure of system performance. Automatically computed measures such as mel cepstral distortion exist, and are
sometimes used compare the quality of systems. However, such measures often do not correlate well with scores
from perceptual evaluations of systems using human listeners. Automatic measures are therefore treated with
caution by most TTS researchers. However, evaluations with human subjects are expensive and time-consuming to
organise, and so cannot be used for intensive system tuning.

One obvious line of research would therefore to obtain a new automated measure of TTS output quality which
correlates better with listener judgements than conventional objective measures. This measure would be computed
by a system which is trained on listener scores such as those from the Blizzard Challenge, where TTS output from
many systems is available together with natural speech and listener responses. The module would predict listener
scores for TTS paired with reference natural speech for novel utterances.

We plan to work on this in the remainder of SIMPLE4ALL and some limitations of conventional quality mea-
sures which our system will try to overcome include:

1. Framewise nature of conventional objective measures — more global patterns, important for perception of
speech naturalness, are ignored (e.g. F contour over the course of a syllable)

2. Optionality: there may be multiple acceptable ways of realising a section of speech, weakening conventional
objective measures. Training a predictor of listeners responses with speech from many TTS systems with
many alternative realisations might be a way to overcome this issue.

3. Local vs. global degradation: general degradation of spectrum can have overall effect on perceived quality,
and this type of degradation is captured well by conventional measures which average over all frames of an
utterance. But these general degradations exist (in TTS) alongside local problems (sudden wrong Fj excur-
sion on a certain word, wrong inserted pause) which can outweigh the overall good quality of an utterance.
The system needs to be able to handle and integrate information about these multiple types of errors.

4. Features used are not inherently geared to predicting subjects responses.

Rather than incorporating a large number of hand-engineered features into a predictive cascade, the module
will be implemented as a neural network with learned features at every level. The network will be trained on time-
aligned and concatenated TTS and reference speech to directly predict the listeners response on a per utterance
basis.

Convolutional neural network methods might be able to deal with problem 3 — the use of multiple pooling layers
using different subsampling methods could capture the difference between global low-level degradation (mean of a
set of units is propagated) and local problematic hotspots (maximum of a set of units propagated). The fact that all
layers of the network are trained to predict perceived quality overcomes problems 2 and 4: it will inherently learn
features relevant to subjects responses, and should also learn something about optionality.

The ultimate goal of this work would be to integrate the predictor of perceived quality into TTS system training,
although this may not be possible within SIMPLE4ALL . The predictor will provide a perceptually relevant error
signal so that systems can be trained in an end-to-end manner. This work will be carried out by SIMPLE4ALL re-
searchers at UEDIN, most probably in the form of a Masters dissertation project.

3.2 Speech-based feedback

The most intuitive way to correct perceived mistakes in spoken utterances would be to speak out a corrected version
of the incorrect part of the utterance; the system would then use this speech feedback to learn what went wrong in

Version 1 (14/05/2014) 8 page 8 of 12

FP7-287678 SIMPLE4ALL deliverable D4.2

Will Mis- Bad Bad Incompr. | Audio
Good do pronunc. rhythm audio segments | length
1. Ok, quality is good - 0.64 -0.19 -0.34 -0.37 -0.42 0.12
2. Ok, it’s not great but it will do 0.64 - -0.24 -0.26 -0.42 -0.57 0.06
3. Not ok: Mispronunciation of word(s) -0.19 -0.24 - -0.01 -0.22 0.09 -0.06
4. Not ok: Bad rhythm or intonation -0.34 -0.26 -0.01 - -0.26 -0.26 0.01
5. Not ok: Bad audio quality (artefacts etc) | -0.37 -0.42 -0.22 -0.26 - 0.01 0.03
6. Not ok: Incomprehensible segments -042 -0.57 0.09 -0.26 0.01 - -0.13

Table 3.2a: Correlations between different error types in the evaluated utterances. The rightmost column shows the
correlation between utterance length and the different error types.

the utterance and attempt to correct it. To do this in a supervised manner might be possible, with a system developer
doing the analysis and revising rule sets used in the lexical processing and model selection, so that the error will not
be produced any more in the same context. In the field of unsupervised or semi-supervised speech synthesis this is
a very challenging approach, as an automated analysis of the correction and ways to incorporate the corrections in
the inner workings of the systems are required.

As described in D4.1, our investigations are still limited to updating the acoustic model. Aside from the
technical details of how the collected correction data should be used to influence a system’s future behaviour,
we also need to investigate how the effectiveness of user-given feedback should be evaluated. Questions about
quality tend to be highly personal, and so a statistical approach is required to find out 1) what kind of utterances
need to be corrected and 2) if the methods for improving the voice work. The first question was investigated in a
listening test; work is in progress to answer the second question.

3.2.1 Experiment on listener agreement on the nature of errors

By enabling a group of users to provide feedback to a system, we can gather a large quantity of feedback, but
there is a potential problem that the quality of the feedback varies, just as the user base does. As a preliminary
investigation into this ‘quantity over quality’-approach to feedback, an experiment was conducted to estimate the
consistency of listener opinions.

A low-quality voice was prepared, based on a UK English speech database. Of the 9500 available spoken sen-
tences, only 300 sentences were used for training to ensure that the synthesised sentences would be of sufficiently
low quality. STRAIGHT-based acoustic features and conventional linguistic features obtained from the Festival
front-end were used to build the voice. The synthesised sentences have wide range of quality issues from mispro-
nunciations to completely incomprehensible audio segments. 200 sentences were synthesised for evaluation. The
text prompts used for synthesis correspond to a small part of the 9200 sentences remaining of the training data.

A listening test was run at UEDIN in which 34 listeners participated, and where each sentence was evaluated 9—
19 times (17 times on average). Each listener heard a set of 100 sentences and assigned each of them into the most
suitable category from the options shown in Table 3.2a. When there were multiple issues with a single utterance,
listeners were instructed to select the most critical issue.

Figure 3.2a shows the distribution of classifications for each synthetic sentence, and Table 3.2a shows the
correlations between different classifications. As was expected due to the small amount of data used in training the
voice, the sentences that have been rated as good or acceptable are in a minority.

The next observation is that listeners have widely differing opinions about which aspect of the synthetic speech
most needs to be improved. Table 3.2a also lists the correlation between utterance length and the different error
types and shows that the length of the utterance does not play a critical role in the quality evaluation. Listener-
specific analysis is in progress and by taking into account individual listener preferences, it might be possible to
pinpoint more accurately the most important issues and with that information, to refine the training (and retraining)

Version 1 (14/05/2014) 9 page 9 of 12

FP7-287678 SIMPLE4ALL deliverable D4.2

Distribution of opinions on 200 test sentences (9-19 evaluations per sentence)

I Good quality

I Acceptaple quality
Mispronunciation
Bad intonation or prosody

I Bad audio quality
I ncomprehensible segments

Figure 3.2a: Listening experiment results. Each row represents one of the rated utterances. Colours represent the
classifications by listeners. The order of the utterances in the two columns is based on visual impression.

strategies to best improve the synthetic voice.

After the results have been analysed, the next phase of this work will investigate how the information on listener
observations can best be used to improve the synthetic voice. There are very large amounts of training data available
for this particular speaker, which we can use to simulate a situation in which the original speaker is asked to read
out corrections. We will try to improve the voice as much as possible with as little additional data as possible,
investigating the various possibilities outlined in Section 4.1.3 of D4.1.

3.2.2 Correction of non-native pronunciation using native spoken feedback

A straightforward way of improving speaking ability in a non-native language is to learn the pronunciation of words
or short utterances by listening to examples from native speakers. The objective of this experiment is to study the
feasibility of incorporating this style of learning into the framework of statistical speech synthesis.

Version 1 (14/05/2014) 10 page 10 of 12

FP7-287678 SIMPLE4ALL deliverable D4.2

Experiment 1:

Identifying and evaluating the significance of different streams in transplanting the pronunciation of one speaker
onto another without affecting the speaker’s identity. The prosody, as controlled by the duration of phones as well
as the gain and FO contours, is an important aspect of pronunciation. Transplanting these prosodic parameters may
be sufficient if the accent of the non-native speaker quite close to that of the native speaker. In the case where the
accent of the non-native speaker is very different, it may be necessary to modify the vocal tract parameters as well.
Two speaker-dependent voices will be built using reasonable amount of data (say 800 utterances), one for a native
English speaker and another for a non-native English speaker. The effect of substituting suitably normalized and/or
transformed streams, one or several at a time, from the native speaker and the non-native speaker will be studied in
terms of change in pronunciation and retention of speaker identity.

Experiment 2:

The idea is to use existing morphing techniques to morph the spoken user feedback from the native speaker to that
of the non-native speaker. There are two possible scenarios. Case 1: User provides only examples of the words
whose pronunciation need to be changed. Case 2: User provides a few neutral sentences along with the words that
need to be corrected. The additional sentences in Case 2 will be used to learn a better mapping between the native
and non-native speakers. The morphed utterances and/or the spoken examples of words from the native speaker
will be used to either retrain the models or update only the models under consideration.

4 Conclusion

The work is progressing according to the plans specified in Deliverable D4.1. A number of the research topics
belonging to WP4 have led to manuscripts that have been published or submitted for publication. These include
the lightly-supervised learning and user feedback experiments to improve Malay TTS and the new algorithm for
semi-supervised learning of morphology. Both of these topics belong to the category of optimisation of a single
component relevant to TTS.

New experiments have been planned and performed to monitor TTS quality while learning from user feedback,
to analyse listener agreement on the nature of TTS errors, and correction of non-native pronunciation using native
spoken feedback. Both of these topics belong to the category of optimisation of multiple TTS components. The
new experiments are designed to provide results that can reported in the next deliverable D4.3.

Version 1 (14/05/2014) 11 page 11 of 12

FP7-287678 SIMPLE4ALL deliverable D4.2

References

[1] Sami Virpioja, Peter Smit, Stig-Arne Gronroos, and Mikko Kurimo. Morfessor 2.0: Python implementation
and extensions for Morfessor Baseline. Report 25/2013 in Aalto University publication series SCIENCE +
TECHNOLOGY, Department of Signal Processing and Acoustics, Aalto University, Helsinki, Finland, 2013.

[2] Peter Smit, Sami Virpioja, Stig-Arne Grénroos, and Mikko Kurimo. Morfessor 2.0: Toolkit for statistical
morphological segmentation. In Proceedings of the Demonstrations at the 14th Conference of the European
Chapter of the Association for Computational Linguistics, pages 21-24, Gothenburg, Sweden, April 2014.
Association for Computational Linguistics.

[3] I. Muresan, A. Stan, M. Giurgiu, and R. Potolea. Evaluation of sentiment polarity prediction using a dimen-
sional and a categorical approach. In Proc of the 7th Int Conf on Speech Technology and Human-Computer
Dialogue, SpeD2013, ISBN: 978-1-4799-1063-2, pages 23-28, 2013.

Version 1 (14/05/2014) 12 page 12 of 12

FP7-287678 SIMPLE4ALL deliverable D4.2

Appendix: Published Demo Paper (EACL 2014)

Version 1 (14/05/2014) 13 page 13 of 12

Morfessor 2.0: Toolkit for statistical morphological segmentation

Peter Smit!
peter.smit@aalto.fi

Stig-Arne Gronroos'

stig—-arne.gronroos@aalto.fi

Sami Virpioja?
sami.virpiojaGaalto.fi

Mikko Kurimo!
mikko.kurimo@aalto.fi

'Department of Signal Processing and Acoustics, Aalto University
2Department of Information and Computer Science, Aalto University

Abstract

Morfessor is a family of probabilistic ma-
chine learning methods for finding the
morphological segmentation from raw text
data. Recent developments include the de-
velopment of semi-supervised methods for
utilizing annotated data. Morfessor 2.0
is a rewrite of the original, widely-used
Morfessor 1.0 software, with well docu-
mented command-line tools and library in-
terface. It includes new features such as
semi-supervised learning, online training,
and integrated evaluation code.

1 Introduction

In the morphological segmentation task, the goal
is to segment words into morphemes, the small-
est meaning-carrying units. Morfessor is a family
of methods for unsupervised morphological seg-
mentation. The first version of Morfessor, called
Morfessor Baseline, was developed by Creutz and
Lagus (2002) its software implementation, Mor-
fessor 1.0, released by Creutz and Lagus (2005b).
A number of Morfessor variants have been devel-
oped later, including Morfessor Categories-MAP
(Creutz and Lagus, 2005a) and Allomorfessor
(Virpioja et al., 2010). Even though these algo-
rithms improve Morfessor Baseline in some areas,
the Baseline version has stayed popular as a gener-
ally applicable morphological analyzer (Spiegler
et al., 2008; Monson et al., 2010).

Over the past years, Morfessor has been used
for a wide range of languages and applications.
The applications include large vocabulary contin-
uous speech recognition (e.g. Hirsiméki et al.,
2006), machine translation (e.g. Virpioja et al.,
2007), and speech retrieval (e.g. Arisoy et al.,
2009). Morfessor is well-suited for languages with
concatenative morphology, and the tested lan-
guages include Finnish and Estonian (Hirsimiki

21

et al., 2009), German (El-Desoky Mousa et al.,
2010), and Turkish (Arisoy et al., 2009).

Morfessor 2.0 is a new implementation of the
Morfessor Baseline algorithm.! It has been writ-
ten in a modular manner and released as an open
source project with a permissive license to encour-
age extensions. This paper includes a summary of
the Morfessor 2.0 software and a description of the
demonstrations that will be held. An extensive de-
scription of the features in Morfessor 2.0, includ-
ing experiments, is available in the report by Vir-
pioja et al. (2013).

2 Morfessor model and algorithms

Models of the Morfessor family are generative
probabilistic models that predict compounds and
their analyses (segmentations) given the model pa-
rameters. We provide a brief overview of the
methodology; Virpioja et al. (2013) should be re-
ferred to for the complete formulas and description
of the model and its training algorithms.

Unlike older Morfessor implementations, Mor-
fessor 2.0 is agnostic in regard to the actual data
being segmented. In addition to morphological
segmentation, it can handle, for example, sentence
chunking. To reflect this we use the following
generic terms: The smallest unit that can be split
will be an atom (letter). A compound (word) is a
sequence of atoms. A construction (morph) is a
sequence of atoms contained inside a compound.

2.1 Model and cost function

The cost function of Morfessor Baseline is derived
using maximum a posteriori estimation. That is,
the goal is to find the most likely parameters 6

"Morfessor 2.0 can be downloaded from the Mor-
pho project website (http://www.cis.hut.fi/
projects/morpho/) or GitHub repository (https:
//github.com/aalto-speech/morfessor).

Proceedings of the Demonstrations at the 14th Conference of the European Chapter of the Association for Computational Linguistics, pages 21-24,

Gothenburg, Sweden, April 26-30 2014. (©2014 Association for Computational Linguistics

given the observed training data Dyy:

Ovar = arg;naxp(ﬁ)p(DW |19) ey

Thus we are maximizing the product of the model
prior p(0) and the data likelihood p(Dyy | 8). As
usual, the cost function to minimize is set as the
minus logarithm of the product:

L(6,Dy)

= —logp(#) — logp(Dw | 0). (2)

During training, the data likelihood is calcu-
lated using a hidden variable that contains the cur-
rent chosen analyses. Secondly, it is assumed that
the constructions in a compound occur indepen-
dently. This simplifies the data likelihood to the
product of all construction probabilities in the cho-
sen analyses. Unlike previous versions, Morfes-
sor 2.0 includes also the probabilities of the com-
pound boundaries in the data likelihood.

For prior probability, Morfessor Baseline de-
fines a distribution over the lexicon of the model.
The prior assigns higher probability to lexicons
that store fewer and shorter constructions. The
lexicon prior consists of to parts, a product over
the form probabilities and a product over the usage
probabilities. The former includes the probability
of a sequence of atoms and the latter the maxi-
mum likelihood estimates of the constructions. In
contrast to Morfessor 1.0, Morfessor 2.0 currently
supports only an implicit exponential length prior
for the constructions.

2.2 Training and decoding algorithms

A Morfessor model can be trained in multiple
ways. The standard batch training uses a local
search utilizing recursive splitting. The model is
initialized with the compounds and the full model
cost is calculated. The data structures are designed
in such way that the cost is efficient compute dur-
ing the training.

In one epoch of the algorithm, all compounds
in the training data are processed. For each com-
pound, all possible two-part segmentations are
tested. If one of the segmentations yields the low-
est cost, it is selected and the segmentation is tried
recursively on the resulting segments. In each step
of the algorithm, the cost can only decrease or stay
the same, thus guaranteeing convergence. The al-
gorithm is stopped when the cost decreases less
than a configurable threshold value in one epoch.

22

An extension of the Viterbi algorithm is used
for decoding, that is, finding the optimal segmen-
tations for new compound forms without changing
the model parameters.

3 New features in Morfessor 2.0

3.1 Semi-supervised extensions

One important feature that has been implemented
in Morfessor 2.0 are the semi-supervised exten-
sions as introduced by Kohonen et al. (2010)

Morfessor Baseline tends to undersegment
when the model is trained for morphological seg-
mentation using a large corpus (Creutz and Lagus,
2005b). Oversegmentation or undersegmentation
of the method are easy to control heuristically
by including a weight parameter « for the likeli-
hood in the cost function. A low « increases the
priors influence, favoring small construction lexi-
cons, while a high value increases the data likeli-
hood influence, favoring longer constructions.

In semi-supervised Morfessor, the likelihood of
an annotated data set is added to the cost function.
As the amount of annotated data is typically much
lower than the amount of unannotated data, its ef-
fect on the cost function may be very small com-
pared to the likelihood of the unannotated data.
To control the effect of the annotations, a sepa-
rate weight parameter 3 can be included for the
annotated data likelihood.

If separate development data set is available for
automatic evaluation of the model, the likelihoods
weights can be optimized to give the best out-
put. This can be done by brute force using a grid
search. However, Morfessor 2.0 implementation
includes a simple heuristic for automatically tun-
ing the value of « during the training, trying to
balance precision and recall. A simple heuristic,
which gives an equivalent contribution to the an-
notated data, is used for (.

3.2 On-line training

In addition to the batch training mode, Morfes-
sor 2.0 supports on-line training mode, in which
unannotated text is processed one compound at a
time. This makes it simple to, for example, adapt
pre-trained models for new type of data. As fre-
quent compounds are encountered many times in
running text, Morfessor 2.0 includes an option for
randomly skipping compounds and constructions
that have been recently analyzed. The random

Morfessor 2.0 Demo - Mozilla Firefox

i Morfessor 2.0 Demo

Morfessor segmentation demo

MORFHEME
DIZCOWERY

) péd = kontto 9
Language Size . dustai - ; sivu ratkais —
Estonian 3.908.820 word forms ansanecustaja B sallo

. =3 katso P
Word was processed in 3 miliseconds .. Aslto University

Finnish ®2.206.719 word forms
Turkish 617.298 word forms Correct segmentations are shown in green
English 384.903 word forms

Unsupervised

kansanedustaja-

Semi-supervised (1000 annotations)

kansa + n + edusta + jazs

kansan + edustaja 10 kansa + n + edust + E‘lja 203
kansanedus + taja o, Kansa +n + edusta +j + a1
kansa + n + edustaja . Kansa + n + edust + a + ja z03
kansan + edusta + ja 265 Kansa + n + edu + sta + ja 309

Figure 1: Screenshot from the Morfessor 2.0 demo.

skips can also be used to speed up the batch train-
ing.

3.3

One common method for evaluating the perfor-
mance of a Morfessor model is to compare it
against a gold standard segmentation using seg-
mentation boundary precision and recall. To make
the evaluation easy, the necessary tools for calcu-
lating the BPR metric by (Virpioja et al., 2011)
are included in Morfessor 2.0. For significance
testing when comparing multiple models, we have
included the Wilcoxon signed-rank test. Both the
evaluation code and statistical testing code are ac-
cessible from both the command line and the li-
brary interface.

Integrated evaluation code

3.4 N-best segmentation

In order to generate multiple segmentations for a
single compound, Morfessor 2.0 includes a n-best
Viterbi algorithm. It allows extraction of all possi-
ble segmentations for a compound and the proba-
bilities of the segmentations.

4 Demonstration

In the demonstration session, multiple features
and usages of Morfessor will be shown.
4.1 Web-based demonstration

A live demonstration will be given of segmenting
text with Morfessor 2.0 for different language and

23

training data options. In a web interface, the user
can choose a language, select the size of the train-
ing corpus and other options. After that a word
can be given which will be segmented using n-best
Viterbi, showing the 5 best results.

A list of planned languages can be found in Ta-
ble 1. A screen shot of the demo interface is shown
in Figure 1.

Languages # Words # Word forms
English 62M 384.903
Estonian 212M 3.908.820
Finnish 36M 2.206.719
German 46M 1.266.159
Swedish 1M 92237
Turkish 12M 617.298

Table 1: List of available languages for Morfessor
2.0 demonstration.

4.2 Command line interface

The new command line interface will be demon-
strated to train and evaluate Morfessor models
from texts in different languages. A diagram of
the tools is shown in Figure 2

4.3 Library interface

Interfacing with the Morfessor 2.0 Python library
will be demonstrated for building own scientific
experiments, as well as integrating Morfessor in

’ Training data

Y

[morfessor—-train }

!

Morfessor
model
’ Gold standard ‘ ’ Corpus ‘
morfessor- AR morfessor—
evaluate segment
BPR-scores Segmented corpus

Figure 2: The standard workflow for Morfessor
command line tools

bigger project. Also the code of the Web based
demonstration will be shown as an example.

Acknowledgements

The authors have received funding from the EC’s
7th Framework Programme (FP7/2007-2013) un-
der grant agreement n°287678 and the Academy
of Finland under the Finnish Centre of Excel-
lence Program 2012-2017 (grant n°251170) and
the LASTU Programme (grants n°256887 and
259934). The experiments were performed us-
ing computer resources within the Aalto Univer-
sity School of Science ”Science-IT” project.

References

E. Arisoy, D. Can, S. Parlak, H. Sak, and M. Saraclar.
2009. Turkish broadcast news transcription and re-
trieval. Audio, Speech, and Language Processing,
1IEEE Transactions on, 17(5):874-883.

M. Creutz and K. Lagus. 2002. Unsupervised discov-
ery of morphemes. In Mike Maxwell, editor, Pro-
ceedings of the ACL-02 Workshop on Morphological
and Phonological Learning, pages 21-30. Associa-
tion for Computational Linguistics, July.

M. Creutz and K. Lagus. 2005a. Inducing the mor-
phological lexicon of a natural language from unan-
notated text. In Proceedings of AKRR’05, Interna-
tional and Interdisciplinary Conference on Adaptive
Knowledge Representation and Reasoning, pages
106-113, Espoo, Finland, June. Helsinki University
of Technology.

24

M. Creutz and K. Lagus. 2005b. Unsupervised
morpheme segmentation and morphology induction
from text corpora using Morfessor 1.0. Technical
Report A81, Publications in Computer and Informa-
tion Science, Helsinki University of Technology.

. El-Desoky Mousa, M. Ali Basha Shaik, R. Schluter,
and H. Ney. 2010. Sub-lexical language models for
German LVCSR. In Spoken Language Technology
Workshop (SLT), 2010 IEEE, pages 171-176. IEEE.

T. Hirsimiki, M. Creutz, V. Siivola, M. Kurimo, S. Vir-
pioja, and J. Pylkkonen. 2006. Unlimited vocabu-
lary speech recognition with morph language mod-
els applied to Finnish. Computer Speech & Lan-
guage, 20(4):515-541.

. Hirsiméki, J. Pylkkonen, and M. Kurimo. 2009.
Importance of high-order n-gram models in morph-
based speech recognition. Audio, Speech, and

Language Processing, IEEE Transactions on,
17(4):724-732.

O. Kohonen, S. Virpioja, and K. Lagus. 2010. Semi-
supervised learning of concatenative morphology.
In Proceedings of the 11th Meeting of the ACL Spe-
cial Interest Group on Computational Morphology
and Phonology, pages 78-86, Uppsala, Sweden,
July. Association for Computational Linguistics.

C. Monson, K. Hollingshead, and B. Roark. 2010.
Simulating morphological analyzers with stochastic
taggers for confidence estimation. In Multilingual
Information Access Evaluation I. Text Retrieval Ex-
periments, pages 649—657. Springer.

. Spiegler, B. Golénia, K. Shalonova, P. Flach, and
R. Tucker. 2008. Learning the morphology of zulu
with different degrees of supervision. In Spoken
Language Technology Workshop, 2008. SLT 2008.
IEEE, pages 9-12. IEEE.

. Virpioja, J. Viyrynen, M. Creutz, and M. Sadeniemi.
2007. Morphology-aware statistical machine trans-
lation based on morphs induced in an unsupervised
manner. In Proceedings of the Machine Translation
Summit X1, pages 491-498, Copenhagen, Denmark,
September.

. Virpioja, O. Kohonen, and K. Lagus. 2010. Unsu-
pervised morpheme analysis with Allomorfessor. In
Multilingual Information Access Evaluation 1. Text
Retrieval Experiments, volume 6241 of LNCS, pages
609-616. Springer Berlin / Heidelberg.

. Virpioja, V. Turunen, S. Spiegler, O. Kohonen, and
M. Kurimo. 2011. Empirical comparison of evalua-
tion methods for unsupervised learning of morphol-
ogy. TAL, 52(2):45-90.

. Virpioja, P. Smit, S. Gronroos, and M. Kurimo.
2013. Morfessor 2.0: Python implementation and
extensions for Morfessor Baseline. Report 25/2013
in Aalto University publication series SCIENCE +
TECHNOLOGY, Aalto University, Finland.

FP7-287678 SIMPLE4ALL deliverable D4.2

Appendix: Submitted Conference Paper (Interspeech 2014)

Version 1 (14/05/2014) 18 page 18 of 12

Combining lightly-supervised learning and user feedback to construct and
improve a statistical parametric speech synthesiser for Malay

Lau Chee Yong,' Oliver Watts?, Simon King®

Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Malaysia
2 Centre for Speech Technology Research, University of Edinburgh, UK

cylau2@live.utm.my, owatts@staffmail.ed.ac.uk, Simon.King@ed.ac.uk

Abstract

In spite of the learning-from-data used to train the statistical
models, the construction of a statistical parametric speech syn-
thesiser involves substantial human effort, especially when us-
ing imperfect data or working on a new language. Here, we use
lightly-supervised methods for preparing the data and construct-
ing the text-processing front end. This initial system is then iter-
atively improved using active learning in which feedback from
users is used to disambiguate the pronunciation system in our
chosen language, Malay. The data are prepared using speaker
diarisation and lightly-supervised text-speech alignment. In the
front end, grapheme-based units are used. The active learning
used small amounts of feedback from a listener to train a clas-
sifier. We report evaluations of two systems built from high-
quality studio data and lower-quality ‘found’ data respectively,
and show that the intelligibility of each can be improved using
active learning.

Index Terms: statistical parametric speech synthesis; active
learning; lightly-supervised methods

1. Introduction

Conventional speech synthesis depends heavily on the avail-
ability of data: both the transcribed speech data required for
waveform generation — whether that is through concatenation
or statistical parametric models — as well as additional expert-
annotated speech and text data. These additional data are
required to train numerous predictors of linguistic features,
prosodic structures, and so on (e.g. a pronunciation lexicon and
a letter-to-sound module to predict the sequence of phonemes in
an utterance). Our previous work has focused on finding ways
to speed up the development of systems in new languages by
developing techniques for transcribing ‘found’ data with only
light supervision, and by using unsupervised learning to reduce
reliance on expert annotated data.

In this paper, we describe the application of these tech-
niques to the training of text-to-speech (TTS) systems for
Malay. The existing techniques we have developed in previ-
ous work [1] and which are described in Section 2 are used to
build a baseline voice. We then go on to describe and evalu-
ate two new innovations to our existing toolset. All systems are
based on the statistical parametric (“HMM-based”) technique
in which the speech corpus is used to estimate acoustic mod-
els of context-dependent sub-word units, which are then used to
generate novel speech utterances. The contributions of this pa-
per are in the preparation of the data and the construction of the
text-processing front end. The estimation of the HMMs from
the speech corpus is done in a standard way as described in [2],
for example.

First of all, in Section 3 we describe the use of speaker diari-
sation techniques for extracting a homogenous subset of speech
data from a public source of data featuring considerable varia-
tion. This technique supplements our existing methods for the
lightly-supervised harvesting of data for acoustic model train-
ing [3] and is designed to further ease such data collection. The
extension of our methods was found to be necessary because in
the source of speech data used for the experimental systems of
the present work, there is a much looser relation between speech
and text than in the audiobooks we have used in previous work.

Then, in Section 4 we describe a method for improving the
letter-based synthesis used in the baseline system by exploiting
some limited interaction with a native speaker to disambiguate
instances of an ambiguous grapheme, but without incurring the
cost of compiling a full lexicon. This is an attractive approach
for languages with generally regular letter-to-sound correspon-
dences but with a handful of ambiguous letters: Malay is one
example of such a language, but we expect the technique would
be more widely applicable.

A baseline system built using our existing tools was evalu-
ated for intelligibility and naturalness against systems built with
3 permutations of the innovative techniques. The experiment
and results are presented in Section 5.

2. Baseline voice construction

A baseline voice was built from purpose-collected studio data
using the procedures described in [1]. The data and techniques
used to build this voice will be briefly outlined in this section.

2.1. Speech data collection

The studio data was obtained as described in [4]. The record-
ing script was handcrafted: starting from a word list (from a
pre-existing lexicon), text covering this vocabulary was gath-
ered from various sources such as online news in Malay and
a Malay language textbook. A recording script consisting of
900 sentences was composed using this text as a starting point.
The sentences were not obtained by directly taking sentences
from the text; instead, some existing sentences were edited to
cover more words in the lexicon, and 250 of the sentences in
the script were composed from scratch to further improve cov-
erage of words in the lexicon. A Malay native male speaker was
hired to record the resulting script, resulting in around 1 hour of
speech material.

2.2. Front End Processing

We adopted the approach to constructing a front end processor
described in [5]. The advantage of this method is that it requires

no expert knowledge about the target language, such as a pro-
nunciation dictionary, letter to sound rules or a part of speech
tagger. Instead, an automatic distributional analysis, involving
the construction of Vector Space Models (VSMs) is used to in-
fer linguistic representations from a text corpus. For example, a
VSM of letter distributions (i.e., simple counts in various con-
texts) provides a representation which can take the place of pho-
netic categories such as vowels, consonants, nasals, etc.

This is a reasonable choice because Malay has a highly reg-
ular alphabetic orthography, transparent affixation, simple syl-
lable structure and a straightforward letter-to-sound relationship
(with a small number of ambiguities, to which we offer a solu-
tion that does not rely on expert knowledge) [6], all of which
make it eminently well matched to this approach to front end
text processing. For both studio data and found data, the text
corpus was manually transcribed and normalised. After nor-
malisation, our text data consisted only of words, whitespace
and punctuation symbols, and no abbreviations, numerals and
other symbols remain.

2.3. Acoustic model training

Acoustic feature extraction and model training was done in
the same way as described in e.g. [2]. Briefly, frames of 60
bark cepstral coefficients extracted from smoothed STRAIGHT
[7] spectra were used, together with mel-warped Fp and
STRAIGHT aperiodicity measures in 25 frequency bands with
non-linearly varying bandwidths. Dynamic (delta and delta-
delta) coefficients were appended to the static parameters in the
normal way.

The model was initialised by training context-independent
grapheme models. These monographeme models were then
converted into full-context models and retrained. The names of
these full-context models encode the textual features described
in Section 2.2. To handle problems of data sparsity and to be
able to handle unseen contexts at synthesis time, decision trees
were used to cluster acoustically similar states which are then
tied, after which the tied models are retrained. Two iterations of
clustering and retraining were used.

2.4. Synthesis of speech

At run-time, sentences to be synthesised are processed by
the front end, resulting in a sequence of context-dependent
grapheme labels for each utterance. According to this sequence,
the decision trees built during model training are descended
and the corresponding acoustic states are concatenated into an
HMM of the utterance. A speech parameter generation algo-
rithm [8] is then used to generate spectral and excitation pa-
rameters. The STRAIGHT vocoder is then used to generate a
speech waveform from these generated parameters.

The two new techniques proposed for incorporation into the
basic recipe outlined above are now described.

3. Innovation 1: Speaker diarisation to
extract speech from found data

3.1. ‘Found’ data

The found data for this study is from the website http://
free-islamic-lectures.com which is a free resource
of Islamic teaching including audio recordings. It offers a free
download of an audio recording of Al-quran read in intoned
Arabic interspersed with a sentence-by-sentence translation into
Malay. A total of 60 hours of audio data chunked into 114 files

can be found on that website. Excluding the Arabic part leaves
approximately 30 hours of Malay speech data. The Malay
speech was recorded with an adult male voice, consistent speak-
ing tone and using standard Malay speaking accent suitable for
training data. However, the given text does not correspond ex-
actly to the speech with a word accuracy of only approximately
30%. A subset of the text was therefore manually corrected:
this is an expensive process and we were only able to obtain 3
hours of Malay speech with corrected transcription.

3.2. Diarisation

To extract Malay speech from the found data, we applied a
speaker diarisation technique [9] as it is able to identify speaker
homogenous regions throughout the speech data. First, feature
extraction is performed on the data using HTK with standard
ASR features. A GMM-HMM framework was applied whereby
16 clusters are initialized by dividing the speech frames into 32
uniform parts and using 2 parts (from different points in the
data) to initialize each of the 16 GMMs. With these models,
segmentation of the entire speech is done using a Viterbi algo-
rithm with a forced minimum constraint of 250 ms. The models
are retrained after segmentation followed by a clustering step to
merge similar clusters based on the Bayesian Information Cri-
terion (BIC). A penalty factor parameter is not required as the
merged models have a complexity equal to sum of the complex-
ity of the models being merged. The iteration terminates at the
stopping criterion which is when the BIC scores for all clusters
are below 0. Four wav files consist of 7 hours of raw data in
total were chunked using diarisation. After the stopping crite-
rion was met, there are 5 to 10 clusters remain in each file. Only
the first cluster is the Malay speech that we want. All the other
clusters are the intoned Arabic part. As result, 3 hours of Malay
speech data were extracted from 7 hours of raw data and were
chunked into 564 pieces of smaller data.

3.3. VAD and alignment

To extract transcribed segments of speech suitable for speech
synthesizer training, we applied lightly supervised GMM Voice
Activity Detection (VAD) [10] and grapheme-based automatic
alignment [11] to our speech and text data. The aim of using
these techniques is to segment the audio data and confidently
match a subset of the resulting chunks with the corresponding
text transcription. Our techniques require no prior language-
specific knowledge and can be done in a very lightly-supervised
manner: the only user input required is to match an initial few
utterances to their transcription, which can be done with only
some knowledge of the script used. The technique confidently
aligned approximately half of the data, resulting in a total of 90
minutes of speech data which were then used for training our
TTS systems.

4. Innovation 2: Interactive construction of
letter-to-sound rules using active learning

The approach described in [5] and outlined in Section 2 has
been shown to be effective for a variety of languages [1]. Be-
cause context-dependent models of grapheme-based acoustic
units are used, it is at least theoretically the case that any pre-
dictable ambiguities in the letter-to-sound mapping (such as sin-
gle letters that can be pronounced as two or more sounds) can
be learned from the examples in the training data. Whilst this
is an apparently elegant solution that does not require expert

intervention, its performance is limited in practice by two fac-
tors. First, the training data are from the speech corpus being
used for acoustic model estimation, which limits the number of
types and tokens seen. Second, the letter-to-sound model is an
integral part of the decision trees used for acoustic model pa-
rameter clustering, and these trees may not be the most efficient
classifiers for resolving pronunciation ambiguities. Therefore,
it may be be necessary to identify and resolve ambiguities using
additional measures. Here, we focus on the resolution of one ex-
ample ambiguity, which we identified by expert listening. On-
going work is investigating how non-expert listeners could also
be used to identify such problems, as well as to resolve them.
The method we employ exploits some limited interaction with
a native listener, but without incurring the cost — or requiring
the expertise — involved in compiling a full pronunciation dic-
tionary.

The relation between graphemes and phonemes in Malay
is generally straightforward, but there are a limited number of
graphemes with ambiguous pronunciations. One example is the
letter <e>, which can correspond either to the phoneme /e/ or
to schwa.

The uncertainty sampling approach to active learning was
used [12]: several hundred examples of /e/ in different words
were collected, and as predictor features neighbouring letters in
a 7-letter window were collected. 150 randomly picked exam-
ples were initially hand-labelled (using the arbitrary symbols
<e> and <é> to disambiguate the pronunciation). A further
200 examples were selected (one at a time) by active learning
and presented to the user for labelling. The classifier resulting
from the final iteration of active learning was then used to pre-
dict the pronunciation of new examples, including in the tran-
script of speech data for acoustic model training.

The learned classifier achieved an accuracy of 89.83% on
the held-out, semantically unpredictable sentences described in
Section 5.2.

Note that active learning has been used previously for learn-
ing letter-to-sound rules [13]. The difference in the current
work is that instead of being asked to supply phonemic tran-
scriptions of lexical items, a possibly technically naive user is
instead asked to make a binary choice for each example of a
small subset of letter types.

5. Experiment
5.1. Systems built

Four TTS systems were built, covering all combinations of data
type (purpose-recorded vs. web-harvested) and letter-to-sound
rules type (graphemes with actively learned disambiguation vs.
plain graphemes). The four systems are summarised in Table 1.
Systems B and D were trained on the 882 utterances of studio
data described in Section 2.1, and systems C and E on the 435
utterances of web-harvested data described in Section 3.1. The
quantity of data for all systems is comparable (approximately 1
hour). All systems are letter-based: systems B and C are purely
letter-based, and systems D and E use the actively learned clas-
sifier for predicting the correct pronunciation of <e> described
in Section 4.

As a reference ‘system’, utterances of the natural speech
drawn equally from the purpose-recorded and found data and
held out of the training set were used. These samples constitute
‘system’ A.

Table 1: Description of systems built
System Description
Natural Speech
Studio data without active learning
Found data without active learning
Studio data with active learning
Found data with active learning

moQw >

5.2. Evaluation

The synthetic speech from all systems was evaluated in a per-
ceptual test performed by listeners. Two aspects of the speech
were evaluated in this study: naturalness and intelligibility.
For naturalness, Mean Opinion Score (MOS) was used: lis-
teners were asked to rate the synthetic speech using a 5-point
scale (1 for ‘completely unnatural’ and 5 for ‘completely nat-
ural’). Natural speech (system A) was included in the natural-
ness section of the test. To test the intelligibility of the syn-
thetic voices, listeners were asked to transcribe the synthetic
speech they heard. In this section, semantically unpredictable
sentences (SUS) were generated based on the criteria described
in [14]. As naturally spoken SUS were not available, system A
was excluded from this part of the evaluation.

5.2.1. Naturalness

For the naturalness part of the evaluation 10 sentence-texts were
used; these were provided by the held-out natural utterances
of system A. These 10 texts were synthesised with each TTS
system, resulting in 50 experimental stimuli.

5.2.2. Intelligibility

10 utterance texts for the intelligibility part of the evaluation
were generated for each system from the templates shown in
Table 2. These sentences were synthesised by each of systems
B-D, resulting in a set of 40 experimental stimuli. The SUS
were generated in such a way that they consist mostly of out-
of-training-corpus words. Only a few function words appear in
both training data and the SUS script (e.g. dengan, dan, ini, itu,
ke and yang). SUS were balanced over listeners and systems
using a Latin square design. This meant that each listener heard
10 sentences spoken by each system, and heard each sentence
text only once.

In short, the complete listening test consisted of 50 sen-
tences to evaluate naturalness and 40 to evaluate intelligibility.
In the intelligibility test, listeners were not permitted to listen to
a sentence twice; they were exposed to speech synthesized by
each system.

28 listeners were hired to listen to the stimuli and rate or
transcribe them. The test was conducted via the web: listeners
were asked to use headphones to listen to the speech. A sub-
set of 8 listeners were invited into a quiet room to listen to the
synthetic speech.

5.3. Result

The result of the naturalness test is shown in Figure 1.
Listeners’ transcriptions were aligned with the known ref-
erence text of the stimuli, and word error rates (WER) of their
transcriptions were computed per system. Figure 2 shows the
word error rates (WER) of the systems, illustrating that the ac-
tive learning improves intelligibility in both the high- and low-
quality data scenarios. We performed a Wilcoxon Signed-Rank

Table 2: SUS templates with examples

Sentence type Template Example

Intransitive Noun Det. Verb (intr.) Preposition Adjective Relat. Pronoun Noun Sistem ini bekerjasama akan penglihatan yang lucu.

Transitive Noun Adjective Verb (trans) Noun Adjective Bola sepak tinggi menjamin lumrah keji.

Imperative Verb (trans.) Noun Conjunction Noun Dirikan rumah dan rambutan.

Interrogative Quest. Adv Noun Verb(trans.) Noun Relat. Pronoun Adjective Bilakah pendingin hawa ambil generasi yang senyap.

Relative Noun Det. Verb (trans.) Det Noun Relat. Pronoun Preposition Verb(intr.) ~ Gunung ini menyapu balai bomba yang sungguh pahit.
5.0 60

MOS for naturalness
N N w w > &
o ul o Ul o w

=
el

1.0

System

Figure 1: Naturalness of the systems. The use of found data
leads to less natural voices, as expected. Active learning, which
resolves a letter-to-sound ambiguity, has no effect on natural-
ness.

Test (a« = 0.05) to test the significance of the differences be-
tween all pairs of systems. All differences in WER were found
to be significant except that between systems B and E, showing
that active learning is highly effective in improving intelligibil-
ity.

6. Conclusion

We have presented four configurations of a Malay statistical
parametric speech synthesizer in this study, which allowed us
to evaluate the effect of replacing the standard high-quality stu-
dio data with lower-quality ‘found’ data, and to test a novel
active learning technique for pronunciation disambiguation in
both data conditions. The Malay language is straightforward
in terms of orthography and language structure and in general
it poses no major problems in building TTS systems. How-
ever, one major difficulty is predicting correct pronunciations
for the ambiguous grapheme <e>. In this study, when clas-
sifiers trained using the active learning technique were used to
predict the correct pronunciation of this letter in words encoun-
tered at run-time, we found significant improvements to intelli-
gibility for systems trained on both types of data.

7. Acknowledgements

We thank Mark Sinclair for helping us apply his speaker di-
arisation tools to our data. The research leading to these re-
sults has received funding from the European Community’s
Seventh Framework Programme (FP7/2007-2013) under grant
agreement N2 287678 (Simple4All).

54.65

System

Figure 2: Intelligibility of the systems, expressed as Word Error
Rate (lower is better). Active learning, which resolves a letter-
to-sound ambiguity has a substantial effect, particularly on the
system built from a better quality speech corpus (system D vs
system B).

8. References

[1] O. Watts, A. Stan, R. Clark, Y. Mamiya, M. Giurgiu,
J. Yamagishi, and S. King, “Unsupervised and lightly-
supervised learning for rapid construction of TTS sys-
tems in multiple languages from ’found’ data: evaluation
and analysis,” in 8th ISCA Workshop on Speech Synthesis,
Barcelona, Spain, August 2013, pp. 121-126.

[2] J. Yamagishi and O. Watts, “The CSTR/EMIME HTS
System for Blizzard Challenge,” in Proc. Blizzard Chal-
lenge 2010, Sep. 2010.

[3] A.Stan, O. Watts, Y. Mamiya, M. Giurgiu, R. Clark, J. Ya-
magishi, and S. King, “TUNDRA: A Multilingual Cor-
pus of Found Data for TTS Research Created with Light
Supervision,” in Proc. Interspeech, Lyon, France, August
2013.

[4] L. C. Yong and T. T. Swee, “Low footprint high intelligi-
bility malay speech synthesizer based on statistical data,”
Journal of Computer Science, vol. 10, pp. 316-324, 2014.

[5] J. Lorenzo-Trueba, O. Watts, R. Barra-Chicote, J. Yam-
agishi, S. King, and J. M. Montero, “Simple4all propos-
als for the albayzin evaluations in speech synthesis,” in In
Proc. Iberspeech, 2012.

[6] M. J. Yap, S.J. R. Liow, S. B. Jalil, and S. S. B. Faizal,
“The malay lexicon project: A database of lexical statis-
tics for 9,592 words,” Behavior research methods, vol. 42,
no. 4, pp. 992-1003, 2010.

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

H. Kawahara, I. Masuda-Katsuse, and A. Cheveigné,
“Restructuring speech representations using a pitch-
adaptive time-frequency smoothing and an instantaneous-
frequency-based FO extraction: possible role of a repeti-
tive structure in sounds,” Speech Communication, vol. 27,
pp- 187-207, 1999.

K. Tokuda, T. Yoshimura, T. Masuko, T. Kobayashi, and
T. Kitamura, “Speech parameter generation algorithms for
hmm-based speech synthesis,” in In: Proc. ICASSP, 2000,
pp. 1315-1318.

M. Sinclair and S. King, “What are the challenges in
speaker diarization?” in [EEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP),
2013.

Y. Mamiya, J. Yamagishi, O. Watts, R. A. Clark, S. King,
and A. Stan, “Lightly supervised gmm vad to use audio-
book for speech synthesiser,” in In Proc. ICASSP, 2013.

A. Stan, P. Bell, J. Yamagishi, and S. King, “Lightly Su-
pervised Discriminative Training of Grapheme Models for
Improved Sentence-level Alignment of Speech and Text
Data,” in Proc. of Interspeech (accepted), 2013.

D. D. Lewis and W. A. Gale, “A sequential algorithm for
training text classifiers,” in Proceedings of the 17th annual
international ACM SIGIR conference on Research and de-
velopment in information retrieval.

K. Dwyer and G. Kondrak, “Reducing the annotation ef-
fort for letter-to-phoneme conversion,” in ACL/IJCNLP,
2009, pp. 127-135.

C. Benoit, M. Grice, and V. Hazan, “The SUS test: A
method for the assessment of text-to-speech synthesis in-
telligibility using Semantically Unpredictable Sentences,”
Speech Communication, vol. 18, no. 4, pp. 381 — 392,
1996.

FP7-287678 SIMPLE4ALL deliverable D4.2

Appendix: Submitted Conference Paper (Coling 2014)

Version 1 (14/05/2014) 24 page 24 of 12

Morfessor FlatCat: An HMM-Based Method for Unsupervised and
Semi-Supervised Learning of Morphology

Stig-Arne Gronroos Sami Virpioja
Department of Signal Processing Department of Information and
and Acoustics, Aalto University Computer Science, Aalto University

stig-arne.gronroos@aalto.fi sami.virpioja@aalto.fi
Abstract

Morfessor is a family of methods for learning morphological segmentations of words based
on unannotated data. We introduce a new variant of Morfessor, FlatCat, that applies a hid-
den Markov model structure. It builds on previous work on Morfessor, sharing model compo-
nents with the popular Morfessor Baseline and Categories-MAP variants. Our experiments show
that while unsupervised FlatCat does not reach the accuracy of Categories-MAP, with semi-
supervised learning it provides state-of-the-art results in the Morpho Challenge 2010 tasks for
English, Finnish, and Turkish.

1 Introduction

Morphological analysis is essential for automatic processing of compounding and highly-inflecting lan-
guages, for which the number of unique word forms may be very large. Apart from rule-based analyzers,
the task has been approached by machine learning methodology. Especially unsupervised methods that
require no linguistic resources have been studied widely (Hammarstrom and Borin, 2011). Typically
these methods focus on morphological segmentation, i.e., finding morphs, the surface forms of the mor-
phemes.

For language processing applications, unsupervised learning of morphology can provide decent-
quality analyses without resources produced by human experts. However, while morphological ana-
lyzers and large annotated corpora may be expensive to obtain, a small amount of linguistic expertise is
more easily available. A well-informed native speaker of a language can often identify the different pre-
fixes, stems, and suffixes of words. Then the question is how many annotated words makes a difference.
One answer was provided by Kohonen et al. (2010), who showed that already one hundred manually
segmented words provide significant improvements to the quality of the output when comparing to a
linguistic gold standard.

The semi-supervised approach by Kohonen et al. (2010) was based on Morfessor Baseline, the sim-
plest of the Morfessor methods by Creutz and Lagus (2002; 2007). The statistical model of Morfessor
Baseline is simply a categorical distribution of morphs—a unigram model in the terms of statistical lan-
guage modeling. As the semi-supervised Morfessor Baseline outperformed all unsupervised and semi-
supervised methods evaluated in the Morpho Challenge competitions (Kurimo et al., 2010a) so far, the
next question is how the approach works for more complex models.

Another popular variant of Morfessor, Categories-MAP (CatMAP) (Creutz and Lagus, 2005), models
word formation using a hidden Markov model (HMM). The context-sensitivity of the model improves
the precision of the segmentation. For example, it can prevent splitting a single s, a common English
suffix, from the beginning of a word. Moreover, it can disambiguate between identical morphs that are
actually surface forms of different morphemes. Finally, separation of stems and affixes in the output
makes it simple to use the method as a stemmer.

In contrast to Morfessor Baseline, the lexicon of CatMAP is hierarchical: a morph that is already in
the lexicon may be used to encode the forms of other morphs. This has both advantages and drawbacks.

This work is licenced under a Creative Commons Attribution 4.0 International License. Page numbers and proceedings footer
are added by the organizers. License details: http://creativecommons.org/licenses/by/4.0/

One downside is that it mixes the prior and likelihood components of the cost function, so that the semi-
supervised approach presented by Kohonen et al. (2010) is not usable.

1.1 Hierarchical versus flat lexicons

From the viewpoint of data compression and following the two-part Minimum Description Length prin-
ciple (Rissanen, 1978), Morfessor tries to minimize the number of bits needed to encode both the model
parameters and the training data. Equivalently, the cost function L can be derived from the Maximum a
Posteriori (MAP) estimate:

0 = argmax P(f| D) = arg min (—logP(#) —log P(D|6)) = argmin L(¢, D), (1)
0 0 0

where 6 are the model parameters, D is the training corpus, P(f) is the prior of the parameters and
P(D|0) is the data likelihood.

In context-independent models such as Morfessor Baseline, the parameters include only the forms and
probabilities of the morphs in the lexicon of the model. Morfessor Baseline and Categories-ML (CatML)
(Creutz and Lagus, 2004) use a flat lexicon, in which the forms of the morphs are encoded directly as
strings: each letter requires a certain number of bits to encode. Thus longer morphs are more expensive.
Encoding a long morph is worthwhile only if the morph is referred to frequently enough from the words
in the training data. If a certain string, let us say segmentation, is common enough in the training data, it
is cost-effective to have it as a whole in the lexicon. Splitting it into two items, segment and ation, would
double the number of pointers from the data, even if those morphs were already in the lexicon. The
undersegmentation of frequent words becomes evident especially if the training data is a corpus instead
of a list of unique word forms.

In contrast, Morfessor CatMAP applies a hierarchical lexicon, which makes use of the morphs that
are already in the lexicon. Instead of encoding the form of segmentation by its 12 letters, we could just
encode the form with two references to the forms of the morphs segment and ation. This may also cause
errors, for example encoding station with st and ation.

The lexicon of Morfessor CatMAP allows but does not force hierarchical encoding for the forms:
each morph has an extra parameter that indicates whether it has a hierarchical representation or not. The
problem of oversegmentation, as in st + ation, is solved using the morph categories. The categories,
which are states of the HMM, include stem, prefix, suffix, and a special non-morpheme category. The
non-morpheme category is intended to catch segments that do not fit well into the three proper morph
categories because they are fragments of a larger morph. In our example, the morph st cannot be a suffix
as it starts the word, it is unlikely to be a prefix as it directly precedes a common suffix ation, and it is
unlikely to be a stem as it is very short. Thus the algorithm is likely to use the non-morpheme state. The
hierarchy is expanded only up to the level in which there are no non-morphemes, so the final analysis is
still station. Without the hierarchy, the non-morphemes have to be removed heuristically, as in CatML
(Creutz and Lagus, 2004).

A hierarchical lexicon presents some challenges to model training. For a standard unigram or HMM
model, if you know the state and emission sequence of the training data, you can directly derive the
maximum likelihood (ML) parameters of the model: a probability of a morph is proportional to the
number of times it is referred to, conditional on the state in the HMM. But if the lexicon is partly
hierarchical, also the references within the lexicon add to the reference counts, and there is no direct way
to find the ML parameters even if the encoding of the training data is known. Similarly, semi-supervised
learning cannot be accomplished simply by adding the counts from an annotated data set, as it is not
clear when to use hierarchy instead of segmenting a word directly in the data.

Moreover, for a flat lexicon, the cost function divides into two parts that have opposing optima: the
cost of the data (likelihood) is optimal when there is minimal splitting and the lexicon consists of the
words in the training data, whereas the cost of the model (prior) is optimal when the lexicon is minimal
and consists only of the letters. In consequence, the balance of precision and recall of the segmentation
boundaries can be directly controlled by setting a weight for the data likelihood. Tuning this hyper-
parameter is a very simple form of supervision, but it has drastic effects on the segmentation results

(Kohonen et al., 2010). A direct control of the balance may also be useful for some applications: Virpioja
et al. (2011) found that the performance of the segmentation algorithms in machine translation correlates
more with the precision than the recall. The weighting approach does not work for hierarchical lexicons,
for which changing the weight does not directly affect the decision whether to encode the morph with
hierarchy or not.

1.2 Morfessor FlatCat

In this paper, we introduce a new member to the Morfessor family, Morfessor FlatCat. As indicated by its
name, FlatCat uses a flat lexicon. Our hypothesis is that enabling semi-supervised learning is effective in
compensating for the undersegmentation caused by the lack of hierarchy. In particular, semi-supervised
learning can improve modeling of suffixation. In the examined languages, suffixes tend to serve syntactic
purposes, such as marking case, tense, person or number. Examples are the suffix s marking tense and
person in she writes and number in stations. Thus the suffix class is closed and has only a small number
of morphemes compared to the prefix and stem categories. As a consequence, a large coverage of suffixes
can be achieved already with a relatively small annotated data set.

The basic model of morphotactics in FlatCat is the same as in the CatML and CatMAP variants: a
hidden Markov model with states that correspond to a word boundary and four morph categories: stem,
prefix, suffix, and non-morpheme. As in CatML, we apply heuristics for removal of non-morphemes
from the final segmentation. However, due to the MAP estimation of the parameters, these heuristics
are not necessary for controlling the model complexity, but merely a post-processing step to get useful
categories.

Modeling of morphotactics improves the segmentation of compound words, by allowing the overall
level of segmentation to be increased without increasing the number of correct morphs used in incorrect
positions. As the benefits of semi-supervised learning and improved morphotactics are likely to com-
plement each other, we can expect improved performance over the semi-supervised Morfessor Baseline
method.

2 FlatCat model and algorithms

Morfessor FlatCat uses components from the older Morfessor variants. Instead of going through all the
details, we refer to the previous work and highlight only the differences.

As a generative model, Morfessor FlatCat describes the joint distribution P(A, W | 8) of words and
their analyses. The words W are observed, but their analyses, A, is a latent variable in the model. An
analysis of a word contains its morphs and morph categories: prefix, stem, suffix, and non-morpheme.
As marginalizing over all possible analyses is generally infeasible, point estimates are used during the
training. The likelihood conditioned on the current analyses is

|D|
P(D|A,0)=]]P(A;0).)
j=1

If m; are the morphs in A;, ¢; are the hidden states of the HMM corresponding to the categories of the
morphs, and # is the word boundary, P(A; | 0) is

|A;]

Pey |#) [T [P(milei) Pleipa | e)] P(#] cpa,)- 3)

i=1

Morfessor FlatCat applies an MDL-derived prior designed to control the number of non-zero parame-
ters. The prior is otherwise the same as in Morfessor Baseline, but it includes the usage properties from
Morfessor CatMAP: the length of the morph and its right and left perplexity. The perplexity measures
describe the predictability of the context in which the morph occur. The emission probability of a morph
conditioned on the morph category, P(m | ¢), is calculated from the properties of the morphs similarly as
in CatMAP.

(a) English. (b) Finnish.

Method @ 8 Pre Rec F Method « 8 Pre Rec F

U Baseline 1.0 - 88 59 71 U Baseline 1.0 - .84 38 53
U CatMAP - - 89 51 .65 UCatMAP - - 76 51 .61
U FlatCat 1.0 - 90 .57 .69 U FlatCat 1.0 - .84 38 .52
W Baseline 0.7 - 83 .62 71 W Baseline .02 - .62 54 58
W FlatCat 0.5 - 84 .60 .70 W FlatCat .015 - .66 52 .58
SS Baseline 1.0 3000 .83 .77 .80 SS Baseline .1 15000 .75 72 .73
SS FlatCat 09 2000 .86 .76 .81 SS FlatCat 2 1500 .79 71 .75
SS CRF+FlatCat 09 2000 .87 .77 .82 SS CRF+FlatCat 2 2500 .82 .76 .79
S CRF - - 92 73 81 S CRF - - 88 .74 .80

Table 1: Boundary Precision and Recall results in comparison to gold standard segmentation. Abbrevi-
ations have been used for Unsupervised (U), likelihood weighted (W), semi-supervised (SS) and fully
supervised (S) methods. Best results for each measure have been hilighted using boldface.

2.1 Training algorithms

The parameters are optimized using a local search. Only a part of the parameters are optimized in each
step: the parameters that are used in calculating the likelihood of a certain part, unit, of the corpus. Units
vary in complexity, from all occurrences of a certain morph to the occurrences of a morph bigram whose
context fits to certain criteria.

The algorithm tries to simultaneously find the optimal segmentation for the unit and the optimal pa-
rameters consistent with that segmentation:

(A,6) = argmin {L(0, A, D)}. 4)
OP(A.0)

The training operators OP define the units changed by the local search and the alternative segmentations
tried for each unit. There are three training operators: split, join and resegment, analogous to the similarly
named stages in CatMAP.

The split operator is applied first. It targets all occurrences of a specific morph in the corpus simultane-
ously, attempting to split it into two parts. The whole corpus is processed by sorting the current morphs
by length from shortest to longest.

The second operator attempts to join morph bigrams, grouped by the position of the bigram in the
word. The position grouped bigram counts are sorted by frequency, from most to least common.

Finally, resegmenting uses the generalized Viterbi algorithm to find the currently optimal segmentation
for one whole word at a time. This operator targets each word in the corpus in increasing order of
frequency.

The heuristics used in FlatCat to remove non-morphemes from the final segmentation are the fol-
lowing: All consequent non-morphemes are joined together. If the resulting morph is longer than 4
characters, it is accepted as a stem. All non-morphemes preceded by a suffix and followed by only suf-
fixes or other non-morphemes are recategorized as suffixes without joining with their neighbors. If any
short non-morphemes remain, they are joined either to the preceding or following morphs (the latter only
for those in the initial position).

2.2 Semi-supervised learning

Kohonen et al. (2010) found that semi-supervised learning of Morfessor models was not effective by
only fixing the values of the analysis A for the annotated samples D 4. Their solution was to introduce
corpus likelihood weights o and 3, one for the unannotated data set and one for the annotated data set.

Method « B Pre Rec F

U Baseline 1.0 - .85 .36 51
U CatMAP - - 83 50 .62
U FlatCat 1.0 - .87 .36 51
W Baseline 0.1 - 71 41 52
W FlatCat 0.3 - .88 .38 .53
SS Baseline 04 2000 .86 .60 .71
SS FlatCat 0.8 2666 .87 .59 .70
SS CRF+FlatCat 1.0 3000 .87 .61 .72
S CRF - - .89 58 .70

Table 2: BPR results for Turkish

Thus, instead of optimizing the MAP estimate, Kohonen et al. (2010) minimize the cost
L(0,A,D,D,y)=—1logP(f) —alogP(D|A,0) — BlogP(Da4| A,0). ©)

The weights can be tuned on a development set. We use the same scheme for FlatCat.

The likelihood of the annotated data is calculated using the same HMM that is used for the unannotated
data. The morph properties are estimated only from the unannotated data. To ensure that the morphs
required for the annotated data can be emitted, a copy of each word in the annotations is added to the
unannotated data. This unannotated copy is loosely linked to the annotated word: operations that would
result in the removal of a morph required for the annotations from the lexicon cannot be selected, as such
an operation would have infinite cost.

3 Experiments

We compare Morfessor FlatCat to two previous Morfessor methods and a fully supervised discrimina-
tive segmentation method. The Morfessor methods used as references are the CatMAP and Baseline
implementations by Creutz and Lagus (2005) and Virpioja et al. (2013), respectively. Also the FlatCat
implementation is based on the latter.! For a supervised discriminative model, we use a character-level
conditional random field (CRF) implementation by Ruokolainen et al. (2013).

We use the English, Finnish and Turkish data sets from Morpho Challenge 2010 (Kurimo et al.,
2010b). They include large unannotated word lists, one thousand annotated words for training, 700—
800 annotated words for parameter tuning, and 10 x 1000 annotated words for testing.

For evalution, we use the BPR score by Virpioja et al. (2011). The score calculates the precision
(Pre), recall (Rec), and Fi-score (F) of the predicted morph boundaries compared to a linguistic gold
standard. In the presence of alternative gold standard analyses, we weight each alternative equally. We
also report the mean average precision from the English and Finnish information retrieval (IR) tasks of
the Challenge.

Morfessor FlatCat is a pipeline method that refines an initial segmentation given as input. We try two
different initializations for the semi-supervised setting: initializing with the segmentation produced by
semi-supervised Morfessor Baseline, and initializing with the CRF segmentation. All unsupervised and
likelihood-weighted results are initialized with the corresponding Baseline output.

All methods were trained using word types. The weight and perplexity threshold parameters were
optimized separately for each method, using a grid search with the held-out data set.

3.1 Comparison to linguistic gold standards

The results of the BPR evaluations are shown in Tables 1 (English, Finnish) and 2 (Turkish). Semi-
supervised FlatCat initialized using CRF achieves the highest F-score for both the English and Turkish

'A link to our implementation will be published in the camera-ready version.

(a) English.
STM STM + STM PRE + STM STM + SUF STM + SUF + SUF

Method Pre Pre Rec F Pre Rec F Pre Rec F Pre Rec F

U CatMAP 90 94 63 75 91 64 75 87 45 59 90 51 .65
SS Baseline .64 93 77 84 82 74 77 83 86 84 91 .79 85
SS FlatCat .68 94 65 77 78 62 69 86 88 87 94 79 86
SS CRF+FlatCat .68 95 78 86 .78 66 72 87 89 88 94 80 .87
S CRF .78 94 72 81 8 59 69 92 91 91 95 .82 .88

(b) Finnish.
STM STM + STM PRE + STM STM + SUF STM + SUF + SUF

Method Pre Pre Rec F Pre Rec F Pre Rec F Pre Rec F

U CatMAP 77 90 97 94 88 96 92 67 46 54 68 38 .49
SS Baseline .50 82 88 8 73 83 78 64 8 73 76 78 .77
SS FlatCat 49 91 95 93 80 89 8 .67 84 75 77 75 .6
SS CRF+FlatCat .53 91 9% 94 B84 94 8 71 88 .79 80 .79 .79
S CRF .68 88 91 8 90 91 91 .83 91 87 91 .85 .88

Table 3: Results of BPR experiments with different morph category patterns. Best results for each
measure have been hilighted using boldface.

data sets. The difference between the highest and second-highest scoring methods is statistically signifi-
cant for Finnish and Turkish, but not for English (Wilcoxon signed-rank test, p < 0.01).

Table 3 shows BPR for subsets of words consisting of different morph category patterns. Each subset
consists of 500 words from the English or Finnish gold standard, with one of five selected morph patterns
as the only valid analysis. The subsets consist of words with the following morph patterns: words that
should not be segmented (STM), compound words consisting of exactly two stems (STM + STM), a
prefix followed by a stem (PRE + STM), a stem followed by a single suffix (STM + SUF) and a stem
and exactly two suffixes (STM + SUF + SUF). For the STM pattern only precision is reported, as recall
is not defined for an empty set of true boundaries.

The fact that semi-supervised FlatCat compares well against CatMAP in recall, for all morph patterns
and for the test set as a whole, indicates that supervision indeed is effective in compensating for the
undersegmentation caused by the lack of hierarchy in the lexicon. The benefit of modeling morphotactics
can be seen in improved precision for the STM + STM (for English and Finnish) and PRE + STM (for
Finnish) patterns when comparing against semi-supervised Baseline. While not directly observable in
Table 3, a large part of the improvement over semi-supervised Baseline is explained by that FlatCat does
not use suffix-like morphs in incorrect positions.

Initializing the FlatCat model with CRF segmentation improves the F-scores in all subsets compared
to the initialization with Morfessor Baseline. While FlatCat cannot keep the accuracy of the suffix
boundaries at as high level as CREF, it clearly improves the stem splitting.

3.2 Information retrieval

Stemming has been shown to improve IR results (Kurimo et al., 2009), by removing inflection that is
often not relevant to the query. The morph categories make it possible to simulate stemming by removing
morphs categorized as prefixes or suffixes. As longer affixes are more likely to be meaningful, we limited
the affix removal to morphs of at most 3 letters. For methods that use morph categories, we report two
IR results: the first using all the data and the second with short affix removal (SAR) applied.

In the IR results, we include the topline methods from Morpho Challenge: Snowball Porter stemmer
(Porter, 1980) for English and “TWOL first” for Finnish. The latter selects the lemma from the first

(a) English. (b) Finnish.

Rank Method SAR MAP Rank Method SAR MAP

1 - Snowball Porter — 0.4092 1 W FlatCat No 0.5057
2 SS Baseline - 0.3855 2 W FlatCat Yes 0.5029
3 SS FlatCat No 0.3837 3 SS FlatCat Yes 0.4987
4 SS FlatCat Yes 0.3821 4 - TWOL first - 0.4973
5 SS CRF+FlatCat Yes 0.3810 5 SS CRF+FlatCat Yes 0.4912
6 SS CRF+FlatCat No 0.3788 6 U CatMAP Yes 0.4884
7 S CRF - 0.3771 7 U CatMAP No 0.4865
8 W Baseline - 0.3761 8 SS CRF+FlatCat No 0.4826
9 U Baseline - 0.3695 9 SS FlatCat No 0.4821
10 U CatMAP No 0.3682 10 - (First 5) - 0.4757
11 U CatMAP Yes 0.3653 11 SS Baseline - 0.4722
12 W FlatCat No 0.3651 12 S CRF - 0.4660
13 - (First 5) - 0.3648 13 W Baseline - 0.4582
14 W FlatCat Yes 0.3606 14 U Baseline - 0.4378
15 U FlatCat No 0.3486 15 U FlatCat Yes 0.4349
16 U FlatCat Yes 0.3451 16 U FlatCat No 0.4334
17 - (Words) - 0.3303 17 - (Words) - 0.3483

Table 4: Information Retrieval results. Results of the method presented in this paper are hilighted using
boldface. Mean Average Precision is abbreviated as MAP. Short affix removal is abbreviated as SAR.

of the possible analyses given by the morphological analyzer FINTWOL (Lingsoft, Inc.) based on the
two-level model by Koskenniemi (1983). As baseline results we also include unsegmented word forms
and truncating each word after the first five letters (First 5).

The results of the IR experiment are shown in Table 4. FlatCat provides the highest score for Finnish.
The English scores are similar to those of the semi-supervised Baseline. FlatCat performs better than
CRF for both languages. This is explained by the higher level of consistency in the segmentations
produced by FlatCat, which makes the resulting morphs more useful as query terms. The number of
words in the lexicons of FlatCat initialized using CRF are 108 391 (English), 46 123 (Finnish) and 74 193
(Turkish), which is much smaller than the respective lexicon sizes counted from the CRF segmentation:
339 682 (English), 396 869 (Finnish) and 182 356 (Turkish). This decrease in lexicon size indicates a
more structured segmentation.

The IR performance of semi-supervised FlatCat benefits from the removal of short affixes for English
when initialized by CRF, and Finnish for both initializations. It also improves the results of unsupervised
FlatCat and CatMAP for Finnish, but lowers the precision for English. A possible explanation is that the
unsupervised methods do not analyze the suffixes with a high enough accuracy.

4 Conclusions

We have introduced a new variant of the Morfessor method, Morfessor FlatCat. It predicts both morphs
and their categories based on unannotated data, but also annotated training data can be provided. It was
shown to outperform earlier Morfessor methods in the semi-supervised learning task for English, Finnish
and Turkish.

The purely supervised CRF-based segmentation method proposed by Ruokolainen et al. (2013) outper-
forms FlatCat for Finnish and reaches the same level for English. However, we show that a discriminative
model such as CRF gives inconsistent segmentations that do not work as well in a practical application:
In English and Finnish information retrieval tasks, FlatCat clearly outperformed the CRF-based segmen-
tation.

We see two major directions for future work. Currently Morfessor FlatCat, like most Morfessor meth-

ods, assumes that words in a sentence occur independently. Making use of the sentence context in which
words occur would, however, allow making Part-Of-Speech -like distinctions. These distinctions could
help disambiguate inflections of different lexemes that have the same surface form but should be analyzed
differently (Can and Manandhar, 2013).

The second direction is removal of the assumption that a morphology consists only of concatenative
processes. Introducing transformations to model allomorphy in a similar manner as Kohonen et al.
(2009) would allow finding the shared abstract morphemes underlying different allomorphs. This could
be especially beneficial in information retrieval and machine translation applications.

References

Burcu Can and Suresh Manandhar. 2013. Dirichlet processes for joint learning of morphology and pos tags. In
Proceedings of the International Joint Conference on Natural Language Processing, pages 1087-1091, Nagoya,
Japan, October.

Mathias Creutz and Krista Lagus. 2002. Unsupervised discovery of morphemes. In Mike Maxwell, editor,
Proceedings of the ACL-02 Workshop on Morphological and Phonological Learning, pages 21-30, Philadelphia,
PA, USA, July. Association for Computational Linguistics.

Mathias Creutz and Krista Lagus. 2004. Induction of a simple morphology for highly-inflecting languages. In
Proceedings of the Seventh Meeting of the ACL Special Interest Group in Computational Phonology, pages
43-51, Barcelona, Spain, July. Association for Computational Linguistics.

Mathias Creutz and Krista Lagus. 2005. Inducing the morphological lexicon of a natural language from unanno-
tated text. In Timo Honkela, Ville Kononen, Matti Polld, and Olli Simula, editors, Proceedings of AKRR’05,
International and Interdisciplinary Conference on Adaptive Knowledge Representation and Reasoning, pages
106-113, Espoo, Finland, June. Helsinki University of Technology, Laboratory of Computer and Information
Science.

Mathias Creutz and Krista Lagus. 2007. Unsupervised models for morpheme segmentation and morphology
learning. ACM Transactions on Speech and Language Processing, 4(1):3:1-3:34, January.

Harald Hammarstrom and Lars Borin. 2011. Unsupervised learning of morphology. Computational Linguistics,
37(2):309-350, June.

Oskar Kohonen, Sami Virpioja, and Mikaela Klami. 2009. Allomorfessor: Towards unsupervised morpheme
analysis. In Evaluating Systems for Multilingual and Multimodal Information Access: 9th Workshop of the
Cross-Language Evaluation Forum, CLEF 2008, Aarhus, Denmark, September 17—19, 2008, Revised Selected
Papers, volume 5706 of Lecture Notes in Computer Science, pages 975-982. Springer Berlin / Heidelberg,
September.

Oskar Kohonen, Sami Virpioja, and Krista Lagus. 2010. Semi-supervised learning of concatenative morphology.
In Proceedings of the 11th Meeting of the ACL Special Interest Group on Computational Morphology and
Phonology, pages 78-86, Uppsala, Sweden, July. Association for Computational Linguistics.

Kimmo Koskenniemi. 1983. Two-level morphology: A general computational model for word-form recognition
and production. Ph.D. thesis, University of Helsinki.

Mikko Kurimo, Sami Virpioja, Ville T. Turunen, Graeme W. Blackwood, and William Byrne. 2009. Overview and
results of Morpho Challenge 2009. In Working Notes for the CLEF 2009 Workshop, Corfu, Greece, September.

Mikko Kurimo, Sami Virpioja, Ville Turunen, and Krista Lagus. 2010a. Morpho challenge 2005-2010: Eval-
uations and results. In Jeffrey Heinz, Lynne Cahill, and Richard Wicentowski, editors, Proceedings of the
11th Meeting of the ACL Special Interest Group on Computational Morphology and Phonology, pages 87-95,
Uppsala, Sweden, July. Association for Computational Linguistics.

Mikko Kurimo, Sami Virpioja, and Ville T. Turunen. 2010b. Overview and results of Morpho Challenge 2010. In
Proceedings of the Morpho Challenge 2010 Workshop, pages 7-24, Espoo, Finland, September. Aalto Univer-
sity School of Science and Technology, Department of Information and Computer Science. Technical Report
TKK-ICS-R37.

Martin F. Porter. 1980. An algorithm for suffix stripping. Program, 14(3):130-137.

Jorma Rissanen. 1978. Modeling by shortest data description. Automatica, 14:465-471.

Teemu Ruokolainen, Oskar Kohonen, Sami Virpioja, and Mikko Kurimo. 2013. Supervised morphological seg-
mentation in a low-resource learning setting using conditional random fields. In Proceedings of the Seventeenth
Conference on Computational Natural Language Learning, pages 29—-37, Sofia, Bulgaria, August. Association
for Computational Linguistics.

Sami Virpioja, Ville T Turunen, Sebastian Spiegler, Oskar Kohonen, and Mikko Kurimo. 2011. Empirical com-
parison of evaluation methods for unsupervised learning of morphology. Traitement Automatique des Langues,
52(2):45-90.

Sami Virpioja, Peter Smit, Stig-Arne Gronroos, and Mikko Kurimo. 2013. Morfessor 2.0: Python implementation
and extensions for Morfessor Baseline. Report 25/2013 in Aalto University publication series SCIENCE +
TECHNOLOGY, Department of Signal Processing and Acoustics, Aalto University.

