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Abstract

This deliverable provides a summary of several evaluations of our synthesis system and describes experiments in
the synthesis of expressive speech conducted in WP3. A new vocoding method was developed, based on predicting
time-domain glottal excitation waveforms directly from acoustic features with a deep neural network (DNN). The
method was first evaluated with normal speaking style and then used with adaptation for the synthesis of breathy,
normal, and Lombard speech. The new vocoder reached the quality level of our existing GlottHMM vocoder and
in synthesis of Lombard speech the DNN-based method outperformed the current GlottHMM system. A joint eval-
uation study was conducted with researchers of a parallel EC-funded project on synthesis of laughter. The topic
was challenging, as expected, and showed that for statistical synthesis of laughs some of the existing vocoders
are not robust enough in the presentation of speech parameters. Evaluation studies were also conducted to better
understand the perceptual importance of the periodic and aperiodic components of the vocoder excitation. Evalua-
tion results obtained with a specifically designed generalised vocoder indicate that in combining periodic excitation
waveforms with a periodic noise sequences, the impact of spectral weighting is essential while the role of temporal
noise envelope is small. Finally, two methods for emotion transplantation, based on cross-speaker extrapolation
and cross-speaker model adaptation, were studied. Evaluations conducted in the synthesis of emotional speech in-
dicate, for example, a very clear preference (reaching as high as 96% for happiness, an average of 87% preference
across all the emotions) for the emotional synthesiser we have developed.
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1 Introduction

This deliverable describes our latest work on synthesis evaluation, done in task T3.5 “Expressive speech synthesis.
Evaluation”. The research conducted involves evaluations of many versions of the system, as stated in the project
plan. These multiple evaluations are reported in this document as follows. First, our new vocoding system, based
on predicting the glottal excitation waveform with a deep neural network (DNN) directly from acoustic features,
is described by reporting the evaluation results from two experiments. Second, a vocoder evaluation on a chal-
lenging style of vocalisation, laughter, is described. Third, evaluation of the impact of the periodic and aperiodic
components of the vocoder excitation on synthesis quality is reported. Fourth, emotion transplantation using two
techniques is described. Finally, conclusions regarding these evaluations are given.
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2 Using deep neural networks in modelling of the voice source in vocoding

In our previous vocoding studies, we generated the excitation waveform of the synthesiser by using either a glottal
pulse waveform estimated from real speech [1, 2] or by combining several pulses with principal component anal-
ysis (PCA) [3]. As an alternative, we devised a method in which the time-domain voice source waveform at the
synthesis stage is predicted with a deep neural network (DNN) directly from acoustic features. The flow chart of
the method is shown in Fig. 2.0a and the technique consists of the following main steps. First, acoustic features
and the glottal flow signal are estimated from each frame of the speech database. Acoustic features consist of the
following components: energy, fundamental frequency, harmonic-to-noise ratio, voice source spectrum, and vocal
tract spectrum. Pitch-synchronous glottal flow time-domain waveforms are extracted, interpolated to a constant
duration, and stored (in a codebook) as the training set for the DNN. Then, a DNN is trained to map from acoustic
features to these duration-normalised glottal waveforms. At synthesis time, acoustic features are generated from a
statistical parametric model, and from these, the trained DNN predicts the glottal flow waveform.
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Figure 2.0a: The novel vocoder utilising DNN-based prediction of the voice source waveform was evaluated in two
subjective listening tests which are briefly described below (from the publication in Appendix 6.1).

2.1 DNN-based voice source modelling: Comparison to the conventional GlottHMM with normal
speaking style

Two Finnish speech databases, one of a male speaker and the other one of a female speaker, were used in the
experiment. The male voice comprises 600 sentences (approx. 1 h) and the female database comprises 500 sen-
tences. Waveforms for both voices are sampled at 16 kHz. GlottHMM [2, 3] was used for extracting the acoustic
features and the glottal flow signal. Glottal flow pulse codebooks were constructed for both databases in order to
train the DNN-based voice source model. The codebooks contained 203,172 or 203,768 pulses for the male or
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female speaker, respectively. Additionally, smaller codebooks were constructed for both speakers from 20 sen-
tences of speech material, in order to implement the alternative method in which the DNN output is used to select
a natural pulse from the codebook; these codebooks consisted only of 7,495 and 8,131 pulses in order to minimise
computational cost at synthesis time. The standard HTS 2.1 method [4] was used for training the HMM-based
system.

The DNN took as input a 47-dimensional vector composed of the extracted acoustic speech features. The
target output of the network was a 400 sample duration-normalised glottal flow pulse. In order to determine the
optimal number of layers and hidden units for the DNN, six different systems were trained by varying the number
of hidden layers (from 1 to 3) and the number of units per layer (from 800 to 1200). Unsupervised restricted
Boltzmann machine (RBM) pre-training was tried for one of the configurations. 200,000 training examples were
used for training with 3,000 examples held out for cross-validation. The results showed that the best performance
was achieved with 2 hidden layers and 1000 units per hidden layer, with RBM pre-training slightly improving
performance.

An online subjective evaluation was carried out to assess the proposed method. Three different vocoding
techniques were compared: 1) Conventional GlottHMM synthesis [2] using a single natural glottal flow pulse,
of which spectrum is matched according to the voice source LSF, 2) DNN-based voice source modelling, and 3)
DNN-based voice source model used as a target cost for selecting natural glottal flow pulses from a small library. A
comparison category rating (CCR) test was used with a discrete, seven-point scale ranging from —3 to 3. A group
of 26 people (15 Finnish and 11 non-Finnish) participated in the evaluation.

Results of the evaluation are shown in Fig. 2.1a indicating that there were no statistically significant quality
differences between the three methods. Given the fact that this was the first experiment on a new, greatly dif-
ferent vocoding principle, we consider the result encouraging: the quality achieved was rated equal to that of an
established baseline. This first result (published in the paper in Appendix 6.1) motivated us to develop the method
further and to conduct new evaluations on different speaking styles described next .
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Figure 2.1a: Results of the evaluation of the DNN-based voice source modelling methods in comparison to a
method using natural glottal flow waveforms (from the publication in Appendix 6.1).

2.2 DNN-based voice source modelling: Evaluation with varying vocal effort

Our second experiment on DNN-based modelling (published in the paper in Appendix 6.2) of the voice source used
data, one male voice and one female voice, from two speech corpora [5]. For both speakers, three different vocal
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effort levels were utilised: breathy, normal, and Lombard. The normal style consists of 1450 sentences, comprising
approximately two hours of speech for both speakers. Lombard speech was elicited by playing babble noise with
80 dB SPL to the speaker’s ears through headphones while recording, and feeding back the speakers own voice
through headphones, corresponding to a level of speaking in a normal room without headphones. The Lombard
style consists of 300 sentences. The breathy speaking style was elicited by increasing the level of the speakers
feedback through headphones as well as instructing the subjects to speak softly without whispering. 200 sentences
were read in the breathy style. The recording and processing of the speech data are described in more detail in [5].

The DNN was trained as described in Sec. 2.1 except that a 2-hidden-layer structure was used with 100 and
200 neurons in the first and the second hidden layers, respectively. Within a reasonable number of training epochs,
the network achieved much lower errors than the DNN architecture described in the first experiment.

The HMM training and adaptation procedures were identical to the experiments done in [5]. The training of
the normal voices followed the standard HTS method [4]. Speech features described were extracted using the
GlottHMM vocoder [2] and delta, and delta-delta features were added. Semi hidden Markov models were used as
acoustic models, and features were trained in individual streams except that the vocal tract LSFs and energy were
trained together.

In order to create the low and high vocal effort voices (breathy and Lombard), the normal voice models were
adapted with the constrained structural maximum a posteriori linear regression combined with maximum a poste-
riori adaptation (CSMAPLR+MAP) technique [6]. The speaker-dependent voice source model DNNs were trained
using all speech material including breathy, normal, and Lombard speech.

Subjective evaluations were conducted using three vocal effort levels. A high-quality mean glottal flow pulse
excitation scheme was selected for a reference baseline system, which has been successfully used in synthesising
speech with varying vocal effort [5]. The baseline system uses a style-specific mean glottal flow pulse for each of
the three styles [5] (corresponding to the PCA-based excitation in [7]), and a spectral matching scheme [2, 5], where
a pole-zero filter is used to filter the excitation signal in order to apply the desired spectral properties defined by
the generated voice source spectrum. Two types of tests were conducted to compare the proposed and the baseline
systems: a comparison category rating (CCR) test was conducted to evaluate the speech quality, and a similarity
test was conducted in order to assess the speaker and style similarity between the two methods. 14 native Finnish
listeners participated in both tests.

The mean scores of the quality test are shown for each vocal effort level with 95% confidence intervals in
Fig. 2.2a. Only for Lombard speech is the difference between the two methods statistically significant, with the
proposed method being rated higher in quality.
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Figure 2.2a: Results of the quality test comparing DNN and PCA-based excitation methods with breathy, normal,
and Lombard speech (from the publication in Appendix 6.2).
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3 Vocoder evaluation for HMM-based synthesis of laughter

Laughter is non-verbal vocalisation that plays an essential role in our daily conversations. It conveys information
about emotions and fulfils important social functions. Integrating laughter into a speech synthesis system can bring
the synthetic speech closer to natural human conversational speech. Synthesis of laughter is, however, challenging
and there is little previous research on the topic, except for a few studies [8, 9, 10, 11].

Bridging the gap between knowledge on human laughter and its use by avatars is a goal of a parallel EC-funded
project, ILHAIRE (no. 270780). Since researchers in SIMPLE#ALL had connections to colleagues working on the
ILHAIRE project, it was possible to conduct an experiment on laughter synthesis jointly between the two projects.
This investigation is briefly described below.

The study on laughter synthesis focused on comparing four vocoders that are commonly used in HMM-based
speech synthesis. The selected vocoders were: 1) Impulse train-excited mel-cepstrum-based vocoder (MCEP), 2)
STRAIGHT [12, 13] with mixed excitation, 3) Deterministic plus stochastic model (DSM) [14], and 4) GlottHMM
[2]. All vocoders use the source-filter principle for synthesis, and thus there are two components that mostly differ
among the systems: the type of spectral envelope extraction and representation, and the method for modelling and
generating the excitation signal.

A subjective evaluation was carried out to compare the performance of the vocoders in synthesising natural
laughs. For each vocoder, two types of samples were used: a) copy-synthesis, which consists of extracting the
parameters from a laugh signal and re-synthesising the same laugh from the extracted parameters; b) HMM-based
synthesis, where an HMM-based system is trained from a laughter database and laughs are then synthesised using
the models corresponding to phonetic transcriptions of natural laughter. Copy-synthesis can be seen as the theoret-
ically best synthesis that can be obtained with a particular vocoder, while HMM-based synthesis shows the current
performance that can be achieved when synthesising new laughs. Natural human laughs were also included in the
evaluation as a reference. The data of the evaluation consisted of one male (64 laughs) and one female (54 laughs)
voice from the AVLaughterCycle database. The subjective evaluation was carried out using a web-based listening
test, where listeners were asked to rate the synthesised laughter signals on a 5-point Likert scale [15]. Participants
could listen to the laugh as many times as they wanted and were asked to rate its naturalness on a 5-point Likert
scale where only the highest (completely natural) and lowest (completely unnatural) options were labelled.

Overall, the results show that all vocoders perform relatively well in copy-synthesis. However, in HMM-based
laughter synthesis, all synthesised laughter voices were significantly lower in quality than in copy-synthesis. The
evaluation results revealed that two vocoders (MCEP, DSM) using rather simple and robust excitation modelling
performed best, while two other vocoders (STRAIGHT, GlottHMM) using more complex analysis, parameter rep-
resentation, and synthesis suffered from the statistical modelling. These findings (published in the paper provided
as Appendix 6.3) suggest that the robustness of parameter extraction and representation is a key factor in laughter
synthesis, and increased efforts should be directed to enhancing the robust estimation and representation of the
acoustic parameters of laughter. More details on the comparisons conducted can be found in [16].

4 Evaluation of the periodic and aperiodic components in excitation modelling

In order to reduce buzziness, various excitation models have been proposed for HMM-based speech synthesis in
recent years. In different vocoders, excitation (of voiced speech) is typically modelled by a mixture of periodic and
aperiodic components. There is, however, little knowledge on how the two components separately contribute to the
naturalness and quality of the synthesis. In order to address this research question, a generalised mixed excitation
modelling tool was built to study how the synthesis quality is affected by the following three excitation factors:
periodic waveform, noise spectral weighting, and noise time envelope.

The workflow of this generalised vocoder is displayed in Fig. 4.0b. The periodic contribution of excitation
ep(t) is obtained from a specific waveform whose duration is adapted to the current Fy value, and which is then
filtered using some aperiodicity measurements. The aperiodic excitation component, e, (t), is generated from white
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Gaussian noise that is spectrally modified with the aperiodicity measurements but also temporally modulated using
a given time-envelope. Note that all this processing is done pitch-synchronously. The two components e, (t) and
eq(t) are then summed up and the pitch-synchronous windowed frames are overlap-added. The resulting excitation
is finally filtered to get the speech signal. The three main factors (periodic waveform, noise spectral weighting and
noise envelope) impacting the performance of this generalised excitation model are next described.
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Figure 4.0b: Workflow of generalised vocoder using mixed excitation (from publication in Appendix 6.4).

4.1 Periodic waveform

Three variants for the periodic waveform were used: i) Dirac impulse as used in the simplest vocoders; ii) a
natural excitation residual frame; iii) speaker-dependent eigenresidual as proposed in [14]. Note that the choice of
the natural residual frame was not arbitrary and resulted from the consideration of several criteria: a) having a low
pitch to avoid as much as possible up-sampling to the target F{ (as this will cause energy holes in high frequencies);
b) its amplitude spectrum must be as flat as possible to avoid artefacts due to residual resonances; c) having a clear
discontinuity at the glottal closure instant (GCI).

4.2 Spectral weighting

In order to reduce buzziness caused by an overly strong harmonic structure, it has proven beneficial in HMM-
based synthesis to adopt an approach in which both the periodic and aperiodic component may coexist [17]. This
can be implemented by using, for example, a multiband approach where the energy of the periodic and aperiodic
component is controlled for each frequency band by aperiodicity measurements [13]. Four options for spectral
weighting were investigated: i) the aperiodic component is discarded and the excitation consists only of the periodic
contribution; ii) use of a static maximum voiced frequency F},, fixed to 4 kHz as is done in [18] and [14]; iii) use
of dynamic F,, value estimated using the algorithm described in [19]; iv) use of the HNR measurements proposed
in [3].

4.3 Envelope for noise modulation

In addition to the spectral characteristics, also the temporal properties of the aperiodic component may affect
the synthesis quality. The motivation for considering this possibility stems from the observation that the time
distribution of the aperiodic component is not uniform over the fundamental period but rather time-synchronised
with the different sections of the glottal cycle. Three temporal noise envelopes were studied: i) uniform distribution;
i) the triangular window proposed in [19]; iii) the speaker-dependent Hilbert envelope proposed in the DSM
approach [14].
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4.4 Subjective evaluation

Subjective evaluation was performed in three separate steps in order to uncover the effect of each component
and also their possible interactions. The idea was to first select the best noise spectral weighting according to
a subjective evaluation among the four systems. Then, the best spectral weighting method according to the first
evaluation is used to study the effect of the noise time envelope, in which three systems are evaluated. Finally, in
the third test, both the best noise spectral weighting and the best time envelope are used in the study of the effect of
the periodic waveform, in which three systems are compared. Comparison Category Rating (CCR) tests were used
in order to determine the quality difference between the systems.

4.5 Results

Results clearly indicate that: i) the spectral weighting is an essential feature as it leads to the greatest perceptual
differences; ii); incorporating a noise model during the production of voiced sound is crucial. This can be efficiently
achieved based on HNR measures or using a maximum voiced frequency; iii) the perceptual impact of the noise
envelope seems to be negligible; iv) it is necessary to adapt the periodic waveform according the speaker’s Fy range
as it will affect the excitation phase properties. These conclusions (published in the paper in Appendix 6.4) should
be carefully considered when designing new excitation models. As a result, we believe that future research efforts
should focus on new strategies to weight the energy of both periodic and aperiodic components in several spectral
bands, as well as on a better understanding of the phase information in the periodic waveform.
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5 Emotion transplantation

One of the advantages of Parametric Speech Synthesis over Unit Selection methods is the capability to modify
paralinguistic and extralinguistic properties of the synthetic speech (such as the speaking style, emotion or age)
by using interpolation or adaptation techniques. However, these techniques have been used within a certain multi-
emotion or multi-style corpus, they have not been used for non-averaged cross-speaker modifications.

Task 3.5 in this project addresses the design and test of cross-speaker expression transplantation methods.
Generally speaking, the objective is to take information from one corpus containing both expressive and non-
expressive recordings of one or several speakers and to use those pieces of information to add expressiveness to
non-expressive models of other speakers from other corpora.

The first technique evaluated is based on cross-speaker extrapolation: post-processing the output speech pa-
rameters using an appropriate set of extrapolation weights for the different streams of the speech synthesiser.

The second approach is based on cross-speaker model adaptation: learning the linear adaptation functions from
the expressive source corpus and applying those functions to the non-expressive models of the other corpus.

5.1 Cross-speaker emotion extrapolation

Although it would be possible to interpolate emotional speech models of an emotional voice and a non-emotional
voice using the standard technique, the similarity to the target speaker would decrease, as the target speaker would
be mostly identified as the emotional source speaker.

However, we can modify the basic interpolation method and thus propose cross-speaker extrapolation of acous-
tic emotional patterns to other new target speakers (for whom we have no emotional speech training data): the
acoustic emotional patterns can be learnt as deviations (linear functions) of emotional speech models of a source
speaker from his or her neutral model. The details of the proposed methods can found paper on emotion extrapo-
lation provided as Appendix 6.5. In order to minimise speech artefacts, the extrapolation was limited to the stable
central states of the models.

In the evaluation experiments we tested several linear extrapolation factors (such as 0.5, 0.75, 1.0 or 1.25) and
an ad-hoc configuration (with different weights for the different streams and emotions). The extrapolated emotions
were sadness, anger, fear and surprise. The MOS-based Speech Quality (SQ) of the neutral synthetic source and
target voices were 3.2 and 3.4 respectively; the Emotion Identification Rates (EIR) were 69% and 86% and the
Speaker Identification Rates (SIR) were 69% and 93%.

When extrapolating emotions, SQ decreases however large the extrapolation factor is, because the models
are deviating more and more from the trained target neutral models (Figure 3 in Appendix 6.5). Only k = 0.5
extrapolation factor obtains no statistically significant different SQ values when compared to the SQ of the source
speaker. The adhoc extrapolation scheme slightly reduced this SQ degradation (equivalent to 0.75, in spite of being
greater on average).

Regarding the Emotional Strength (ES) perceived by the listeners, we have normalised the scores on a per
listener basis, to minimise the bias. The obtained ES scores are significantly higher than the neutral ones however
large the extrapolation factor k is (Figure 4 in Appendix 6.5).

EIRs are shown in Figure 5 in Appendix 6.5. Using extrapolation schemes with k higher than 0.5, sadness
and fear synthetic speech of the transformed speaker are identified (69% using k equal to 1.0 for both emotions).
However, EIR is low for surprise and anger, although the adhoc scheme achieves a rate of 53% for anger).

SIRs are shown in Figure 6 in Appendix 6.5. The transformed speaker is notably identified as the target speaker
or at least as another speaker different from the source speaker. The ad-hoc scheme obtains a good compromise
between a high target SIR (40%), a lower source SIR (23%) and a 37% identified as other speaker (neither option).
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5.2 Cross-speaker emotion transplantation

Some instability problems when extrapolating to other speakers could be due to the use of a post-processing tech-
nique based on linear transformations which are not estimated during the training process, but computed afterwards.

A transplantation method that has been introduced lately is based on Cluster Adaptive Training (CAT), a pro-
jective adaptation technique. As such, it is only capable of producing speaker models based on linear combinations
of the original training speaker models. The main advantage of this approach is that — because the produced model
is always a combination of preexisting training models — the process is extremely robust, outputting very high
quality speech. On the other hand, the level of expressive strength or speaker similarity cannot be guaranteed as
the transplantation ‘reach’ is highly constrained.

The new proposed emotion transplantation method uses a cascade of adaptations (one for transforming the
speaker and another one for transforming the emotion) to lessen speech quality degradation, while using the adap-
tation functions as pseudo-rules for modifying the speaker models. As a result, the new method can control the
expressive strength while maintaining reasonable speech quality and speaker identifiability when compared to non-
transplanted expressive synthetic speech. The method has three steps: to adapt the reference emotion from an
average voice model obtained by applying Speaker Adaptive Training (SAT); to adapt the target speaker model
and the target emotion from the reference emotion; and, finally, to apply in cascade the emotion and speaker iden-
tity transformations to the reference emotion. The resulting model is of the emotional target speaker. A possible
alternative design is to merge all our emotional data into a richer average emotion model.

The method can be used for cross-speaker transplantation, but also for intra-speaker interpolation [20] and was
successfully used for creating interpolated emotional synthetic speech in [21].

Two different evaluations were carried out, a first one that compared the proposed emotion transplantation
system with the traditional neutral synthetic voice to validate the transplantation method, and a second one that
compared the neutral synthetic voice with an average emotion transplanted into the speaker (alternative design) in
order to verify that the benefits of transplanting the correct emotion into the speaker are higher than just modifying
the neutral speech to sound less machine-like. Four emotions (anger, happiness, sadness and surprise) learnt from
the Spanish Emotional Voices corpus were transplanted into 3 male speakers and 3 female speakers. It was a binary
preference test (the options were transplanted correct emotion vs. neutral voice or the transplanted average emotion
vs. neutral voice) which included a MOS Speech Quality (SQ) and Emotional Strength (ES) for both samples).
The results are shown on Table 1 in Appendix 6.6. Both transplanted emotional models and transplanted averaged
are preferred over neutral models of the target speakers for every emotion, but the preference is 12% higher for the
transplanted non-averaged models, while SQ is only 0.2 points lower and ES is 0.5 points higher.
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6 Conclusions

This deliverable has described evaluation experiments and emotion transplantation studies conducted in task T3.5.
The research was divided into four main parts whose main findings are summarised below.

We developed a potential new vocoding scheme based on computing the glottal excitation at the synthesis
stage, directly from acoustic parameters, using a DNN. The method was used in two experiments. In the first
one, synthesis of a normal speaking style was studied and the DNN-based method achieved synthesis quality
that was equal to that of a high-quality benchmark system. In the second experiment, HMM-based synthesis of
three styles (breathy, normal, Lombard) was studied together with adaptation. Results show that the DNN-based
method resulted in a statistically significant quality improvement compared to a previously developed vocoder but
a significant improvement was observed only for the Lombard speech. Results were slightly surprising because
we discovered that the DNN is sometimes unable to predict abrupt transients in time-domain glottal excitations
near instants of glottal closure and therefore we expected to get a quality improvement in the synthesis of breathy
speech rather than in the synthesis of Lombard speech. It is, though, worth emphasising that these two experiments
are our first investigations into DNN-based mapping from acoustic features to glottal waveforms and until now we
have not analysed in detail, for example, the choice of those acoustic features.

In addition to the DNN-based vocoder, synthesis evaluations were conducted on laughter and on the impact
of periodic and aperiodic components of the excitation. As expected, the former turned out to be difficult, and
we found that none of the HMM-based synthesisers compared was able approach the quality of copy-synthesis.
Experiments also showed that vocoders using simple excitations were rated as better than those based on more
advanced excitation modelling. For better synthesis of laughter, increased robustness is needed, especially in more
advanced vocoding methods. In studying the impact of periodic and aperiodic components of the excitation, a
generalised vocoder was built that enables investigating the perceptual importance of different factors that can be
used to avoid buzziness in HMM-based speech synthesis. Evaluation results indicate that in combining periodic
excitation waveforms with a periodic noise sequences, the impact of spectral weighting is large while the role of
temporal noise envelope is small.

Two methods for emotion transplantation, based on cross-speaker extrapolation and cross-speaker model adap-
tation, were developed. In the first one, the extrapolation of emotional acoustic patterns was defined to incorporate
emotional content into new or previously-neutral synthetic voices. A perceptual test was conducted, where the
speech quality, the emotional strength, emotional identification rates and speaker identity rates were evaluated. The
acoustic emotional models of four emotions (anger, surprise, sadness and fear) were trained from an emotional
female voice and extrapolated to a new synthetic neutral female voice. The emotional patterns over each speech
component (spectra, log FO, aperiodicity bands and durations) were considered in the acoustic emotional model.
With the proposed algorithm, acoustic emotional patterns are partially extrapolated to a target speaker without los-
ing the target speaker identity. The strength of the emotion extrapolation can be modified successfully by varying
the extrapolation factor. However, the strength of the extrapolation was found to have a negative impact on the
resulting speech quality, especially in the extrapolation of the emotional patterns of the spectral component.

In the second part of our work on emotion transplantation, the aim was to learn the paralinguistic nuances of
any particular emotion in order to transplant them into a new target speaker for whom only traditional, neutral
read speech recordings are available. This is done by means of chaining a pair of adaptation functions, one that
characterises the target speaker identity and another that defines the paralinguistic characteristics of the desired
emotion. Finally, two perceptual evaluations were carried out. For these perceptual evaluations, four emotions
(anger, happiness, sadness and surprise) from a Spanish emotional database and six target speakers (three male and
three female) were considered. A first evaluation compared in terms of naturalness, speech quality and emotional
strength the proposed transplantation method with traditional neutral read speech synthesis. This first test showed
that there is a very clear preference (an average of 87% preference between all the emotions) for the emotional
synthesiser, reaching as high as 96% for happiness, and a perceived increase in emotional strength of an average
of 1.2 points in the MOS scale at a cost of only 0.4 points in speech quality. The second test compared an average
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emotion transplantation with the neutral speech, and showed that just by adding an undefined ‘emotional colour’
to the voice we are able to improve the perceived naturalness of the synthetic speech up to an average of 75%
preference at a cost of only 0.2 points in speech quality, although the average increase in perceived emotional
strength only reaches 0.7 points.
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ABSTRACT

This paper presents a voice source modelling method employ-
ing a deep neural network (DNN) to map from acoustic fea-
tures to the time-domain glottal flow waveform. First, acous-
tic features and the glottal flow signal are estimated from
each frame of the speech database. Pitch-synchronous glottal
flow time-domain waveforms are extracted, interpolated to a
constant duration, and stored in a codebook. Then, a DNN
is trained to map from acoustic features to these duration-
normalised glottal waveforms. At synthesis time, acoustic
features are generated from a statistical parametric model, and
from these, the trained DNN predicts the glottal flow wave-
form. Illustrations are provided to demonstrate that the pro-
posed method successfully synthesizes the glottal flow wave-
form and enables easy modification of the waveform by ad-
justing the input values to the DNN. In a subjective listening
test, the proposed method was rated as equal to a high-quality
method employing a stored glottal flow waveform.

Index Terms— Deep neural network, DNN, voice source
modelling, glottal flow, statistical parametric speech synthesis

1. INTRODUCTION

Statistical parametric speech synthesis, often known as hid-
den Markov model (HMM) speech synthesis [1, 2], is a
flexible framework for synthesising speech. It has several
attractive properties, such as the ability to vary speaking
style and speaker characteristics, small memory footprint,
and robustness. However, HMM-based speech synthesis
suffers from lower speech quality than the unit selection ap-
proach [3] and this is thought to stem mainly from three
factors: a) over-simplified vocoder techniques, b) acoustic
modelling inaccuracy, and c¢) over-smoothing of the generated
speech parameters [2]. This paper addresses the problem of

The research leading to these results has received funding from the Euro-
pean Community’s Seventh Framework Programme (FP7/2007-2013) under
grant agreement n° 287678 (Simple?All), the Academy of Finland, and EP-
SRC Programme Grant EP/I031022/1 (Natural Speech Technology).

over-simplified vocoders by introducing a new voice source
modelling method using a deep neural network (DNN).

One of the key factors in improving the quality of sta-
tistical speech synthesis has been the development of better
excitation modelling techniques. The earliest vocoders used
a train of impulses [4] located at the glottal closure instants
to model voiced excitation. The quality of this impulse-train-
excited speech is poor with a buzzy sound quality due to the
zero-phase character of the excitation. Several improvements,
such as mixed excitation [5] and two-band excitation [6], have
been introduced to alleviate this effect by mixing periodic ex-
citation with aperiodic noise. Mixed excitation is used in,
e.g., STRAIGHT [7, 8], which is one of the most widely used
vocoders in HMM-based speech synthesis. Voiced excitation
has also been improved by using a closed-loop training ap-
proach [9,10] or parametric models of the glottal flow [11,12].

The natural excitation of voiced speech, the glottal flow,
is difficult to represent as a compressed parametric vector
suitable for statistical parametric modelling. Therefore, sam-
pling approaches that utilize the excitation waveform per se
have been proposed that capture the detailed characteristics
of the signal. This idea is not new (see e.g. [13—15]), but the
development of statistical parametric synthesis has given rise
to several novel excitation methods based on natural speech
samples. For example, in [16, 17], a glottal flow pulse es-
timated from natural speech (using glottal inverse filtering)
is manipulated in order to construct a more natural excita-
tion signal. In [18-21], principal component analysis (PCA)
is applied to pitch-synchronous residual/glottal flow signals
to represent the excitation waveform. In [22, 23], a pitch-
synchronous residual/glottal flow codebook is constructed,
from which appropriate pulses are selected for synthesis.

Yet, sampling in the voice source domain exhibits some
challenges similar to those in the unit selection approach [21,
23], i.e., finding the best sequence of units that well matches
the given target specification and concatenate imperceptibly
together. Purely sampling-based approaches are, like unit se-
lection, inherently inflexible and limited by the available sam-
ples in the database: this limits the ability of the system to



change voice quality in a continuous manner, for example.

To overcome the above problems of using stored samples
without attempting to construct a fully parametric model of
glottal pulses (which has proved very challenging), we intro-
duce a novel voice source modelling technique that can be
considered as a compromise between waveform sampling and
parametric modelling. The method is based on predicting the
pitch-synchronous glottal flow directly in the time-domain by
using a DNN. The DNN is used to map the modelled speech
parameters to the actual excitation waveform, which can then
be used directly for synthesis in combination with predicted
vocal tract features. The proposed method has the flexibility
of a parametric model because it is able to generate variation
in the voice source waveform in response to changes in the
speech features. It also exhibits some of the advantages of
stored sample-based methods in that the predicted waveforms
contain more detail than parametric models.

The rest of the paper is organized as follows. First, DNNs
in the context of this work are briefly introduced in Section
2, after which the proposed DNN-based voice source mod-
elling technique is described in Section 3. Experiments us-
ing the new method are described in Section 4, concentrating
on DNN architecture and training, and on the use of the pro-
posed method in copy-synthesis, voice source modification,
and HMM-based synthesis. Finally, the new method and its
potential applications are discussed in Section 5.

2. DEEP NEURAL NETWORKS

A DNN [24] is a feed-forward, artificial neural network that
has at least two layers of hidden units between input and out-
put layers. In this work, a DNN is used to build a map-
ping from extracted acoustic speech features to correspond-
ing glottal flow pulses. This is a regression problem, where
we are predicting continuously-valued outputs, so we chose
a linear activation function for the output (regression) layer
with sigmoid activation function units for the hidden layers.
The latter is defined as

J
where f(x) = 1/(1 + exp(—x)) is the sigmoid logistic func-
tion, W;; and b; are weights and biases, and z; and v; are
the input and output of the DNN, respectively. For the linear
layer, the activation function is simply

J
Restricted Boltzmann machine (RBM) pre-training can be
used for preventing over-fitting to the data. RBM pre-training
aims at unsupervised learning of the distributions of the input
features. Since the input acoustic features are real valued in
this work, a Gaussian-Bernoulli RBM [24] is employed for
the visible (input) layer.

After optional pre-training, the DNN is trained (“fine-
tuned”) by back-propagating derivatives of a cost function
that measures the discrepancy between the target outputs and
the actual outputs. In this work, mean squared error (MSE) is
used as the cost function. The error function is

error = Z(’Uj —9,)? 3)
J

where ¥ is the regression target for DNN training.

3. DNN-BASED VOICE SOURCE MODELLING

Recently, for both automatic speech recognition [24] and
speech synthesis [25], DNNs have shown improvements over
conventional HMMs with Gaussian mixture models (HMM-
GMMs). In our work, a DNN is used in conjunction with
an HMM-GMM and the proposed approach is illustrated in
Figure 1. First, frame-wise acoustic features are extracted
from a database. In the feature extraction, iterative adaptive
inverse filtering (IAIF) [26] is used to decompose the speech
signal into a vocal tract filter and a voice source signal. The
extracted speech parameters include the vocal tract linear
prediction (LP) filter that is converted to a line spectral fre-
quency (LSF) representation, and parameters describing the
properties of the voice source, i.e., fundamental frequency
(FO), frame energy, harmonic-to-noise ratio (HNR) of five
frequency bands, and voice source LP spectrum converted
to LSF. The extracted features, depicted in Table 1, are then
used to train an HSMM-based synthesizer, as in [17].

The IAIF method produces an estimate of the voice source
signal from which individual glottal flow pulses are extracted.
To do this, glottal closure instants (GCls) are detected from
the differentiated glottal flow signal using a simple peak
picking algorithm. This enables the extraction of two-pitch-
period, GCI-centred glottal flow pulses, delimited by two
other GCIs. The pulse segments are interpolated to a constant
duration of 25 ms (400 samples at 16 kHz sampling rate),
windowed with the Hanning window, normalized in energy,
and stored in a codebook. The fixed duration of the pulses is
chosen as a compromise between minimizing the amount of
data stored and limiting loss of spectral information.

Given the set of glottal pulses and corresponding vectors
of 47 acoustic parameters (Table 1), a mapping is established
by training the DNN. RBM pre-training is used to alleviate
over-fitting, after which back-propagation is applied. For syn-
thesis, both vocal tract and voice source parameters are gen-
erated from context-dependent HMMs, as in [17]. Instead of
using the source speech parameters to select a sequence of
stored pulse waveforms drawn from the codebook, we use the
complete set of 47 acoustic parameters as input to the DNN,
which outputs glottal flow derivative waveforms. The gen-
erated glottal flow pulses are interpolated to a duration cor-
responding to the required FO, scaled in energy, mixed with
noise according to the HNR measure, and overlap-added to
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Fig. 1. Illustration of the proposed HMM-based speech synthesis
using DNN-based voice source modelling.

generate the excitation for synthesis. Alternatively, the DNN
pulses can be used as a target for selecting the closest match-
ing stored glottal flow waveforms from the codebook (similar
to [23]). The vocal tract filter already generated by the HMM
is then used to filter the excitation signal, producing speech.

4. EXPERIMENTS

4.1. Experimental setup

Two Finnish speech databases, male MV and female Heini,
recorded for the purpose of speech synthesis, were used in
the experiments. The male voice comprises 600 sentences
(approx. 1 h of speech) and the female database comprises
500 sentences. Both voices were sampled at 16 kHz.

The GlottHMM vocoder [17, 23] was used for extract-
ing the acoustic features and the glottal flow signal using
IAIF. Glottal flow pulse codebooks were constructed for
both databases in order to train the DNN-based voice source
model. The codebooks contained all 203,172 or 203,768
pulses for the male or female speakers, respectively. Addi-
tionally, smaller codebooks were constructed for both speak-

Table 1. Acoustic features used for training the HMM-based syn-
thesis and the DNN-based voice source model.

Feature Number of parameters
Energy 1

Fundamental frequency 1

Harmonic-to-noise ratio 5

Voice source spectrum 10

Vocal tract spectrum 30

ers from 20 sentences of speech material, in order to imple-
ment the alternative method in which the DNN output is used
to select a natural pulse from the codebook; these codebooks
consisted only of 7,495 and 8,131 pulses in order to minimize
computational cost at synthesis time. The standard HTS 2.1
method [27] was used for training the HMM-based system.

4.2. DNN training

The DNN architecture as described in Section 2 is used. The
input is the 47-dimensional vector composed of the extracted
acoustic speech features listed in Table 1 and the target output
is a 400 sample duration normalised glottal flow pulse.

In order to determine the optimal number of layers and
hidden units for DNN, six different systems (A-F) were
trained by varying the number of hidden layers (from 1 to 3)
and the number of units per layer (from 800 to 1200). Unsu-
pervised RBM pre-training was tried for one configuration.
200,000 training examples were used for training with 3,000
examples for cross-validation. The training and development
errors for each system are presented in Table 2. The results
show that system F with 2 hidden layers and 1000 units per
hidden layer gave best results, with RBM pre-training slightly
improving performance (compare system F to system B).

4.3. Voice source modelling and modification

Copy-synthesis for unseen speech data (i.e., not in the train-
ing or validation sets) using the proposed method is illustrated
in Figure 2, which shows the original (differentiated) excita-
tion estimated by IAIF from natural speech and the synthetic
DNN-based excitation generated from the extracted parame-
ters. The DNN-based excitation has been mixed with noise
according to the HNR measure. In informal listening, the
proposed voice source modelling method produces natural
sounding copy-synthesis, either by directly using the DNN
generated pulses or by using them as a target to select pulses
from the smaller codebook.

A potential advantage of predicting pulses with the DNN
is the ability to continuously adjust the glottal flow waveform
in response to the input acoustic features. Figure 3 demon-
strates this ability: frame energy, FO, and HNR are varied
individually while other parameters are left unchanged, and
pulses are generated from the trained DNN. The pulse wave-
form displays a continuous and consistent change in response

Hidden | Units per Pre- Train | Dev set

layers layer training | error error
A 1 1000 No 0.4109 | 0.4990
B 2 1000 No 0.3980 | 0.4875
C 3 1000 No 0.3999 | 0.4891
D 2 800 No 0.4037 | 0.4925
E 2 1200 No 0.4134 | 0.5015
F 2 1000 Yes 0.3935 | 0.4846

Table 2. Training and development mean squared error (MSE) for
various DNN configurations.
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Fig. 2. Demonstration of the DNN-based excitation generation by
copy-synthesis of a Finnish male speech segment [vie]. The upper
signal (black) represents the estimated differentiated glottal flow ob-
tained by IAIF. The lower signal (red) represents the excitation gen-
erated by DNN according to the acoustic features, with noise mixed
in according to the HNR.

to the varied speech parameter. For example, with low input
energy, the glottal pulse shows a less prominent peak at the
GCI whilst with high input energy the pulse has a very sharp
discontinuity at the GCI. Similarly natural behaviour is ob-
served also with FO and HNR. This opens up possibilities for
more flexible voice source modification.

4.4. Subjective evaluation of HMM synthesis

In order to demonstrate the capability and assess the quality of
the proposed method, an online subjective evaluation was car-
ried out. Three different methods were chosen for compari-
son: 1) Conventional GlottHMM synthesis [17] using a single
natural glottal flow pulse, of which spectrum is matched ac-
cording to the voice source LSF, 2) DNN-based voice source
modelling, and 3) DNN-based voice source model used as
a target cost for selecting natural glottal flow pulses from a
small codebook. The latest single pulse GlottHMM was se-
lected for comparison since it has been found to be a reliable
method for producing high quality synthetic speech, and bet-
ter than STRAIGHT with male speech [17].

A comparison category rating (CCR) test was used, in
which pairs of stimuli are presented to participants, whose
task is to indicate the difference between the two samples on
a comparison mean opinion score (CMOS) scale, which is a
discrete seven-point scale ranging from much worse (—3) to
much better (3). All three combinations of the systems (1—
2, 1-3, 2-3) were evaluated. 50 utterances were synthesized
from held-out data from both speakers and for each of the
three systems (300 stimuli in total). In order to reduce the
workload on participants, 10 sentences from both speakers
were randomly selected for each participant and presented to
them in each of the three system combinations. Thus each
participant rated a total of 60 stimuli pairs. Also the order-
ing of the pairs of stimuli was randomized. 26 people (15
Finnish and 11 non-Finnish) participated in the evaluation.
The CCR test responses are summarized by calculating the
mean score for each evaluated method, which yields the order
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Fig. 4. Results of the subjective evaluation showing that the DNN-
based methods are rated as equal to the baseline system.

of preference and distances between all the methods (i.e., the
amount of preference relative to each other). The results of
the CCR test, plotted in Figure 4, are encouraging in showing
that both new DNN-based methods are rated as equal to the
high-quality baseline synthesis system.

5. CONCLUSIONS

This paper presented a voice source modelling method based
on predicting the time domain glottal flow waveform using a
DNN. In the experiments presented in this paper, the proposed
DNN-based method is shown to successfully generate acous-
tic feature-dependent glottal flow waveforms and to produce
high-quality HMM-based speech synthesis, comparable to the
state-of-the-art methods. In addition to accurate voice source
modelling, the method offers possibilities for automatic or
manual voice source modification.
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Abstract

This paper studies a deep neural network (DNN) based voice
source modelling method in the synthesis of speech with vary-
ing vocal effort. The new trainable voice source model learns
a mapping between the acoustic features and the time-domain
pitch-synchronous glottal flow waveform using a DNN. The
voice source model is trained with various speech material from
breathy, normal, and Lombard speech. In synthesis, a normal
voice is first adapted to a desired style, and using the flex-
ible DNN-based voice source model, a style-specific excita-
tion waveform is automatically generated based on the adapted
acoustic features. The proposed voice source model is com-
pared to a robust and high-quality excitation modelling method
based on manually selected mean glottal flow pulses for each
vocal effort level and using a spectral matching filter to correctly
match the voice source spectrum to a desired style. Subjective
evaluations show that the proposed DNN-based method is rated
comparable to the baseline method, but avoids the manual se-
lection of the pulses and is computationally faster than a system
using a spectral matching filter.

Index Terms: Speech synthesis, deep neural network, DNN,
voice source modelling, vocal effort, glottal flow

1. Introduction

Statistical parametric speech synthesis, also known as hidden
Markov model (HMM) based speech synthesis [1, 2], is a pop-
ular framework for synthesising speech and a good alternative
for the unit selection approach [3]. It has several benefits such
as the ability to vary speaking style and speaker characteris-
tics [4-8], small memory footprint [9, 10], and robustness [11].
However, statistical speech synthesis suffers from lower seg-
mental speech quality compared to the unit selection systems
that concatenate natural speech waveforms [3]. This degra-
dation is thought to stem mainly from three factors: a) over-
simplified vocoder techniques that are incapable of representing
natural speech waveforms in detail b) acoustic modelling inac-
curacy, and c¢) over-smoothing of the generated speech param-
eters [2]. This paper addresses the first factor by introducing
a flexible voice source model that uses a deep neural network
(DNN), with the aim of better modelling variations in the voice
source signal and interaction between the source and the filter.
The modelling of the excitation signal in HMM-based
speech synthesis has greatly improved since the first vocoders
that used a simple impulse train excitation [12]. The quality of
such simple excitation is poor due to the unnatural zero-phase
character of the excitation. Mixed excitation [13] and two-band
excitation [14] has greatly improved the quality by mixing pe-
riodic excitation with aperiodic noise. This mixed excitation
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scheme is also used in the most prevalent vocoder in speech syn-
thesis, STRAIGHT [15, 16]. Also closed-loop training [17, 18]
and parametric models of the glottal flow [19, 20] have been
proposed for improving the speech quality.

Since the context-dependent characteristics of the glottal
flow waveform are difficult to represent using a simple paramet-
ric voice source signal, several approaches have utilised the ex-
citation wavefornper sein order to preserve the natural charac-
teristics in the waveform. The idea is not new (see e.g. [21-23)]),
but the development of statistical speech synthesis and vocoders
have given new applications for the approach. Recently, natu-
ral glottal flow pulses or residual waveforms have been used in
several vocoding approaches [24-31].

Reproducing different speaking styles has long been the
strength of statistical speech synthesis. Through adaptation and
similar technigues, a continuous degree of varying style can be
reproduced [4-8, 32, 33]. However, only few studies have ex-
plicitly investigated the modelling of the changes in the exci-
tation waveform in response to changes in speaking style. In
consequence, while mostly changing the pitch and overall spec-
trum, the changes in the voice characteristics are rather lim-
ited compared to natural speech. In contrast, the experiments
in [33, 34] have shown that by using an appropriate glottal flow
pulse for synthesising a specific style, improvements in the per-
ceived impression of the style are achieved. However, the cur-
rent approaches need human intervention, such as manually ex-
tracting and selecting the style-specific excitation waveforms.

The aim of this work is to present and extend the work on
the DNN-based voice source modelling method, preliminary
presented in [35], and apply it to the reproduction of various
vocal effort levels similar to the study in [33]. The new DNN-
based voice source modelling method is based on learning a
mapping between the acoustic features and the time-domain
glottal flow waveform using DNN. Thus, in synthesis, the ex-
citation waveform can be directly generated from the acoustic
features. Subjective evaluations are performed to find out if the
new simpler and automatic DNN-based method can reproduce
the same quality and impression of vocal effort as the previously
published method without manual intervention.

2. DNN-based voice source modelling

The proposed DNN-based voice source modelling method and
its use in synthesis of various speaking styles is illustrated in
Figure 1. In the training part, acoustic features are first ex-
tracted from a speech database at 5-ms intervals. As the aim
is to reproduce different speaking styles, the speech database
should contain both normal and style-specific speech, labelled
accordingly. The feature extraction uses iterative adaptive in-



verse filtering (JAIF) [36] in order to decompose speech sig-
nals into the vocal tract filter and the voice source signal. This
enables the further parametrisation of the voice source charac-
teristics and the segmentation of the glottal flow waveforms.
Speech features described in Table 1 are extracted, i.e., the fun-
damental frequency (F0), frame energy, harmonic-to-noise ratio
(HNR) of five frequency bands, voice source linear prediction
(LP) spectrum converted to line spectral frequencies (LSF), and
vocal tract LP spectrum converted to LSF. The acoustic features
of normal style are used for training an HMM-based voice, after
which it can be adapted to different speaking styles.

The output voice source signal by the IAIF algorithm is
used for extracting pitch-synchronous glottal flow pulse seg-
ments. First, glottal closure instants (GCls) are detected from
the differentiated glottal flow signal using peak picking at fun-
damental period intervals, and two-pitch-period, GCl-centred
glottal flow waveform segments are extracted. The pulse seg-
ments are interpolated to a constant duration of 25 ms (400 sam-
ples at 16 kHz sampling rate), windowed with the Hanning win-
dow, and normalised in energy. The pulses are stored in a code-
book and linked with the corresponding acoustics features of the
frame. The duration of the pulses is selected as a compromise
between minimising the amount of data stored and limiting the
loss of spectral information in the pulses. A mapping between
the acoustic features and the glottal flow waveform segments
is established by training a DNN. Random initialisation of the
DNN weights is used, after which back-propagation is applied.
In order to train a flexible voice source model, speech parame-
ters from all speaking styles were used for the DNN training.

The normal voice is adapted as in [8] to a desired style
using the style-specific data and an interpolation/extrapolation
coefficient, which defines the amount of adaptation from the
normal voice to the desired style. After the adaptation of
the voice, style-specific acoustic features are generated from
context-dependent HMMs (CD-HMM) according to text input
as in [25]. The acoustic features are used as input to DNN,
which outputs the context and style-specific glottal flow wave-
forms. The generated glottal flow waveforms are interpolated
to a desired length according to FO, scaled in energy, and mixed
with noise according to the HNR measure as in [31]. The indi-
vidual two-pitch-period waveforms are overlap-added in order
to create a continuous excitation, which is filtered with the vocal
tract filter generated from HMMs to create speech.

3. Experiments
3.1. Speech material

Two speech corpora, a male and a female speaker [33], were
used in the experiments. For both speakers, three different vo-
cal effort levels were utilised: breathy, normal, and Lombard.
The normal style consists of 1450 sentences, comprising ap-
proximately two hours of speech for both speakers. Lombard
speech was elicited by playing babble noise with 80 dB SPL

Table 1: Acoustic features used for training the HMM-based
voice and the DNN-based voice source model.

Feature Number of parameters

Energy 1

Fundamental frequency 1

Harmonic-to-noise ratio 5

\oice source spectrum 10

Vocal tract spectrum 30
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Figure 1:lllustration of the proposed DNN-based voice source
modelling method for synthesis of varying speaking styles.

to the speaker’s ears through headphones while recording, and
feeding back the speaker’s own voice through headphones, cor-
responding to a level of speaking in a normal room without
headphones. The Lombard style consists of 300 sentences. The
breathy speaking style was elicited by increasing the level of the
speaker’s feedback through headphones as well as instructing
the subjects to speak softly without whispering. 200 sentences
were read in the breathy style. The recording and processing of
the speech data are described in more detail in [33].

3.2. Training of deep neural networks

A DNN [37] is a feed-forward, artificial neural network that
has at least two layers of hidden units between input and output
layers. Recently, DNNs have been successfully used for both
automatic speech recognition [37] and speech synthesis [38],
and DNNs have shown improvements over conventional HMM-
based systems. In this work, a DNN is used in conjunction with
an HMM-based approach for mapping between the acoustic fea-
tures and the time-domain glottal flow waveform. The input for
the DNN is the 47-dimensional acoustic feature vector, consist-
ing of the features described in Table 1, and the output is the 400
sample duration normalised glottal flow waveform. For the hid-
den and output layers, sigmoid and linear activation functions
are used, respectively. The DNN is trained by back-propagating
derivatives of the mean squared error (MSE) cost function that
measures the discrepancy between the target and actual outputs.
Previously in our research on DNN-based voice source
modelling [35], a rather large network of 1000 neurons per layer
with three two hidden layer was proposed for learning the map-
ping between the acoustic features and the glottal flow wave-
form. In our recent studies, smaller DNN architectures have
been shown to learn the mapping more efficiently, while also
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Figure 2: Demonstration of the DNN-based excitation modelling by interpolating andgotating different HMM-based speaking
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to the generated speech parameters of various degrees of the stylegesulting pulses (without interpolation in time, scaling in
magnitude or adding noise) are shown for female vowel [u] and male Majve

taking less time to train. In this work, a 2-hidden-layer DNN is
used with 100 and 200 neurons in the first and the second hid-
den layers, respectively. In a reasonable time, it achieved much
lower errors than the DNN architecture proposed in [35].

In addition, restricted Boltzmann machine (RBM) pre-
training, used in [35], turned out to achieve fast initial reduction
in training error, but the error curves saturated also very rapidly
and did not achieve even nearly as low errors as random weight
initialisation. This seems to indicate that the RBM pre-training
helped in learning the main characteristics of the glottal flow
waveform, but reduced the flexibility of the model to learn the
multitude of variations in the glottal waveform shape. Thus, in
this work, random initialisation of the DNN weights is used.

Since the 400-sample-length glottal flow waveform is rather
high-dimensional, an approach using principal component anal-
ysis (PCA) was also experimented with. The glottal flow wave-
forms in the training database were decomposed into 40 prin-
cipal components (PCs) and the corresponding weights, and a
mapping between the 47 acoustic features and the 40 PCs were
then established using a DNN. The results were similar to the
sample-based approach, but glottal flow waveform was incon-
sistent when using unseen or noisy input data. Thus, the time-
domain glottal flow waveform is used in this work.

Due to occasional small errors in the GCI estimation, and
due to the averaging effect of the DNN training, the GCI peaks
of the generated pulses are slightly smoother than those in the
waveform inverse filtered from natural speech. In order to com-
pensate this constant difference in spectral domain, a fixed pre-
emphasis is applied at synthesis stage. The amount of pre-
emphasis is estimated by comparing the spectra of the voice
source signals over all styles synthesised with the DNN-based
method and conventional GlottHMM synthesis using natural
glottal flow pulse and a source spectral matching scheme [25].
Best match between the two spectra was achieved with first-
order differentiator withw = 0.387.

3.3. Handling data sparsity

Robustness to data sparsity is a crucial property of a genera-
tive model, and especially in speech synthesis, data sparsity is
a common problem. It is often not possible to include all possi-
ble input cases in the training material, and thus it is important
that a model can interpolate or extrapolate an appropriate output
from input parameters that are not included in the training set.

In order to demonstrate the ability of the proposed DNN-
based voice source model to create natural glottal flow wave-
form despite data sparsity, two training sets were constructed
with the other one missing a part of the input parameter values.
A data set of 280,651 input vectors and output pulse waveforms
were used to train a baseline DNN using the male speech data.
Since energy of the speech frame is highly dependent on the
speaking style, and the glottal pulse waveform shows consider-
able changes in relation to changes in energy (see [35]), it was
chosen as a feature to be altered in this experiment. The energy
in the original training set ranged from23.3 dB to 41.0 dB.

A modified training set was constructed by removing all data
points with energy values from 0 dB to 15 dB. After discarding
the specific data, the number of training samples in the modi-
fied set was 227,777, removing around 19% of the total sam-
ples and corresponding exemplars of glottal flow waveforms.
Both DNNs were trained similarly and the errors of the gen-
erated glottal flow waveforms were measured using a test set
with i) all data, ii) in-domain data, iii) out-of-domain data. The
mean, maximum, and minimum relative change in errd} (
are shown in Table 2. The results show that the overall error is
only slightly increased when moving from the in-domain data
(0.73%) to the out-of-domain data (2.07%), indicating that the
model can rather successfully interpolate/extrapolate the output.

3.4. Voice building

The HMM training and adaptation procedures were identical
to the experiments done in [33]. The training of the normal
voices followed the standard HTS method [39]. Speech fea-
tures described in Table 1 were extracted using the GlottHMM
vocoder [25] and delta, and delta-delta features were added.
Semi hidden Markov models were used as acoustic models, and
features were trained in individual streams except the vocal tract
LSFs and energy were trained together.

Table 2:Mean, maximum, and minimum change in the efftor
over the generated glottal flow waveforms when using a training
data with induced data sparsity in comparison to using all data.

\ Test data [ Ameang) [ Amax(E) [ Amin(E) ]
All data 1.17% 1.37% —7.86 %
In-domain data 0.73 % 1.37 % —7.86 %
Out-of-domain datal 2.07 % —1.89% | 36.18%
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In order to create the low and high vocal effort voices
(breathy and Lombard), the normal voice models were adapted
with constrained structural maximum a posteriori linear re-
gression combined with maximum a posteriori (CSMAPLR +
MAP) adaptation technique [8]. The speaker-dependent voice
source model DNNs were trained using all speech material in-
cluding breathy, normal, and Lombard speech.

For demonstrating the interpolation and extrapolation char-
acteristics of the DNN-based voice source modelling, both
voices were adapted to various degrees of vocal effort from very

breathy to very Lombard, and corresponding speech parameters

were generated. Normal training voices being at point 0.0 and
adaptation samples at points 1.0 (breathy) and B0 (Lom-

Breathy Normal Lombard

50—

DNN PCA DNN

PCA

DNN PCA

Figure 4:Results of the similarity test.

with Lombard speech, the difference between the two methods
is statistically significant with the proposed method being rated

higher in quality. Figure 3 presents the results of the similarity

test, showing the proportion of answers (with 95% confidence
intervals) for each method and for each vocal effort level. Only

in the case of breathy speech, the results are statistically signif-
icant, where the baseline method is rated more similar.

4. Discussion and conclusions

bard), adapted voices were created between 2.0 (very breathy) the experiments show that the proposed DNN-based voice

and—2.0 (very Lombard) with a step size of 0.2. The parame-
ters of each voice were then fed to the DNNs to generate style-
specific glottal flow waveforms. Generated waveforms for fe-
male vowel [u] and male vowel [a] are shown in Figure 2.

3.5. Subjective evaluation

In order to evaluate the performance of the proposed method,
subjective evaluations were conducted using three vocal effort
levels. The final voices used in the subjective evaluation were
created at points 1.0 (breathy), 0.0 (normal), ardO (Lom-
bard) for both speakers. A high-quality mean glottal flow pulse

source modelling method is capable of successfully reproduc-
ing different degrees of vocal effort, and that it improves the
synthesis quality with Lombard speech in comparison to the
baseline method. Although the proposed method was able to
generate breathier waveforms than the baseline system, and al-
though the resulting breathy voice was perceptually softer based
on informal listener reports, the similarity of the breathy voice
was slightly decreased due to the absence of the spectral match-
ing, as is used in [25,33]. In comparison to the baseline method,
the proposed method avoids manual intervention needed for
the voice style variation, and enables continuous style variation

excitation scheme was selected for a reference baseline system, Within an utterance, which is required for plausible expressive

which has been successfully used in synthesising speech with
varying vocal effort [33]. The baseline system uses a style-
specific mean glottal flow pulse for each of the three styles [33]
(corresponding to the PCA-based excitation in [29]), and a spec-
tral matching scheme [25,33], where a pole-zero filter is used to
filter the excitation signal in order to apply the desired spectral
properties defined by the generated voice source spectrum.
Two types of tests were conducted to compare the proposed
and the baseline systems. First, a comparison category rat-
ing (CCR) test was conducted to evaluate the speech quality.
In a CCR test, listener hears two different samples and rates
the quality difference between them on the 7-point compari-
son mean opinion score scale ranging from much wors®) (
to much better (3). A total of 14 native Finnish listeners eval-

speech synthesis. Moreover, the generation of pulses from a
DNN is computationally less expensive than filtering the exci-
tation signal with a pole-zero spectral matching filter.

The study shows that the approximate shape of the glottal
flow waveform can be successfully modelled by the proposed
approach in order to generate various speaking styles. How-
ever, the proposed method does not seem to greatly improve the
segmental quality of speech compared to using a pre-selected
glottal flow pulses. This indicates that even though the DNN-
based modelling approach is capable of generating the gross
shape of the glottal flow pulse, it introduces an averaging effect
that removes detailed variations of the pulse needed to achieve
quality close to natural speech.

The existence of interaction between the source and filter

uated 60 sample pairs each, and the preference of the methods is well known (see e.g. [40]), but it is hardly utilised in speech

was evaluated by averaging the listener scores for each method.

Secondly, a similarity test was conducted in order to assess

technology or in speech synthesis. In this work, the glottal flow
waveform is predicted based on features including the vocal

the speaker and style similarity between the two methods. In tract spectrum, but it seems that modelling the source and filter
the similarity test, listener is presented with two speech samples interaction by the proposed method is not adequate for greatly
synthesised by the two methods, and a natural reference sample improving the segmental speech quality. Future directions of
corresponding to the speaker and style of the synthetic samples. the study will be concentrated on the more accurate modelling
The task of the listener is to choose which of the two samples of the source-filter interaction using the DNN-based approach.
is more similar to the reference in terms of speaker and style, or
no preference between the samples. A total of 14 native Finnish
listeners evaluated 60 sample pairs each.

The mean scores of the quality test are shown for each vo- This work has been supported by the EC-FP7 (2007-2013) n
cal effort level with 95% confidence intervals in Figure 3. Only 287678 (Simpl&All), and the Academy of Finland (256961).
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ABSTRACT

This paper presents an experimental comparison of various leading
vocoders for the application of HMM-based laughter synthesis. Four
vocoders, commonly used in HMM-based speech synthesis, are used
in copy-synthesis and HMM-based synthesis of both male and fe-
male laughter. Subjective evaluations are conducted to assess the
performance of the vocoders. The results show that all vocoders per-
form relatively well in copy-synthesis. In HMM-based laughter syn-
thesis using original phonetic transcriptions, all synthesized laughter
voices were significantly lower in quality than copy-synthesis, indi-
cating a challenging task and room for improvements. Interestingly,
two vocoders using rather simple and robust excitation modeling per-
formed the best, indicating that robustness in speech parameter ex-
traction and simple parameter representation in statistical modeling
are key factors in successful laughter synthesis.

Index Terms— Laughter synthesis, vocoder, mel-cepstrum,
STRAIGHT, DSM, GlottHMM, HTS, HMM

1. INTRODUCTION

Text-to-speech (TTS) synthesis systems have already reached high
degree of intelligibility and naturalness, and they can be readily used
in reading aloud a given text. However, applications such as human-
machine interaction and speech-to-speech translation require that the
synthetic speech includes more expressiveness and conversational
characteristics. To bring expressiveness into speech synthesis sys-
tems, it is not sufficient to only concentrate on improving the verbal
signals alone, since non-verbal signals also play an important role in
expressing emotions and moods in human communication [1].

Laughter is one such non-verbal signal playing a key role in our
daily conversations. It conveys information about emotions and ful-
fills important social functions, such as back-channeling. Integrating
laughter into a speech synthesis system can bring the synthesis closer
to natural human conversation [2]. Hence, the research on analysis,
detection, and synthesis of laughter signals has seen a significant in-
crease in the last decade. In this paper, we focus on acoustic laughter
synthesis, and explore the role of vocoder techniques in statistical
parametric laughter synthesis.

The paper is organized as follows. Section 2 gives the back-
ground of work done in laughter processing and laughter synthesis
in particular. Section 3 describes the different vocoders compared in

The research leading to these results has received funding from the Eu-
ropean Community’s Seventh Framework Programme (FP7/2007-2013) un-
der grant agreements n® 270780 (ILHAIRE) and n® 287678 (Simple*All).
H. Cakmak receives a Ph.D. grant from the Fonds de la Recherche pour
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this work. Section 4 focuses on the perceptual evaluation experiment
carried out to compare the vocoders in their capabilities to produce
natural laughter. The results of these experiments are discussed in
Section 5. Finally, Section 6 presents the conclusions of this work.

2. BACKGROUND

In the last decade, a considerable amount of research has been done
on the analysis and detection of laughter (see e.g. [3]), whereas only
a few studies have been conducted for synthesis. The characteristics
of laughter and speech are slightly different. Formant frequencies in
laughter have been reported to correspond to those of central vow-
els in speech, but acoustic features like fundamental frequency (Fp)
has been shown to have higher variability in laughter than in speech
[4]. Importantly, the proportion of fricatives in laughter has been re-
ported to be about 40-50% [5], which is much higher than in speech.
Despite the differences, the same speech processing algorithms have
been applied for laughter analysis as for speech analysis.

As the acoustic behavior of laughter is different from speech,
it is relatively easy to discriminate laughter from speech. Classi-
fication usually depends upon various machine learning methods,
such as Gaussian mixture models (GMMs), support vector machines
(SVMs), multi-layer perceptrons (MLPs), or hidden Markov models
(HMMs), which all use traditional acoustic features (MFCCs, PLP,
Fo, energy, etc.). Equal error rates (EER) vary between 2% and 15%
depending on the data and classification method used [6, 7, 8].

On the other hand, acoustic laughter synthesis is an almost unex-
plored domain. In [9], Sundaram and Narayanan modeled the tem-
poral behaviour of laughter using the principle of a damped simple
harmonic motion of a mass-spring model. Laughs synthesized with
this method were perceived as non-natural by naive listeners (aver-
age naturalness score of 1.71 on a 5-point Likert scale [10]. ranging
from 1 (very poor) to 5 (excellent)). Lasarcyk and Trouvain [11]
compared two laughter synthesis approaches: articulatory synthe-
sis resulting from a 3D modeling of the vocal organs and diphone
concatenation (obtained from a speech database). The 3D model-
ing led to the best results, but laughs could still not compete with
natural human laughs in terms of naturalness. Recently two other
methods have been proposed. Sathya et al. [12] synthesized voiced
laughter bouts by controlling several excitation parameters of laugh-
ter vowels: pitch period, strength of excitation, amount of frication,
number of laughter syllables, intensity ratio between the first and
the last syllables, duration of fricative and vowel in each syllable.
The synthesized laughs reached relatively high scores in perceived
quality and acceptability, with values around 3 on a scale ranging
from 1 to 5. However, it must be noted that no human laugh was
included in the evaluation, which might have had a positive influ-



ence on the scores obtained by the synthesized laughs (as there is
no “perfect” reference to compare with in the evaluation). Also, the
method only enables the synthesis of voiced bouts (there is no con-
trol over unvoiced laughter parts). Finally, Urbain et al. [13] used
HMMs to synthesize laughs from phonetic transcriptions, similar to
the traditional methods used in statistical parametric speech synthe-
sis. Models were trained using the HMM-based speech synthesis
system (HTS) [14] on a range of phonetic clusters encountered in 64
laughs from one person. Subjective evaluation resulted in an average
naturalness score of 2.6 out of 5 for the synthesized laughs.

From this brief review of the literature, it is clear that the re-
search on HMM-based laughter synthesis is scarce — there exists
only one study on HMM-based laughter synthesis using a single
vocoder. In this work, we report the role of four state-of-the-art
vocoders commonly used in statistical parametric speech synthesis
for the application of HMM-based laughter synthesis.

3. VOCODERS

The following vocoders were chosen for comparison: 1) Impulse
train excited mel-cepstrum based vocoder, 2) STRAIGHT [15, 16]
using mixed excitation, 3) Deterministic plus stochastic model
(DSM) [17], and 4) GlottHMM vocoder [18]. All the vocoders use
the source-filter principle for synthesis, and thus there are two com-
ponents that mostly differ among the systems: the type of spectral
envelope extraction and representation, and the method for modeling
and generating the excitation signal. The vocoders are depicted in
Table 1 and described in more detail in the following sections.

3.1. Impulse train excited mel-cepstral vocoder

The impulse train excited mel-cepstrum based vocoder (denoted in
this work as MCEP) describes speech with only two acoustic fea-
tures: Fp and speech spectrum. The speech spectrum is estimated
using the algorithm described in [19]. Mel-cepstral coefficients are
commonly used as the spectral representation of speech as they pro-
vide a good approximation of the preceptually relevant speech spec-
trum. By changing the values of a (frequency warping) and ~y (factor
defining generalization between LP and cepstrum), various types of
coefficients for spectral representation can be obtained [19]. Here,
we use & = 0.42 and v = 0 which correspond to simple mel-
cepstral coefficients. Both F{, and mel-cepstrum are estimated us-
ing the pitch function in speech signal processing toolkit (SPTK)
[20], which uses the RAPT method [21]. Speech is synthesized by
exciting the mel-generalized log spectral approximation (MGLSA)
filter [22] with either simple impulse train for voiced speech or white
noise for unvoiced speech. This simple excitation method has an ef-
fect that the synthesized signal often sounds buzzy.

System Parameters Excitation
MCEP mcep: 35+ Fp: 1 Impulse + noise
STRAIGHT mcep: 35 + Fp: 1 Mixed excitation
band aperiodicity: 21 + noise
DSM mcep: 35+ Fop: 1 DSM + noise
GlottHMM Fo: 1+ Energy: 1+ Stored glottal
HNR: 5 + source LSF: 10 flow pulse +
+ vocal tract LSF: 30 noise

Table 1. Vocoders in test and their parameters and excitation type.

3.2. STRAIGHT

STRAIGHT [15, 16] was proposed mainly for the high quality ana-
lysis, synthesis, and modification of speech signals. However, more
often STRAIGHT is used as a reference for comparing between dif-
ferent vocoders in HMM-based speech synthesis, since it is the most
widely used vocoder, is robust and can produce synthetic speech
of good quality [23]. STRAIGHT decomposes the speech signal
into three components: 1) spectral features extracted using pitch-
adaptive spectral smoothing and represented as mel-cepstrum, 2)
band-aperiodicity features which represent the ratios between peri-
odic and aperiodic components of 21 sub-bands, and 3) F{, extracted
using instantaneous-frequency-based pitch estimation. In synthesis,
STRAIGHT uses mixed excitation [24] in which impulse and noise
excitations are mixed according to the band-aperiodicity parameters
in voiced speech. The excitation of unvoiced speech is white Gaus-
sian noise. Overlap-add is used to construct the excitation, which is
then used to excite a mel log spectrum approximation (MLSA) filter
[25] corresponding to the STRAIGHT mel-cepstral coefficients.

3.3. Deterministic plus stochastic model (DSM)

The deterministic plus stochastic model (DSM) of the residual sig-
nal [26] first estimates the speech spectrum, and uses the inverse of
the filter to reveal the speech residual. Glottal closure instant (GCI)
detection is used to extract individual GCI-centered residual wave-
forms, which are further resampled to fixed duration. The residual
waveforms are then decomposed into the deterministic and stochas-
tic parts in frequency domain, separated by the maximum voiced fre-
quency Fy, fixed at 4 kHz. The deterministic part is computed as the
first principal component of a codebook of residual frames centered
on glottal closure instants and having a duration of two pitch peri-
ods. The stochastic part consists of a white Gaussian noise filtered
with the linear prediction (LP) model of the average high-pass fil-
tered residual signal, and time-modulated according to the average
Hilbert envelope of the stochastic part of the residual. White Gaus-
sian noise is used as excitation for unvoiced speech. The DSM exci-
tation is then passed through the MGLSA filter. The DSM vocoder
has been shown to reduce buzziness and to achieve comparable syn-
thesis quality as that of STRAIGHT [26]. DSM vocoder was also
used in the previous HMM-based laughter synthesis work [13]. In
this paper, STRAIGHT is used to extract Fy and mel-cepstrum for
the DSM analysis, but the extraction of voice source features and
synthesis is performed using the DSM vocoder.

3.4. GlottHMM

The GlottHMM vocoder uses glottal inverse filtering (GIF) in order
to separate the speech signal into the vocal tract filter contribution
and the voice source signal. Iterative adaptive inverse filtering (IAIF)
[27] is used for the GIF, inside which LP is used for the estimation
of the spectrum. IAIF is based on repetitively estimating and cancel-
ing the vocal tract filter and voice source spectral contribution from
the speech signal. The output of the IAIF are the LP coefficients,
which are converted to line spectral frequencies (LSF) [28] in order
to achieve a better parameter representation for the statistical mod-
eling, and the voice source signal that is further parameterized into
various features. First, pitch is estimated from the voice source sig-
nal using autocorrelation method. Harmonic-to-noise ratio (HNR)
of five frequency bands is estimated by comparing the upper and
lower smoothed spectral envelopes constructed from the harmonic
peaks and the interharmonic valleys, respectively. In addition, the
voice source spectrum is estimated with LP and converted to LSFs.



In synthesis, a pre-stored natural glottal flow pulse is used for creat-
ing the excitation. First, the pulse is interpolated to achieve a desired
duration according to Fp, scaled in energy, and mixed with noise ac-
cording to the HNR measures. The spectrum of the excitation is then
matched to the voice source LP spectrum, after which the excitation
is fed to the vocal tract filter to create speech.

4. EVALUATION

A subjective evaluation was carried out to compare the performance
of the 4 vocoders in synthesizing natural laughs. For each vocoder,
two types of samples were used: a) copy-synthesis, which consists of
extracting the parameters from a laugh signal and re-synthesizing the
same laugh from the extracted parameters; b) HMM-based synthe-
sis, where HMM-based system is trained from a laughter database
and laughs are then synthesized using the models and the original
phonetic transcriptions of a laughter. Copy-synthesis can be seen as
the theoretically best synthesis that can be obtained with a particu-
lar vocoder, while HMM-based synthesis shows the current perfor-
mance that can be achieved when synthesizing new laughs. Human
laughs were also included in the evaluation for reference.
Our initial hypotheses were the following:

e HI1: Human laughs are more natural than copy-synthesis and
HMM laughs.

e H2: Copy-synthesis laughs are more natural than HMM
laughs, as they omit the modeling stage.

e H3: All vocoders are equivalent for laughter synthesis.

The third hypothesis concerns the comparison of the vocoders
among themselves, which is the main objective of this work. The
way this hypothesis is formulated illustrates the fact that we do not
have a priori expectations that one vocoder would be better suited
for laughter than other vocoders.

4.1. Data

For the purpose of this work, two voices from the AVLaughterCycle
database [29] were selected: a female voice (subject 5, 54 laughs)
and a male voice (subject 6, the same voice as in previous work [13],
64 laughs). As in [13], phonetic clusters were formed by grouping
acoustically close phones found in the narrow phonetic annotations
of the laughs [30]. This resulted in 10 phonetic clusters used for syn-
thesis: 3 for consonants (nasals, fricatives and plosives), 4 for vow-
els (9, a, 1 and 0), and 3 additional clusters were formed with typical
laughter sounds: grunts, cackles, and nareal fricative (noisy airflow
expelled through the nostrils). Inhalation and exhalation phones are
distinguished and form separate clusters. Hence there are 20 clus-
ters in total when considering both inhalation and exhalation clus-
ters. For each voice, the phonetic clusters that did not have at least
11 occurrences were assigned to a garbage class.

For each voice and each of the considered vocoders and ex-
tracted parameters (see Table 1), HMM-based systems were trained
using the standard HTS procedure [14, 31] using all the available
laughs. For the test, five laughs lasting at least 3.5 seconds were
randomly selected for each voice. For each vocoder, these laughs
were synthesized from their phonetic transcriptions (HMM synthe-
sis) as well as re-synthesized directly from their extracted parame-
ters (copy-synthesis). The 5 original laughs were also included in
the evaluation. This makes a total of 5 (original laughs) + 5 x 2
(HMM and copy-synthesis) x 4 (number of vocoders) = 45 laughs
in the evaluation set for both voices.

4.2. Evaluation setup

A subjective evaluation was carried out using a web-based listening
test, where listeners were asked to rate the quality of synthesized
laughter signals on a 5-point Likert scale [10]. Participants were
suggested to use headphones, and were then presented one laugh at
a time. Participants could listen to the laugh as many times as they
wanted and were asked to rate its naturalness on a 5-point Likert
scale where only the highest (completely natural) and lowest (com-
pletely unnatural) options were labeled. The 45 laughter signals
were presented in random order. 18 participants evaluated the male
voice while 15 evaluated the female one. All listeners were between
25-35 years of age, and some of them were speech experts.

5. RESULTS

Figure 1 shows the means and 95% confidence intervals of the nat-
uralness ratings for copy-synthesis (right) and HMM synthesis (left)
of the male (upper) and female (lower) voices. The pairwise p-values
(using the Bonferroni correction) between vocoders are shown in Ta-
ble 2 for copy-synthesis and in Table 3 for HMM synthesis.

As expected (HI1), original human laughs were perceived as
more natural than all other laughs (copy-synthesis and HMM). In
addition, H2 was also confirmed: for each vocoder, the naturalness
achieved with copy-synthesis was significantly higher than with
HMM synthesis. The most interesting is the comparison between
the vocoders (H3). In copy-synthesis, GlottHMM was rated as less
natural than all other vocoders (for both female and male), MCEP
and DSM obtained similar naturalness scores, while STRAIGHT
was slightly preferred for female laughs (but not for male laughs).
This may indicate that STRAIGHT is potentially the most suit-
able vocoder for laughter synthesis with the female voice, while
MCEP, DSM, and STRAIGHT are equivalently good for the male
voice. This trend is generally confirmed when looking at HMM-
based laughter synthesis (right plots), where it appears that MCEP
obtained the best results for the female voice, followed by DSM,
STRAIGHT and finally GlottHMM. For the male laughs, DSM
achieved the best results, slightly over STRAIGHT and finally
MCEP and GlottHMM, which were rated as similar. However, the
only statistically significant differences with HMM synthesis were
for the female voice with MCEP (significantly more natural than
STRAIGHT and GlottHMM) and DSM (significantly better than
GlottHMM).

These results indicate that MCEP and DSM are in general good
choices for laughter synthesis. Both vocoders use simple parame-
ter representation in statistical modeling: only Fy and spectrum are

Female | System | DSM | Glott | MCEP | STR | Nat
DSM — 0.006 1 1 0
Glott | 0.006 — 0.04 0.002 0
MCEP 1 0.04 — 1 0
STR 1 0.002 1 — 0
Nat 0 0 0 0 —
Male System | DSM | Glott | MCEP | STR | Nat
DSM — 0.003 1 1 0
Glott | 0.003 — 0 0.002 0
MCEP 1 0 — 1 0.27
STR 1 0.002 1 — 0
Nat 0 0 0.27 0 —

Table 2. Pairwise p-values between the vocoders copy-synthesis and
natural laughs. Statistically significant results are marked in bold.
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Fig. 1. Naturalness scores for copy-synthesis (left) and HMM synthesis (right) for the male (upper) and female (lower) speakers.

modeled and all other features are fixed. Accordingly, the synthesis
procedure of these vocoders is very simple: the excitation generation
depends only on the modeled Fy. In DSM, Fi,,, residual waveform,
and noise time envelope are fixed and thus they cannot produce ad-
ditional artefacts beyond possible errors in Fp and spectrum. MCEP
obtained the best naturalness scores for the female voice, although
the known drawback of this method is its buzziness. This was likely
not too disturbing as the the female voice used few voiced segments.
The buzziness could, however, explain why male laughs synthesized
with MCEP were perceived as less natural than female laughs, since
the male laughs contained more and longer voiced segments.

STRAIGHT performed better in copy-synthesis with a female
voice but cannot hold this advantage in HMM-based laughter syn-
thesis, when statistical modeling is involved. This may well be due
to the modeled aperiodicity parameters, which are difficult to esti-
mate from the challenging laughter signals, consisting a lot of partly
voiced sounds. Moreover, STRAIGHT pitch estimation is known to
be unreliable with non-modal voices (see e.g. [32]), which is very
often the case with laughter. Thus, the estimated aperiodicity param-

Female | System | DSM | Glott | MCEP | STR
DSM — 0.003 1 0.16
Glott | 0.003 — 0 0.34
MCEP 1 0 - 0.02
STR 0.16 | 0.34 0.02 —
Male System | DSM | Glott | MCEP | STR
DSM — 0.14 0.46 1
Glott 0.14 — 1 1
MCEP | 0.46 1 — 1
STR 1 1 1 —

Table 3. Pairwise p-values between HMM synthesis of different
vocoders. Statistically significant results are marked in bold.

eters may have a lot of inconsistent variation, thus degrading the sta-
tistical modeling of the parameters. Therefore, in HMM synthesis,
the mixed excitation may fail to produce an appropriate excitation.

GlottHMM also suffers occasionally from pitch estimation er-
rors, especially if the voicing settings are not accurately set or speech
material is challenging. At least the latter is true with laughter, in
which the vocal folds do not reach a complete closure as in modal
speech [33]. Pitch estimation errors are even more harmful for the
GlottHMM vocoder than the other vocoders since the analysis of
voiced and unvoiced sounds is treated completely in a different man-
ner. Thus, voicing errors generate severe errors in the output param-
eters of GlottHMM. GlottHMM is also considerably more complex
than the other systems, thus making the statistical modeling of all
the parameters challenging with small amount of data.

Finally, the role of the training material was not studied in this
experiment, but it is expected that it also has a significant effect,
especially when dealing with challenging material such as laughter.

6. SUMMARY AND CONCLUSIONS

This paper presented an experimental comparison of four vocoders
for HMM-based laughter synthesis. The results show that all
vocoders perform relatively well in copy-synthesis. However, in
HMM-based laughter synthesis, all synthesized laughter voices
were significantly lower in quality than in copy-synthesis. The
evaluation results revealed that two vocoders using rather simple
and robust excitation modeling performed the best, while two other
vocoders using more complex analysis, parameter representation,
and synthesis suffered from the statistical modeling. These findings
suggest that the robustness of parameter extraction and representa-
tion is a key factor in laughter synthesis, and increased efforts should
be directed on enhancing the robust estimation and representation of
the acoustic parameters of laughter.
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ABSTRACT

HMM-based speech synthesis generally suffers from typical buzzi-
ness due to over-simplified excitation modeling of voiced speech. In
order to alleviate this effect, several studies have proposed various
new excitation models. No consensus has however been reached on
what is the perceptual importance of the accurate modeling of the
periodic and aperiodic components of voiced speech, and to what
extent they separately contribute in improving naturalness. This pa-
per considers a generalized mixed excitation modeling, common to
various existing approaches, in which both periodic and aperiodic
components coexist. At least three main factors may alter the quality
of synthesis: periodic waveform, noise spectral weighting, and noise
time envelope. Based on a large subjective evaluation, the goal of
this paper is threefold: i) to evaluate the relative perceptual impor-
tance of each factor, ii) to investigate what is the most appropriate
method to model the periodic and aperiodic components, and iii) to
provide prospective clues for future work in excitation modeling.

Index Terms— HMM-based speech synthesis, excitation mod-
eling, glottal flow, residual signal

1. INTRODUCTION

Statistical parametric speech synthesis based on Hidden Markov
Models (HMMs) [1] emerged this last decade as a promising tech-
nique for the automatic generation of speech from text. This ap-
proach exhibits several advantages over concatenative speech syn-
thesis approach [2]: flexibility to change the voice characteristics
[3, 4, 5, 6], reduced memory footprint [7, 8], and enhanced robust-
ness [9]. Nonetheless, although some progress has been achieved
these last years, its main flaw is a degraded speech quality. This
can be explained by two main factors: i) the synthesis relies on a
parametric representation of the speech signal which results in a
typical buzziness; ii) the synthesis relies on a statistical modeling
of a given speech database, which results in a typical muffledness
caused by oversmoothed generated trajectories.

This paper addresses the first issue and aims to enhance the natu-
ralness of synthesized speech by improving the excitation modeling.
In speech processing, the modeling of speech is generally based on
the source-filter approach. In this framework, two options are pos-
sible according to what is considered to be the source and the filter.
In the first case, the source is the glottal (air) flow as physiologi-
cally produced by the vocal folds, and the filter refers to the vocal
tract response. Beyond the physiological motivation, this approach

T. Drugman is supported by FNRS. T. Raitio is supported by the Eu-
ropean Community’s Seventh Framework Programme (FP7/2007-2013) un-
der grant agreement n°® 287678. The authors would like to thank Vasilis
Karaiskos for running the listening tests.

has the advantage to be more flexible, as proper modifications of the
glottal contribution are expected to reflect changes in voice quality.
Nonetheless, this approach requires to reliably and accurately sepa-
rate these components from each other using glottal inverse filtering,
which is a difficult inverse problem. In the second case, the filter
corresponds to the overall spectral envelope of speech and the exci-
tation is the residual signal obtained by filtering speech signal with
the inverse of the estimated filter. The residual signal has the ad-
vantage to be easily obtained, however its amplitude spectrum is by
definition flat and the information about the glottal spectral shaping
is inextricably mixed in the filter component. As a consequence, its
flexibility for speech modifications is more limited.

In all cases, separating the source and filter contribution is im-
portant as it can lead to their distinct characterization and modeling.
Methods parameterizing the filter, such as the well-known linear pre-
diction (LP) or mel-cepstrum like features [10], are widely used. On
the contrary, methods modeling the excitation signal are still not well
established and the accurate and perceptually relevant modeling of
the excitation would benefit many speech speech processing areas.

The basic excitation model makes use of either a quasi-periodic
pulse train for voiced speech, or white noise for unvoiced speech.
This simplistic representation of voiced speech makes the resulting
synthesis sound buzzy due to unnaturally strong higher harmonics.
Various studies have focused on improving the excitation model
by mixing periodic excitation with aperiodic noise, such as in the
Mixed Excitation (ME) [11] approach. In ME, voiced excitation is
composed of both periodic and aperiodic components of which rel-
ative magnitudes are controlled by band-pass voicing strengths. In a
similar way, a ME consisting of a set of high-order state-dependent
filters derived through a closed-loop procedure was proposed in
[12]. In [13], a hybrid approach makes use of a codebook of pitch-
synchronous residual frames which are selected at synthesis time
according to the down-sampled version of the excitation. In [14, 15],
the Deterministic plus Stochastic Model (DSM) of the residual sig-
nal is proposed. DSM excitation consists of two components: the
deterministic waveform called eigenresidual, which is obtained by
Principal Component Analysis (PCA) on a set of pitch-synchronous
residual frames, and an aperiodic excitation delimited by maximum
voiced frequency and modulated in time according to a speaker-
specific time envelope.

In parallel, similar improvements using a glottal flow modeling
have been introduced. The approach described in [16] incorporates
the Liljencrants—Fant (LF) [17] model so as to reduce the buzziness
and increase the flexibility. A natural glottal flow pulse estimated by
glottal inverse filtering from a sustained vowel is modified according
to voice source features and mixed with noise in the so-called Glot-
tHMM approach presented in [18] and further refined in [19]. A syn-
thesis approach using LF model was also introduced in [20]. In [21],
a glottal source pulse library is extracted from natural speech and



pulses are selected according to voice source features for synthesis.
All these techniques (modeling either residual or glottal flow) have
been shown to provide a higher naturalness in HMM-based speech
synthesis, compared to the traditional pulse excitation.

Despite all the advances in excitation modeling, no consensus
has been reached yet on the perceptual effect of each component in
voice source modeling, and to what extent they separately contribute
in improving naturalness. In the frame of HMM-based speech syn-
thesis, this papers investigate the perceptual impact of the three main
factors in excitation modeling: waveform used for periodic excita-
tion, spectral weighting between the periodic and aperiodic compo-
nents, and the envelope used for the time modulation of the noise.
The goal of this paper is threefold: i) to evaluate the relative impor-
tance each component in modeling the excitation, ii) to investigate
what is the most appropriate method to model these components, iii)
to provide prospective clues for future work in excitation modeling.

The paper is structured as follows. Section 2 presents the gen-
eral vocoding framework used in various existing approaches and de-
scribes the alternatives considered throughout this paper. Section 3
deals with the experimental protocol, providing details about the im-
plementation of our HMM-based speech synthesizers and describing
the subjective evaluation and its results. Section 4 finally discusses
the implications of the study and concludes the paper.

2. GENERAL VOCODING FRAMEWORK

The great majority of excitation models rely on a similar mixed ex-
citation model in which both periodic and aperiodic components co-
exist during the production of voiced sounds. The workflow of this
generalized vocoder is displayed in Fig. 1. The periodic contribution
of the excitation e, (t) is obtained from a specific waveform whose
duration is adapted to the current Fp value, and which is then filtered
using some aperiodicity measurements. As for the aperiodic excita-
tion component e, (¢), it results from a white Gaussian noise that
is spectrally modified using these same aperiodicity measurements
and modulated in time using a given envelope. Note that all this
process is achieved pitch-synchronously. The two components e, (t)
and e, (t) are then summed up and the pitch-synchronous windowed
frames are overlap-added. The resulting excitation contribution fi-
nally goes through the filter to give the speech signal. The three
main factors impacting the performance of this generalized excita-
tion model are now studied in the remainder of this paper: periodic
waveform, noise spectral weighting and noise envelope.

2.1. Periodic Waveform

In the simplest source-filter vocoder, Dirac pulses at fundamental
period intervals are used to create the voiced excitation. Usually
improvements in excitation modeling are compared with either this
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Fig. 1. Workflow of generalized vocoder using mixed excitation.
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Fig. 2. Natural residual excitation frame (upper signal) and eigen-
residual (lower signal) for speaker AWB.

simple model or the mixed excitation [11], which is used e.g. in the
most commonly used vocoder STRAIGHT [22, 23]. Improvements
over the simple excitation are rather easy to achieve either by us-
ing more natural periodic waveform or by mixing the periodic com-
ponent with noise. However, the comparison between more com-
plex methods (e.g. STRAIGHT) may be ambiguous, since evalua-
tions are usually made between whole vocoder architectures using
different parameterization methods, parameters representations, and
HMM training. Also, the contributions of the periodic and aperiodic
components are usually left undetermined.

Only few studies have evaluated the perceptual differences be-
tween various deterministic waveforms other impulse train. Exper-
iments in [24] have shown that mean glottal flow pulse of a pulse
library (similar to eigenresidual in [15]) was rated better in quality
than excitation using pulse library and a pulse reconstructed from
12 PCA components. The latter comparison was also informally
done in [15] with the same conclusion that adding more components
does not improve the quality. The lower quality of the pulse library
method was due to slight irregularities in the excitation due to im-
perfect pulse selection. Also in creaky voice synthesis, the excitation
waveform has been shown to have relevant perceptual effect [25].

In this paper, we consider the reconstruction of the residual sig-
nal with three possible periodic waveforms: i) the Dirac impulse as
used in the simplest vocoder; ii) a natural excitation residual frame;
iii) speaker-dependent eigenresidual as proposed in [15]. Note that
the choice of the natural residual frame was not arbitrary and re-
sulted from the consideration of several criteria: a) having a low
pitch to avoid as much as possible up-sampling to the target Fy (as
this will cause energy holes in high frequencies); b) its amplitude
spectrum must be as flat as possible to avoid artefacts due to residual
resonances; ¢) having a clear discontinuity at the GCI. The natural
residual and eigenresidual for the male speaker considered in this
paper are illustrated in Fig. 2.

2.2. Spectral Weighting

In order to reduce the buzziness caused by a too strong harmonic-
ity, it has been shown to beneficial to adopt an approach in which
both periodic and aperiodic components may coexist [11]. Two main
techniques were proposed in the literature for this purpose. The first
one relies on a multiband approach where, for each spectral band, the
energy of periodic and aperiodic contributions is controlled by aperi-
odicity measurements. These measurements can be computed in var-
ious ways. In [11], they consist of correlation coefficients calculated
in each band. In [19], they are derived from the strength of the cep-
stral fundamental period peak, while in [23, 21] they are determined
based on the ratio between the upper and lower smoothed spectral



envelopes. The second technique for spectral weighting makes use
of a maximum voiced frequency (usually noted F},) which demar-
cates the boundary between the periodic component (which holds
only in the low frequencies) and the aperiodic component (which
holds only in the high frequencies). This idea originates from the
Harmonic plus Noise Model (HNM) of speech [26], and was later
integrated into several methods for excitation modeling in HMM-
based speech synthesis [14], [20].

The perceptual effect of these difference methods has not been
studied in the context of HMM-based speech synthesis, Thus, four
options for spectral weighting are investigated in this paper: i) the
aperiodic component is discarded and the excitation consists only of
the periodic contribution; ii) use of a static maximum voiced fre-
quency F, fixed to 4 kHz as is done in [27] and [15]; iii) use of
dynamic F,,, value estimated using the algorithm described in [26];
iv) use of the HNR measurements proposed in [21].

2.3. Envelope for Noise Modulation

In addition to modeling the spectral characteristics of the noise (as
described in Section 2.2), some studies have addressed its time prop-
erties. The motivation for this arises from the observation that the
time distribution of the noise is not uniform and exhibits a synchro-
nization with the glottal cycle. In [26], a pitch-synchronous para-
metric triangular envelope is proposed. In [28], authors compare
the triangular to Hilbert energy envelopes in the frame of HNM and
report a slight improvement. In [29], an alternative parametric rep-
resentation of a triangular envelope is proposed. It is however worth
mentioning that none of these works have been tested in the con-
text of HMM-based speech synthesis, which requires slowly-varying
parameter trajectories for a proper statistical modeling. Finally, a
speaker-dependent noise waveform envelope was proposed in [15],
which is extracted by averaging glottal closure instant (GCI syn-
chronous Hilbert envelopes of the stochastic part of the excitation.

Three possible noise envelopes are further studied in this paper:
i) uniform distribution; i) the triangular window proposed in [26];
iii) the speaker-dependent Hilbert envelope proposed in the DSM
approach [15]. An illustration of this latter waveform is shown in
Fig. 3 for the female speaker considered in this study.

3. EXPERIMENTS

3.1. HMM-based Voice Building

In order to find out the perceptual effects for each of the studied exci-
tation component, HMM-based voices were built and used in subjec-
tive listening tests. To prevent perceptual effects due to other factors
than the ones in study, a single system architecture was used that is
capable of producing all the different component combinations. The
speech features used to train the HMMs are depicted in Table 1. In
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Fig. 3. Speaker-dependent Hilbert envelope for speaker SLT.

feature extraction, fundamental frequency (Fp) and HNR were ex-
tracted using the GlottHMM vocoder [19, 21] while SPTK 3.6 [30]
was used to extract the speech spectrum. The spectrum was parame-
terized using a 30th order mel-generalised cepstral (MGC) analysis
[31] with @ = 0.42 and v = —1/3. MGCs were then converted to
line spectral frequencies (LSF) for better parameter representation
for HMM training. The maximum voiced frequency was estimated
by the algorithm described in [26]. All other data such as the periodic
waveform or the noise envelope have been extracted as explained in
Section 2 by a GCI-synchronous analysis, where GCls are detected
using the SEDREAMS algorithm [32].

The HTS 2.1 HMM architecture [33] was used for training. All
features were modeled in individual streams. Only Fp and spectrum
were used for the alignment. In synthesis, parameters were gener-
ated considering global variance [34] except for the spectrum. Exci-
tation was generated using the vocoder described in Section 2 where
the excitation waveform and noise modeling were varied according
to the desired setup. Finally, the excitation was filtered with the mel-
generalised log spectral approximation (MGLSA) filter [35].

Two databases recorded for the purpose of developing text-to-
speech (TTS) synthesis were used to build voices for the experi-
ments. These voices are Scottish English male AWB and US En-
glish female SLT from the ARCTIC database [36], which consist of
1,138 and 1,132 sentences, respectively. 1,000 sentences were used
for training both voices and the rest was used for testing.

3.2. Subjective Evaluations

Subjective evaluation was performed in three separate steps in order
to find out the effect of each component and also their possible inter-
actions. The idea was to first select the best noise spectral weighting
according to a subjective evaluation among 4 systems. Then, the best
spectral weighting method according to the first evaluation is used
to study the effect of the noise time envelope, in which 3 systems
are evaluated. Finally, in the third test, both the best noise spectral
weighting and the best time envelope are used in the study of the
effect of the periodic waveform, in which 3 systems are compared.

Comparison Category Rating (CCR) test was used in order to
determine the quality difference between the systems. In CCR test,
listeners are presented with speech sample pairs from which listen-
ers rate the difference of the two samples on the comparison mean
opinion score (CMOS) scale, which is a discrete seven-point scale
ranging from “much worse” (—3) to "much better” (3). All pos-
sible system combinations were evaluated (e.g. for three systems:
1-2, 1-3, 2-3) in both directions (e.g. 1-2 and 2-1). Thus, there
were 6 comparisons per sample for 3-system test and 12 for the 4-
system test. The CCR test responses were summarized by calculat-
ing the mean scores and 95% confidence intervals for each evaluated
method. The mean yields the order of preference and distances be-
tween all the methods (i.e., the amount of preference relative to each
other). A Wilcoxon signed-rank test was finally used (as the scores
were rarely normally distributed) for further testing the significance
between the means of each method pair. The systems used across
the 3 CCR tests are summarized in Table 2 in concordance with the
methods explained in Section 2.

Table 1. Speech features used for training the HMM system.

Feature N. of params.
Fundamental frequency 1

Maximum voiced frequency (F,) 1
Harmonic-to-noise ratio

Mel-generalized cepstrum 30




All test samples (137 for AWB and 132 for SLT) were synthe-
sized for the three tests using each system (4 + 3 + 3 = 10 sys-
tems) and were included in the listening tests. Thus, a total of 2,690
(10 x (137 + 132)) samples were synthesized. The loudness of the
sentences were normalized according to ITU-T P.56. In order to re-
duce the workload on participants, 5 sentences from each speaker
were randomly selected for each participant and presented to them
in each test. Also ten null pairs (same samples in the pair) were in-
cluded in order to test the consistency of the listeners. Thus each
participant rated a total of 130, 70, and 70 stimuli pairs in the first,
second, and third test, respectively.

Listening tests were performed in sound proof booths with high-
quality headphones. All participants were university students and
native speakers of English, and they were paid for the participation.
24, 21, and 24 listeners participated in the three tests, respectively.
However, after inspection of the results, some participants were re-
moved due to inconsistent results for the null pairs. Thus, results
from 20 listeners in each test were finally used.

3.3. Results

In the first test (CCR1), the perceptual effect of the noise spectral
weighting was studied by evaluating the 4 approaches presented in
Table 2. The basic Dirac pulse was used as the periodic wave-
form in synthesis in order to emphasize the perceptual effect of the
noise models. Constant time envelope was also used. The results
are shown in Figure 4 (uppermost graph). Discrepancies are ob-
served across male and female speakers. For male, HNR and DynFm
show no statistically significant difference, but for the female voice,
DynFm is rated better. FixFm is rated always worse than HNR and
DynFm except for the female speaker. System without any noise
(Imp) is always rated the worst. These results are also confirmed by
the statistical Wilcoxon test. Since DynFm was rated better or equal
than the rest of the systems, it is used in the rest of the experiments.

In the second test (CCR2), the effect of the noise time envelope
was studied. The 3 systems considered in CCR2 are depicted in
Table 2 (middle part) and the corresponding results are shown in
Figure 4 (middle graph). The results show no statistically significant
differences between the methods. Thus, the results indicate that the
noise time envelope has no perceptual relevance, and the simplest
one, constant time envelope, is used in the third experiment.

In the third test (CCR3), the effect of periodic waveform was
studied by including the 3 systems in Table 2 (bottom part). The
corresponding results are shown in Figure 4 (bottom graph). Results

Table 2. Systems in the three subjective evaluations (CCR1/2/3).

CCR1 Effect of noise spectral weighting

Imp Impulse excitation without noise

FixFm  Impulse excitation 4 noise according to fixed F,
DynFm Impulse excitation 4 noise according to dynamic Fi,
HNR Impulse excitation + noise according to HNR

CCR2 Effect of noise time envelope

Con Imp. exc. + dyn. F}, noise + constant time envelope
Tri Imp. exc. 4+ dyn. F}, noise + triangular time envelope
DSM Imp. exc. + dyn. F},, noise + DSM time envelope
CCR3 Effect of deterministic waveform

Imp Impulse excitation + dyn. F},, noise + const. time env.
Nat Natural residual + dyn. F3, noise + const. time env.
Eig Eigenresidual + dyn. F;,, noise + const. time env.
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Fig. 4. Results of the subjective evaluation comparing noise spectral
weighting (uppermost), noise time envelope (middle), and periodic
waveform (bottom).

also diverge across male and female speakers. For male, the natural
residual frame and the eigenresidual are rated equally good while the
impulse excitation is rated worse than the natural residual. For the
female speaker, impulse excitation and eigenresidual are rated equal
while natural residual is rated worse that the two others. If scores
are averaged, there are no statistically significant differences. These
results are confirmed by the Wilcoxon signed-rank test.

4. CONCLUSION

This paper addressed the problem of excitation modeling in order
to improve the naturalness in HMM-based speech synthesis. Based
on a generalized vocoder, three main factors influencing the quality
of synthesis were studied: periodic waveform, noise spectral weight-
ing, and noise time envelope. A subjective evaluation was performed
in order to determine the perceptual importance of each factor. Our
results clearly indicate that: i) the spectral weighting is an essential
feature as it leads to the greatest perceptual differences; ii); incorpo-
rating a noise model during the production of voiced sound is crucial.
This can be efficiently achieved based on HNR measures or using a
maximum voiced frequency; iii) the perceptual impact of the noise
envelope seems to be negligible; iv) it is necessary to adapt the peri-
odic waveform according the speaker’s Fp range as it will affect the
excitation phase properties. These conclusions should be carefully
considered when designing new excitation models. As a result, we
believe that future research efforts should focus on new strategies to
weight the energy of both periodic and aperiodic components in sev-
eral spectral bands, as well as on a better understanding of the phase
information in the periodic waveform.
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Abstract

We propose a new method for the extrapolation of emotional acoustic patterns in order to incorporate emotional
content into new or previously neutral synthetic voices. The method is demonstrated using acoustic emotion models
of four emotions (anger, surprise, sadness and fear) which have been trained on emotional female speech data and
extrapolated to a new synthetic neutral female voice.

Our analysis shows that the emotional patterns are partially extrapolated to the rargetr speaker without losing the
target speaker identity. The strength of the emotion extrapolation can be successfully varied using an extrapolation
factor. However, the strength of the extrapolation has a negative impact on the resulting speech quality, especially
when extrapolating the spectral component, which plays an important role in the realisation of anger. We propose a
new metric (Emotional Extrapolation Performance (EEP)) to evaluate the goodness of the extrapolation to a target
speaker. Good EEP scores have been obtained in the extrapolation of fear, sadness and anger. However, the acoustic

emotional patterns of surprise can not be extrapolated with this method.

Index Terms

emotion extrapolation, emotional speech synthesis, parametric speech synthesis

I. INTRODUCTION

In the context of acoustic emotional speech synthesis, the requirement to record professional actors who know

how to portray the emotions that are to be synthesised, introduces an additional cost in the building of new emotional
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synthetic voices.

Therefore, it would be useful to build emotional speech models which learn the emotional patterns of a specific
speaker and then extrapolate those patterns to conventional neutral voices. The extrapolation of acoustic emotional
patterns to different speakers would allow the improvement of the expressiveness of synthetic voices built with
existing corpora and more easily and cheaply produce text-to-speech (TTS) suitable for applications like storytelling,
toys, virtual agents, etc.

Using the unit selection TTS method [1]-[5], high quality synthetic speech can be produced [6], especially for
normal neutral reading styles. Because this method tries to minimise signal processing, highly natural synthetic
speech can only be synthesised if the appropriate units are in the inventory. The minimisation of signal processing
procedures is particularly important, since it not only degrades speech quality [7], [8], but also impairs emotion
identification, emotional strength and speaker similarity [9].

Another inconvenience of unit selection speech synthesis is that the resulting voices are fixed and significant effort
is needed to create multiple emotions and speakers. Some researchers have suggested to use rules to incorporate
prosodic or phonological strategies into unit selection [10]-[12], found from small or blended emotional speech
corpora, to modify the target FO and duration contours [13]. However, the design of an appropriate target cost function
is far from easy because the relationship between the components of the target cost and listeners’ perceptions is
unclear [14].

The other state-of-the-art TTS method is statistical parametric speech synthesis, which has notable advantages over
unit selection in this area: since all acoustic parameters are modelled within a single framework, it is straightforward
to transform or modify the speaking style or emotion by using interpolation of Hidden Markov Models (HMM)
[15], multiple regression of emotion vectors [16] and/or HMM adaptation techniques [17]. However, the main
drawback of statistical parametric speech synthesis is that the spectrum and prosody generated from HMMs tend to
be over-smoothed and lacking the richness of detail present in natural spectral and prosodic patterns, because of the
inherent averaging in the statistical approach; these details are crucial for properly conveying emotions. However,
since the HMM-based approach requires less data than unit selection and also enables the generation of intermediate
or exaggerated emotions, it is still an attractive proposition for modelling acoustic emotional patterns.

HMM adaptation techniques [18], [19] provide a powerful tool to create new synthetic voices with relative little
data of the target speaker. These techniques have been successfully applied to the synthesis of emotional speech [17],
[20], but they require emotional data from the target speaker, and listeners’ identification of the natural emotional
data must first be confirmed to ensure the perception of the emotion in the target speaker voice. This usually entails
recording professional actors. Large, high quality neutral speech corpora are available for speech synthesis, but
it could be very difficult to obtain additional recordings from the same speakers. As an alternative, it would be
possible to interpolate emotional speech models [15] of an emotional speaker voice and a target speaker voice, but
in this case, the similarity with the target speaker would decrease, as the target speaker would be identified as the
emotional source speaker.

One of the main functions of emotions is adaptation [21]. Given a stable situation and a stable state (understood
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as a neutral reference state), we can view emotional processes [22] as a deviation from that neutral state, used by the
individual to try to adapt to a new situation generated by an incoming stimulus. Evaluation of these stimuli has an
offset effect in the subjective experience and physiological support, that is previously modulated by an appraisal filter
that depend on the previous individual experience and social and culture information [23]. Physiological changes
(e.g., changes in voice), depend on these factors too, and this suggests that it is necessary for the listener to know
the offset introduced by the speaker (e.g., due to previous experience) to completely identify his or her emotional
state.

Based on previous HMM interpolation algorithms [15], we propose a new method for the extrapolation of acoustic
emotional patterns to new target speakers (for whom we have no emotional speech training data), where the acoustic
emotional patterns are learnt as deviations of emotional speech models of a source speaker from his or her neutral

model.

II. CORPORA
In this work, we used two corpora:

o The Spanish Expressive Voices (SEV) corpus [24], used to build emotional voices of a source speaker, from
which acoustic emotional patterns will be learnt.
« The UPC_ESMA [25] corpus, used to build the neutral voice of a target speaker, to which we will apply the

previously learnt emotional patterns.

The SEV corpus comprises speech and video recordings of an actor and an actress speaking in a neutral style
and simulating six basic emotions: happiness, sadness, anger, surprise, fear and disgust. SEV presents a relatively
large size for a corpus of this type (more than 100 minutes of speech per emotion). In this work only the speech
data of the actress have been used (almost one hour per emotion). The SEV corpus covers speech data in several
genres such as isolated word pronunciations, short and long sentences selected from the SES corpus [26], narrative
texts, a political speech, short and long interviews, question answering situations, and short dialogues. The texts
of all utterances are emotionally neutral. The database has been automatically labelled. The female speech data
has been validated through perceptual tests, achieving an Emotion Identification Rate (EIR) as high as 90% [24].
Emotional voices based on this corpus using statistical parametric speech synthesis and unit selection synthesis
have been successfully evaluated [9].

The UPC_ESMA corpus comprises a set of 776 recordings of a professional actress in neutral style. It covers
short sentences (almost 30 minutes of speech), medium length paragraphs (almost 30 minutes of speech) and large
literary paragraphs (almost 45 minutes of speech), all phonetically balanced. Voices based on this corpus using

statistical parametric speech synthesis and unit selection synthesis have also been successfully evaluated [27].

III. BUILDING VOICES

The synthetic voices were built using a statistical parametric speech synthesis technique, using the HTS Toolkit [28]

adapted for Spanish [9]. Our Spanish system, using the UPC_ESMA corpus, exhibited very good performance in
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a Spanish speech synthesis competition [27], [29]. Each emotional voice was built from scratch using speech data
only of the target emotion.

The HMM-based speech synthesis system comprises three components: speech analysis, HMM training, and

speech generation.

« In the speech analysis part, three kinds of parameters for the STRAIGHT [30] mel-cepstral vocoder with mixed
excitation (the mel-cepstrum, log F'0 and a set of aperiodicity measures) are extracted as feature vectors to be
modelled by the HMMs.

o In the HMM training part, context-dependent multi-stream left-to-right Multi-Space Distribution Hidden Semi-
Markov Models — MSD-HSMMs [31] — are trained for each emotion using a maximum likelihood criterion.

o In the speech generation part, acoustic feature parameters are generated from the MSD-HSMMs using a
parameter generation algorithm that considers the Global Variance (GV) of a trajectory to be generated [32].
Finally, an excitation signal is generated using mixed excitation (pulse plus band-filtered noise components)
and Pitch-Synchronous Overlap and Add (PSOLA) [33]. This signal is used to excite a Mel-Logarithmic
Spectrum Approximation (MLSA) filter corresponding to the STRAIGHT mel-cepstral coefficients, generating

the synthetic speech waveform.

IV. EMOTION MODELLING AND EXTRAPOLATION

In our method, we start by using neutral and emotional speech from a given source speaker to learn the relevant
emotional patterns. In a second step, these emotional patterns will be applied to the neutral speech model for a
target speaker, so that no emotional speech data from this target speaker will be required.

In our case, we use the female speaker from the SEV corpus as the source speaker (src), and the female speaker
from the UPC_ESMA corpus as the target speaker (1gt).

The emotion models, which will be extrapolated to the neutral voice of the farget speaker, will be estimated from
the neutral and emotional recordings of the source speaker.

The training material for the source speaker was limited to those emotions that were better identified in earlier
tests, having at least a 70% emotion identification rate relative to natural speech [9]. These emotions were: anger,
surprise, sadness, and fear.

Figure 1 summarizes the proposed emotion extrapolation method.

A. Emotion Model Definition and the Proposed Method

HMMs for each emotion may have different clustering tree structures and therefore it is not straightforward
to extrapolate at the model level. Therefore, the extrapolation of HMMs is done on-line at synthesis time, using
interpolation between observations, as in [15] which is the simplest interpolation method described in [34].

Let E1,---, By represent the N emotions and let Ej represent neutral speech. First, we convert a given text
into a context-dependent phoneme label sequence. Then, by consulting the context clustering decision trees built

for each state of each feature in the HMMs for neutral and each emotion of a source speaker, the context-dependent
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Fig. 1. Graphical representation of the emotion extrapolation method.

phoneme label sequences are converted into N + 1 sentence-sized HMMs, one for each emotion and one for natural
speech, g - - - Ay, having different state sequences. However note that they have the same total number of states I.
Each state contains several Gaussian pdfs for each of the acoustic features and a single Gaussian pdf for duration.
The Gaussian pdf for state 7 in the sentence-sized HMM A,, for emotion n is characterized by a mean vector p;
and a covariance matrix X; . The dimension of the mean vector may vary depending on the acoustic features.
Then, we calculate differences and scaling of the mean and covariance (Ap,; ,A3; ) for each state i between

neutral £y and each emotion F,,.

Ap; = p; — Wy, (D

A, =%, ;1 )

in

The key idea of the proposed method is simple — we assume that these differences above are relatively speaker-
independent and thus may be applied to different speakers.

In a similar way to the source speaker, by consulting the context clustering decision trees built for each state of
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each feature in the HMMs for the neutral speaking style Eo of a target speaker, the context-dependent phoneme label
sequences are converted into a sentence HMM Xo. This sentence HMM also has the same total number of states

1. Let the mean vector and covariance matrix of a Gaussian pdf for state ¢ in the XO be zi;, and s respectively.

i0s
Using the differences above, we define a new mean vector and a new covariance matrix for that Gaussian pdf for

~

the target emotion E,, for the target speaker, denoted by g, ,%; . as follows:

ﬁin = ﬁio + k’Aﬂiny 3)

S =35, KA, )

where k is an extrapolation factor between neutral Eo and the target emotion E,. A graphical representation of
the proposed method is shown in Figure 2. Ellipses represent the gaussian distributions for a hypothetical 2D
speech component. Note that this can be applied to the Gaussians for all the acoustic features, including spectrum,
log F'0, and duration in the same way. It is also possible to apply the same concept to the weights representing

voice/unvoiced ratios.

V. ANALYSIS OF THE EMOTION EXTRAPOLATION

The emotion extrapolation function has the potential to change:

« the perceived emotion in the target speaker voice;
« the perceived speech quality (SQ);

« the perceived similarity with the target speaker.

Prior to an exhaustive perceptual evaluation of the emotion extrapolation algorithm proposed in Section IV, we
first performed an initial analysis of the feasibility of the emotion extrapolation method over each speech component,
over intonation and rhythm jointly and over the whole speech model.

A small set of five sentences, different to the final evaluation set, was selected for this analysis. The emotion

extrapolation was evaluated using utterances synthesised with:

« the emotionally transformed model of the target speaker,
« the neutral synthetic voice of the target speaker,
« the neutral synthetic voice of the source speaker,

« and the emotional synthetic voice of the source speaker.

A. Emotion Extrapolation of the Spectral Component

First, we analysed the emotion extrapolation of only the spectral component. For this initial study, we decided
to set the extrapolation factor k. equal to 1, so that the same acoustic deviation between the emotional speech
and the neutral speech of the source speaker is applied to the neutral speech of the target speaker (in V-D and VII
we will address the effect of the variation of the extrapolation factor).

The perception of the resulting transformation can be summarised as:
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Fig. 2. Graphical example of extrapolation of the emotional space of a source speaker to a target speaker using an extrapolation factor k equal

to 1.

o Speech fragments that were transformed with reasonable quality (without instabilities or distortion), sound very
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close to the neutral speech.

This might be expected, especially for “prosodic” emotions, like fear and surprise (as we deduced in [9]).

However:

The

perceived effect of a “closed mouth” in the angry voice of the source speaker. However, this effect appears to

Some spectral coloration in the transformed spectra for fear could be perceived, a by-product of the

extremely high pitch of this emotion.

Surprise extrapolation of the spectrum sounds clearly neutral. No emotional differences compared to the

neutral target speech could be perceived.

extrapolation of anger, which was found to behave as a segmental emotion in [9], is able to convey the

be smoothed in the transformed voice.

The

extrapolation of sadness, an emotion with observed specific segmental and supra-segmental patterns [9], is
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able to convey the “languor” of sadness. However the extrapolation of this emotion for the spectral component
has consequences for the final perceived SQ.

o SQ is partially degraded for all emotions. Initially, we observed that the main degradation was due to the
instability of the extrapolation for some phonemes. In order to avoid such instabilities in the transformation,
we conducted an experiment where only the central state (of five states per phoneme) was transformed, arguing
that transitional states between phones are less stable and stationary than the central states. No instabilities
were found in this approach, but the resulting voice was again perceived as mostly neutral.

Then, we analysed in which contexts the transformation was not stable, avoiding the transformation for those.

We observed that most of the main instabilities occurred in:

Trills and taps including /R/ (like in “verdad”) and /r/ (like in “quiere”).

Transitional states from trills, taps, plosives (/p/, /t/, /k/) and aproximants (/b/, /d/, /g/) to initial transitional

states of vowels.

Transitional states from vowels to initial transitional states of trills and taps (only for /R/ and /t/) and
fricatives.

Based on these initial findings, we conducted an additional experiment in which the transitional states of
those problematic contexts were not transformed. Most of the instabilities disappeared, improving the overall
SQ without apparently losing emotional content. However, in some cases it appeared necessary to avoid the
transformation in the central states.

Finally, we conducted an experiment in which only gy, was transformed. In this case, the aforementioned
instabilities occurred, thus refuting the hypothesis that the transformation of Escpig could be responsible for

those instabilities.

B. Emotion Extrapolation of the Duration Component

We did not observe degradation in the SQ when performing this transformation. Only a few artefacts appeared,
due to excessively long unvoiced sounds, as a consequence of not transforming the voiced/unvoiced ratio, suggesting

that prosodic components should be jointly extrapolated.

C. Emotion Extrapolation for FO Component

The emotion extrapolation of log F'0 caused minimal degradation in SQ, compared with the degradation introduced
by the extrapolation of the spectral component.

We found that the extrapolation of the voiced/unvoiced ratio was not stable, so we conducted an informal
experiment in which the voiced/unvoiced ratio of the synthesised speech of the transformed speaker was just copied
from the emotional voice of the source speaker. The results showed an increase in SQ.

In addition, for the extrapolation of the log F'0 emotional component it has also been necessary to consider the
voicing of each acoustic context in the source speaker voices and the target speaker voice. The extrapolation function

can not be applied straightforwardly when an acoustic context of Ao (sentence-sized HMM for neutral emotion of
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the target speaker) or A, (sentence-sized HMM for emotion n of the source speaker) is an unvoiced context. In
these cases, average parameters (estimated using the parameters of the previous voiced context dependent states for
the considered utterance) were used instead of the parameters of the unvoiced acoustic context.

However, the emotional content is only partially perceived when the extrapolation is done only over log F'0 and
voicing, suggesting that it is necessary to consider the extrapolation over the other speech components.

We also conducted an informal experiment where the emotion extrapolation was done only over the aperiodicity
bands. This extrapolation was perceived almost as neutral with no SQ degradation.

Finally, the emotion extrapolation strategy was applied to duration, log F'0 (voicing was copied from the emotional
voice of the source speaker) and the aperiodicity bands. The results showed that the SQ is similar to the SQ perceived
when the extrapolation was applied separately, and that the emotion identification rate increased. However, the
spectral “colour” of fear, the “closed mouth” effect of angry voice and the “languor” and “sob” of sadness are not
perceived.

The absence of these patterns suggests that the emotion should also be extrapolated over the spectral component.
Only for surprise (a mainly prosodic emotion [9]) we might consider not transforming the spectrum, trying to

maintain similarity with the target speaker as much as possible.

D. Complete Extrapolation of Emotions

Finally, we applied the emotion extrapolation function to all the speech components of the target speaker neutral
voice. As expected, emotional patterns of fear, anger and sadness were perceived. Those patterns were perceived
with a higher strength, compared to extrapolation over only one speech component.

The extrapolation factors of each speech component can modulate the strength of the extrapolated emotion. A
value of K¢,y less than 1.0 would lead to a partial extrapolation of the emotion model for that specific speech
component to the target speaker. A value of k.,,, equal to 1.0 would lead to the equivalent emotional deviation
from the neutral voice of the source speaker, and a value of k[, higher than 1.0 will lead to an over-extrapolation
of the emotion model. However, the impact of the extrapolation factor on SQ, the identification of the emotion and

its emotional strength and the similarity to the target speaker would have to be measured by perceptual evaluation.

VI. DESIGN OF THE PERCEPTUAL EVALUATION
A. Evaluation Metrics

When emotional synthetic speech is evaluated, the key factors to consider are not only related to its overall
quality (or naturalness), but also to the accuracy in the identification of the intended emotion and its emotional
strength [9]. For the extrapolation of emotional speech patterns of one speaker to another speaker, identification of
the target speaker should be evaluated as well as the previous metrics. In applications where the target speaker is
not known to the users, the main goal would be to synthesise emotional speech as another speaker, trying to avoid

similarity to the source speaker.
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When we are also evaluating the extrapolation of emotional speech patterns from one speaker to another, the
identification of the target speaker should be also evaluated. Furthermore, in applications where the rarget speaker
is not known to the users, the main goal would be to synthesise emotional speech as produced by other speaker,
trying to avoid the similarity with the source speaker.

In the perceptual evaluation carried out in this work, and taking into account all these considerations, we evaluated

the following aspects of emotional synthetic speech:

1) Speech Quality (SQ): Listeners were required to evaluate the overall quality of the given emotional synthetic
speech using a 5-point scale where 1 was labelled as “muy mala” (very bad), 2 as “mala” (bad), 3 as
“aceptable” (acceptable), 4 as “buena” (good) and 5 as “muy buena” (very good).

2) Emotional Strength (ES): Listeners were required to assess the emotional strength of the given synthetic
speech using a continuous slider. The endpoints of the slider were labelled “very weak” and “very strong”.

3) Emotion Identification Rate (EIR): Listeners were required to identify the intended emotion in the given
synthetic speech from a limited set of emotional categories: anger, surprise, sadness, fear, neutral or another.

4) Speaker Identification Rate (SIR): The listeners were required to assess the similarity to the source speaker, the
target speaker or neither of both speakers. A continuous slider was presented to the listeners. The endpoints
of the slider were labelled as “Totalmente locutor A” (totally speaker A) and “Totalmente locutor B” (totally
speaker B). The middle of the slider was ticked and labelled with “ninguno” (neither option). The identification

of one speaker is considered when the slider is moved to the side of that speaker.

B. Experimental Design

Our goal was to obtain insight into how emotional speech patterns of a source speaker can be extrapolated to
a target speaker without losing similarity to the voice of the farget speaker. We also wished to find out how the
method affects the SQ of the synthetic speech and the perception of the ES. We evaluated neutral natural speech
and synthetic speech of source speaker and target speaker in order to establish the intrinsic characteristics of each
synthetic voice. We also evaluated emotional synthetic speech of the source speaker, in order to establish upper
bounds on speech quality, emotion identification rate, emotional strength and speaker identification rate.

In order to evaluate the scope of the emotion extrapolation method, we defined four systems, each one based on
a different extrapolation factor k& = {0.5,0.75,1.0,1.25} (same k applied to the emotion extrapolation over each
speech component).

Since different effects on the evaluation metrics were observed for each emotion during the development of
the extrapolation method (section V), an adhoc system configuration was defined for each emotion, depending on
its nature [9]. Adhoc configuration for the extrapolation of each emotion is presented in Table I. As mentioned
in section V-A, some instabilities can occur when the extrapolation method is applied in certain ways, especially
for extrapolation factors £ higher than 1.0. We observed that a considerable amount of those instabilities can be
eliminated imply by copying the intensity contour (the zeroth cepstral coefficient) of the emotional speech of the

source speaker. For anger, due to its segmental nature, its spectral component was principally extrapolated using
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TABLE 1

DEFINITION OF THE adhoc EXTRAPOLATION CONFIGURATION FOR EACH EMOTION.

SPEECH EXTRAPOLATED EMOTION

COMPONENT Anger Surprise Sadness  Fear

Intensity (Cepstrum 0) | copied  copied copied copied

Spectra 1.25 0.0 0.75 0.5
FO (& Aperiodicity) 1.0 1.0 1.0 1.0
Duration 1.0 1.0 1.0 1.0

Kiemp) set to 1.25; however we do not detect any degradation in SQ and SIR when this emotion is extrapolated
over prosodic components, so kjogro and kg, were set to 1.0. For prosodic emotions, kg0 and kg, higher
than 1.0 results in a reduction of the emotion’s naturalness and SQ, so we also set them to 1.0. Because of the
clear prosodic nature of surprise and because no difference was observed in the emotion perception, no emotion
extrapolation was done over its spectral component. In case of fear (clearly prosodic), a certain “spectral colour”
in the transformed spectra was perceived (an artefact of the extremely high pitch of this emotion), so k¢, was
set to 0.5, trying not to extrapolate excessively, in order to avoid a reduction in SQ rates. Finally, for sadness (an

emotion with a mixed nature) k.., Was set to 0.75, trying also to prevent low SQ rates.

C. Perceptual Tests and Subjects

The ten systems we built and evaluated are described in Table II. In our experiments we define a scheme as the
combination of a synthesis system and a given emotion. A total of 28 schemes had to be evaluated (6 systems (from
E to J in Table II) combined with four emotions, plus neutral speech systems of source speaker and target speaker
(systems C and D, respectively) and neutral natural examples of both speakers (system A and B, respectively).

The experimental design was based on a balanced latin-square matrix, similar to the experimental design used
in the Blizzard Challenge [35]. Each scheme generated a set of speech for the 28 sentences that were not included
in the voice training sentences. They were medium length sentences, between 6 to 11 words and with an average
length of 8 words. The content of the test sentences was emotionally neutral to allow listeners to focus only on
acoustic cues. The latin-square design allows an evaluation of all schemes and all synthesised sentences whilst
controlling ordering effects by ensuring that each group of listeners hears the stimuli in a different order.

The perceptual evaluation was divided into two sections:

« In the first part, speech quality, intended emotion and emotional strength were all evaluated in the same trial
(and in this same “visual” order in the web page). The evaluation of this part was conducted via a web browser
interface. Note that listeners were explicitly required to make each judgement independently from the others.
Before making a decision, each utterance could be played as many times as the listener wished, but they could

never go back to re-evaluate previous utterances.
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TABLE I

DEFINITION AND NAMES OF SPEECH SYNTHESIS SYSTEMS USED FOR THE PERCEPTUAL EVALUATION.

SYSTEM VOICE SPEAKER | EXTRAP. FACTOR (k)

A NEUTRAL source —

B NATURAL SPEECH target _
C NEUTRAL source -
D |SYNTHETIC SPEECH | 4 00 _

E source —

F transformed 0.5

G EMOTIONAL transformed 0.75
H SYNTHETIC SPEECH transformed 1.0

1 transformed 1.25
J transformed adhoc

DRAFT

o In the second part, speaker identification was evaluated via a web browser interface. Four reference files of

each speaker were presented to the listeners, so they could hear the files as many times as needed, before

making a decision, but they could never go back to re-evaluate previous utterances.

Twenty eight listeners, having a similar socio-cultural profile, participated in the evaluation, which was carried

out individually in a single session per listener. All listeners were from the Madrid area and were between twenty

and forty years old, and none of them had a speech-related research background nor had they previously heard any

of the SEV speech recordings. The evaluation was conducted in a quiet environment using headphones.

The authors decided to avoid long sessions, thus limiting to 56 the number of stimuli to be presented to each

listener (28 stimuli evaluated two times, between the first and the second part of the evaluation), so that the average

length of each session was 31 minutes.

The evaluation using 28 listeners provided 112 evaluation responses (i.e. 28 per emotion) for each system, except

for systems A to D in Table II. Systems A to D are for the neutral emotion and have 28 evaluation responses

per system. One evaluation response includes the listener’s rating for speech quality, the identified emotion, the

emotional strength and the speaker similarity, for a single stimuli.

VII. RESULTS

A. Analysis of Neutral Voices

First, we analysed the perceptual results for neutral speech (systems A to D from Table II). Results are shown

in Table III. As expected, the highest SQ scores are for natural speech (systems A and B).

The neutral synthetic voices of both speakers (systems C and D) obtained similar SQ scores. However, neutral

DRAFT
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TABLE III

EVALUATION RESULTS OF NEUTRAL VOICES.

SIR
SYSTEM SQ EIR

source neither target

A 54.5) | 76% | 83% 17%
B 440 | 2% | 10% 7% 83%
C 3(32) | 8% | 69% 31%
D 334 | 69% 7% 93%

synthetic voice of the source speaker (system C) was perceived as more robotic and buzzy than the neutral synthetic
voice of the target speaker (system D), because the first one was built with half of the data.

This might be associated by the listeners with a neutral speaking style: the synthetic voice of the source speaker
(86% EIR) outperformed the neutral natural speech (76% EIR). This effect also affected the SIR, the similarity of
the synthetic voice with the source speaker decreased from a 83% for natural speech to 69% for synthetic speech.

SQ scores of the neutral synthetic voice of the target speaker are similar to the SQ scores of natural speech.
Listeners clearly perceived the speaker identity of the target speaker from its neutral synthetic voice (93%), even
better than from natural speech. Artefacts introduced by the synthesis process may have acoustically separated the

speakers’ voices.

B. Speech Quality (SQ)

Figure 3 presents a boxplot showing SQ results for the emotional speech synthesised using different extrapolation
factors. In the boxplot, the median is represented by a solid bar across a box showing the quartiles with whiskers
extending to 1.5 times the inter-quartile range and outliers beyond this being represented as circles. The mean is
represented by a cross. Significant differences between extrapolation factors are shown in a table bottom in the
same figure. Emotional speech of the source speaker obtains the higher SQ results, as expected. The extrapolation
factor produces certain degradation in SQ. SQ decreases whichever major is the extrapolation factor. Only k = 0.5
extrapolation factor obtains no statistically significant different SQ values when compared to the SQ of the source
speaker. The adhoc extrapolation scheme slightly reduced this SQ degradation.

We analysed the SQ scores obtained with each extrapolation factor k for each emotion:

o Surprise was the emotion that obtained a higher SQ reduction relative to the SQ of the source speaker. For all
the emotions, the SQ scores between the emotional speech of the source speaker and £ = 0.5 extrapolation
factor are similar, except for surprise.

o Anger extrapolation over the spectral component using kspe. = 1.25 (used in the k = 1.25 and k = adhoc

extrapolation configurations) introduces artefacts that reduced SQ scores.
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C. Emotional Strength (ES)

The Emotional Strength (ES) score, elicited from the listeners using a slider, was treated as a continuous variable
without categorical information. Since every listener may use his or her own scale, we normalised the scores on a
per listener basis.

The boxplot presented in Figure 4 shows the normalised ES scores. Pairwise ¢-tests with Bonferroni step-down
correction were conducted to determine whether there are significant differences between the normalised ES scores
of each extrapolation scheme. The table in the lower part of the figure shows the significant differences between
extrapolation schemes and emotional synthetic speech of the source speaker for p = 0.05.

As was expected, the ES scores of the emotional synthetic speech of the source speaker are higher than the ES
scores of all the extrapolation schemes. Contrary to the SQ scores, we obtained higher ES scores whichever major
is the extrapolation factor k. ES scores for the adhoc scheme have no significant differences with the schemes
using extrapolation k values between 0.75 to 1.25. ES scores considering each emotion separately present these

tendencies.

D. Emotion Identification Rates (EIR)

The EIR results are shown in Figure 5. Emotional synthetic speech of the source speaker is clearly identified
(EIRs is over 50%). Different EIRs (depending on the emotion) were obtained:

« Using extrapolation schemes with & higher than 0.5, sadness and fear synthetic speech of the transformed
speaker are better identified (69% using k equal to 1.0 for both emotions) than the emotional synthetic speech
of the source speaker (62% and 48% respectively).

« Low EIRs confirm that the extrapolation method was not able to extrapolate the acoustic emotional patterns
of surprise to the target speaker.

o Anger speech of the transformed speaker is less accurately identified, whatever the value of k. The constraints
considered in the emotion extrapolation over the spectral component (keeping neutral the context described
in section V-A), and the sensitivity to instabilities in the extrapolation over this component, affected the
identification of anger. However, the k=0.5 and adhoc schemes are reasonably well identified (47% and 53%

relative to the source speaker).

E. Speaker Identification Rates (SIR)

The SIR results are shown in Figure 6. The speaker identity of the emotional synthetic speech of the source
speaker (57%) is better identified than the identity of the emotional synthetic speech of the transformed speaker.
The emotional patterns that affect the acoustic parameters of the voice of the source speaker make it difficult to
identify the source speaker, as its emotional speech is also identified as the farget speaker (28%) or even as neither
(16%).

This is also confirmed, by the decrease of the source and target speaker’s SIR, whatever the value of the

extrapolation factor k. In addition, the similarity with other speakers (neither option) increases for any value of the
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extrapolation factor. Only at an extrapolation scheme % equal to 1.0, could listeners not differentiate the speaker
identity between the source speaker and farget speaker.

The adhoc extrapolation scheme obtains a good compromise between a high trarget SIR (40%), a lower source
SIR (23%) and a 37% identified as other speaker (neither option).

We analysed the SIR for each emotion and extrapolation scheme separately: results are shown in Figure 7. The
speaker identification for each emotional voice of the source speaker was a difficult task, except for surprise (83%
source SIR). The anger voice of the source speaker was even identified as the target speaker (48%). The source
SIR for emotions with a clear supra-segmental nature (fear and surprise) is higher than the targetr SIR.

However, for all the emotions and extrapolation schemes used (transformed voices), the source SIR is lower than
the source SIR for the emotional synthetic voices of the source speaker. The proposed method has extrapolated the
emotional patterns without extrapolating the identity of the source speaker, and the transformed speaker is notably

identified as the rarget speaker or at least as another speaker different from the source speaker.

F. Emotion Extrapolation Performance Measure

In order to further evaluate the proposed method, we now define an emotion extrapolation performance measure

(EEP-measure):

 SQ-EIR-(SIRy + SIR,)
SQ + EIR+ (SIR.; + SIR,,)

where SQ is the SQ score normalised to the range 0 to 1, STR,; is the SIR of the corresponding speaker (source

EEP = 3 (5)

or target) and STR,, is the SIR for the neither option.
Figure 8 shows the EEP value for each emotional voice of the source speaker and the transformed speaker using
every extrapolation scheme. Based on these EEP results, our main conclusions are:
o A poor performance of surprise voice for the transformed speaker.
o On the contrary, good EEP values in the case of fear and sadness demonstrate that the proposed method has
successfully extrapolated the acoustic emotional patterns of these two emotions to a different speaker.
o The EEP values for the anger voice of the transformed speaker using the adhoc scheme or an extrapolation
factor k£ equal to 0.5, are reasonably good considering how the constraints applied to the extrapolation of the
spectral component affected the SQ and EIR of this emotion. However, future further analysis will be required

to control instabilities in order to improve the extrapolation performance of anger.

VIII. CONCLUSION

A method for the extrapolation of emotional acoustic patterns has been defined to incorporate emotional content
into new or previously-neutral synthetic voices. A perceptual test was conducted, where the speech quality, the
emotional strength, emotional identification rates and speaker identity rates were evaluated.

The acoustic emotional models of four emotions (anger, surprise, sadness and fear) were trained from an

emotional female voice and extrapolated to a new synthetic neutral female voice. The emotional patterns over
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each speech component (spectra, log F'0, aperiodicity bands and durations) have been considered in the acoustic
emotional model.

With the proposed algorithm, acoustic emotional patterns are partially extrapolated to a target speaker without
losing the target speaker identity. The strength of the emotion extrapolation can be modified successfully by varying
the extrapolation factor. However, the strength of the extrapolation has negative impact on the resulting speech
quality, especially in the extrapolation of the emotional patterns of the spectral component.

We have proposed a new metric — Emotional Extrapolation Performance — to evaluate the goodness of the
extrapolation to a target speaker. Good EEP values were obtained in the extrapolation of fear, sadness and anger.

Surprise obtained poor EEP values and will be analysed in further research.
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Fig. 3. Boxplot showing speech quality (SQ) scores for emotional synthetic speech of the source speaker and the transformed speaker using
different values of the extrapolation factor k. The table below the boxplot shows the results of pairwise Wilcoxon signed rank tests between
extrapolation factors. M denotes a significant difference in Speech Quality (SQ) between a pair of extrapolation factors (significance level is
p = 0.05).
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Fig. 4. Boxplots showing normalised emotional strength (ES) scores for emotional synthetic speech of the source speaker and the transformed
speaker using each extrapolation factor. The table below the boxplot shows results of pairwise t-tests between extrapolation factors. l denotes

a significant difference in the normalised emotional strength (ES) between two synthesis schemes (significance level is p = 0.05).
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Fig. 5. EIRs for emotional synthetic speech of the source speaker and the transformed speaker using different values of the extrapolation factor
k.
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Fig. 6. SIRs for emotional synthetic speech of the source speaker and the transformed speaker using different values of the extrapolation factor
k.
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Fig. 7. SIRs for each emotional voice of the source speaker and the transformed speaker using different values of the extrapolation factor k.
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Fig. 8. EEP values for each emotional voice of the source speaker and the transformed speaker using different values of the extrapolation

factor k.
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Abstract

This paper proposes an emotion transplantation method capable of modifying
a synthetic speech model through the use of CSMAPLR adaptation in order
to incorporate emotional information learned from a different speaker model
while maintaining the identity of the original speaker as much as possible. The
proposed method relies on learning both emotional and speaker identity infor-
mation by means of their adaptation function from an average voice model, and
combining them into a single cascade transform capable of imbuing the desired
emotion into the target speaker. This method is then applied to the task of
transplanting four emotions (anger, happiness, sadness and surprise) into six
target neutral speakers (3 male speakers and 3 female speakers) and evaluated
in a pair of perceptual tests. The results of the evaluation show how the per-
ceived naturalness for emotional text significantly favors the use of the proposed
transplanted emotional speech synthesis when compared to traditional neutral
speech synthesis, evidenced by a big increase in the perceived emotional strength
of the synthesized utterances at a slight cost in speech quality.

Keywords: Expressive Speech Synthesis, Cascade Adaptation, Emotion
Transplantation

1. Introduction

Current speech synthesis systems, whether we are talking about unit selec-
tion or HMM-based systems, can provide very good naturalness and intelligi-
bility when synthesizing read speech regardless of the technology [1, 2] which is
ideal for neutral speech interfaces that do not need to engage in a direct conver-
sation with the user. On the other hand, applications such as dialog systems [3]
or virtual characters, where simulating a more human-like behavior is necessary,

*Corresponding author
Email address: jaime.lorenzo@die.upm.es (Jaime Lorenzo-Trueba)

Preprint submitted to Computer Speech and Language April 29, 2014



20

25

30

35

40

45

50

a neutral speech synthesis does not live up to the task. Imbuing the synthetic
speech with expressive features (e.g. emotions, speaking styles...) is the role of
expressive speech synthesis.

Due to the sheer amount of possible expressiveness, recording complete
databases that cover all of them is unthinkable, making unit selection based
systems fall behind in terms of scalability, although they are definitely capable
of producing expressive speech [4, 5, 6, 7]. On the other hand, HMM-based sys-
tems, because of their parametric nature, can be easily adapted through speaker
adaptation techniques and can be successfully used for this task, and have been
proven to provide significant improvements in perceived speech quality [8].

One of the biggest problems of expressive speech synthesis is data acquisition.
As human expressiveness is not a discrete space but a continuous one as the
expressive strength and nuances vary greatly not only from person to person
but from utterance to utterance for the same person. This problem can be
focused on from different approaches: lexical analysis [9] for correctly classifying
the available data and training more precise systems or acoustic analysis. For
acoustic analysis several aspects have been considered such as expressiveness
detection [10, 11, 12], expressiveness production [13, 14], expressive intensity
control [15, 16] or expressiveness transplantation [17, 18].

The work present in this paper is enclosed mainly under the field of expressive
speech synthesis, and aims to fix one of its main shortcomings: scalability.
Human communication is so rich and so deep that it is impossible to imagine
obtaining data for every combination of speaker and expressiveness, and that
is why we want to propose a method capable of learning the paralinguistic
information of emotional speech, control its emotional strength and transplant
it to different speakers for whom we do not have any expressive information.
We decided to focus on emotional speech as a particularization of expressive
speech, but we can expect the transplantation method to be able to support
different expressive domains.

A successful transplantation method that has been introduced lately [17, 18]
is based on Cluster Adaptive Training (CAT) [19], a projective adaptation tech-
nique. As such it is only capable of producing speaker models based on linear
combinations of the original training speaker models. The main advantage of
this approach is that as the produced model is always a combination of pre-
existing training models, the process is extremely robust, outputting very high
quality speech [20]. On the other hand, the level of expressive strength or
speaker similarity cannot be guaranteed as the transplantation reach is very
constrained. Another known approach is the use of rule for doing simple fea-
ture transforms capable of providing expressive strength controllability and rea-
sonably good recognition rates [21, 22], speech quality and speaker similarity
degradation tends to be a problem.

Another approach to emotion transplantation is the use of rules to directly
modify the synthesis models. This approach is theoretically capable of imbuing
an emotion on any target speaker as long as we know the correct rules. In
reality this approaches, while usually capable of providing emotional strength
controllability and reasonably good recognition rates [21, 22], speech quality
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and speaker similarity degradation tends to be a problem.

The proposed emotion transplantation method considers the best of both
previously mentioned approaches: using adaptation to lessen speech quality
degradation while using the adaptation functions as a pseudo-rules for modifying
the speaker models. As a result we present a method capable of controlling
expressive strength while reasonably maintaining speech quality and speaker
identifiability when compared to non-transplanted expressive synthetic speech
[23, 24]

The paper is organized as follows. In section 2 we introduce the neutral
and emotional speech corpora we have used for training and evaluation pur-
poses during the development of the proposed method. Section 3 introduces
the transplantation method, where subsection 3.1 introduces the mathematical
aspects of the used CSMAPLR adaptation and how it was expanded for our
purposes, and subsection 3.2 explains in detail the procedure through which the
emotion transplantation is applied presenting a pair of alternative implementa-
tions. Section 4 describes how the perceptual evaluations were carried out and
analyzes the results. Finally in section 5 we present the conclusions to be drawn
from this paper together with a brief summary of the main proposals.

2. Speech Corpora

For the development and evaluation of the proposed emotional speech trans-
plantation method we employed both neutral and emotional databases. The
emotional database (SEV [25]) has been evaluated previously for the Albayzin2012
speech synthesis evaluation, making it ideal for the introduced evaluation. The
neutral data on the other hand is a combination of published databases (UVIGO-
ESDA Database [26] and UPC-ESMA Database [27]) and a number of male and
female speakers recorded in our laboratory environment.

SEV Database Emotional database consisting of a male and female speaker.
Out of the available emotions only 4 of them were considered: anger,
happiness, sadness and surprise also including the neutral voice as the
reference. All the emotions were recorded for the same utterances favoring
the learning of expressiveness cues. There is approximately 30 minutes of
training speech for each emotion and speaker).

UVIGO-ESDA Database A database consisting of a single male Spanish
speaker (UVD) in a neutral situation totaling approximately 2 hours of
speech recorded in studio.

UPC-ESMA Corpus A database consisting of a single professional female
speaker (UEM) totaling around 1.75 hours of neutral style speech, recorded
in a noise-reduced room.

Recorded Data A number of male and female speakers were recorded in our
acoustically-treated room, providing high quality and stable speech. T'wo
male speakers (JLC and JEC) and two female speakers (NAS and EMA)
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were used as the transplantation targets. Available data durations varies
from 7 minutes for JEC to 30 minutes for JLC.

3. Emotion Transplantation

Emotion transplantation methodologies can be defined as the procedures
that allow the modification of a synthetic speech model to incorporate emotional
information learned from other speaker models while maintaining the identity
of the original speaker as much as possible. By this definition it follows that
transplantation is a field of study that aims to solve one of the biggest problems
in expressive speech synthesis: scalability.

3.1. Adaptation-based Transplantation

Adaptation is a powerful tool when considering emotional speech synthesis
and more concretely emotion transplantation, as it allows us to exploit the
versatility of HMM-based speech synthesis. In the task at hand we consider
the adaptation task of generating a speaker model from an average voice model
(AVM) and adaptation data for the desired target speaker [28].

Focusing on emotional speech adaptation, it has been proved that it is very
important to consider not only the means of the HMM Gaussian Distributions
but also the variances. This means that it is necessary for the adaptation
algorithms to be more complex, or ”constrained” as it is called. Ultimately,
constrained structural maximum a posteriori linear regression (CSMAPLR) has
been proposed and has been proven to be extremely successful for speaker adap-
tation, particularly when adapting from average voice models [29].

3.1.1. CSMAPLR Adaptation

CSMAPLR consists in applying the structural MAP criterion (SMAP) [30]
to the CMLLR adaptation algorithm [31] and using the recursive MAP criterion
[32] to estimate the transforms for simultaneously transforming the mean vectors
and covariance matrices of the state output and duration distributions of the
HSMM model.

There are three main reasons for using CSMAPLR as the adaptation tech-
nique. First of all is the aforementioned capability of not only adapting the mean
vectors but also the covariance matrices. The second reason that differentiates
CSMAPLR to the more traditional CMLLR adaptation, is that CSMAPLR
makes use of the linguistic information of the regression tree by doing recur-
sive MAP-based estimation of the transformation matrices from the root of the
context decision tree to the lower nodes, effectively combining the advantages
of SMAP and CMLLR. Finally, the fact that CSMAPLR relies on MAP-based
estimations means that it is robust when using sparse adaptation data, which
is frequently the case in the emotional speech synthesis task.



3.1.2. Emotion Transplantation based on Cascade Adaptation
The concept of cascade transforms has been used previously in automatic
135 speech recognition to adapt the background models both to the target speaker
and noise at the same time [33]. The transplantation method we present here is
based on the same concept, but in this case we propose chaining transformations
that model both the target emotion and the target speaker to produce emotional
speech synthesis models.

Emotional

ERE S
Emotion

Emotional
Target
Speaker

Figure 1: Schematic of the emotion transplantation method. The spheres represent the speaker
models and the arrows the adaptation transformation functions. The dashed arrow represents
the transplantation transformation equivalent to the proposed cascade method.

140 In figure 1 we can see the block diagram representation of the proposed trans-
plantation through cascade adaptations method. If we define the CSMPALR
transformation functions in terms of their rotation matrix ¢ and bias vector e:

ﬂemo = Cemo,uN + €emo
i)emo = CemoENCeTmo
/]spk = é-spk:UN + €Espk

zispk: = CspkENgg;)k

~ o~~~
[\
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Where ficmo/spr and Yemo /spk are the mean vectors and covariance matrices

of the emotional and target speaker models respectively. Then, the model re-

us  sulting of applying first the emotion adaptation function and then the speaker
identity becomes:

I]tra = Cspk:Cemo,uN + Cspkeemo + €spk (5)
Zitra = CskaemoENC;Fmoqu;)k (6)
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The resulting speaker model will be able to produce emotional synthetic
speech for the target speaker even if emotional training data for that particular
speaker is not available.

3.2. Proposed Emotion Transplantation Method

The proposed transplantation method can be summed up in three steps:

1. Adapt the reference emotion from the average voice model (Fig. 2.1).

2. Adapt the target speaker model and the target emotion from the reference
emotion (Fig. 2.2).

3. Apply in cascade the emotion and speaker identity transformations to the

reference emotion. The resulting model is the emotional target speaker
(Fig. 2.3).

1 2 3

w Reference i Spee /‘
Emotion N -
Reference Target
Emotion Speaker

Figure 2: Step by step block diagram of the emotion transplantation method. The spheres
represent the speaker models and the arrows the adaptation transformation functions.

Average
Voice
Model

Reference
Emotion

Emotional
Target

—

The average voice model is obtained by applying Speaker Adaptive Training
(SAT) [34] with as much training data as possible, which allows us to obtain a
very context-rich background model to work with. A robust and complete AVM
will be capable of producing better speech quality at synthesis time even with
sparse emotional adaptation data. Also, sharing a background model for all
the adaptation functions makes the cascade adaptation easier, because the con-
text decision trees will be shared, making the adaptation functions immediately
compatible between adapted models.

Adapting the reference emotion from the AVM is necessary because in the
second step we have two objectives: on one hand we want to be able to learn the
differences between the desired emotion and the reference emotion, effectively
learning the nuances of the desired emotional speech. On the other hand we
want to learn the difference between the target speaker speaking in the reference
and said reference emotion, learning the nuances of the target speaker identity.
If both adaptation transforms are not obtained from a single reference emotion,
neutral in most cases, they will not learn the desired characteristics and the
transplantation process would not be successful. Ideally, we want to have both
data for the target emotion and reference emotion for the same speaker so the
emotion adaptation function defines purely the target emotion, but if that is not
available we can assume that using an average of different speakers will show the
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relevant information of the emotions (either reference or target) while lessening
the identities of the speakers.

Finally, we apply the cascade transforms for the emotion and the speaker
identity as defined previously, obtaining the desired target emotional speaker.
Neither the target speaker or the target emotion data had to be present in the
AVM, and in the presented evaluation (section 4) we prove it to be success-
ful with as little as 5 minutes of target speaker speech data or 30 minutes of
emotional speech, which is why the proposed transplantation method is a good
way of providing scalability in expressive speech synthesis. Nonetheless, we also
provide some alternative approaches to the problem in case we want to simplify
the transplantation process (alternative 1) or we do not have enough target
emotional data to obtain reasonably good adapted models (alternative 2).

3.2.1. Alternative 1: Including an emotions as a decision tree feature

One possible alternative to the proposed emotion transplantation method is
to include the emotion of each utterance as an additional feature to the training
labels in the average model HMM training process, together with adding the
respecting questions to the decision tree modeling. This would imbue the emo-
tion characterization in the modeling process, producing more complex decision
trees. By doing this, synthesizing the desired emotion for the target speaker only
requires adapting to the target speaker from the average background model and
including the emotion feature to the text label to be synthesized.

This alternative, much simpler than the proposed transplantation system
would be expected to provide voices with speech quality similar to the average
voice model and that of the neutral speech as there is no transplantation in-
volved, but at the cost of speaker similarity and emotional strength. Moreover,
this approach also removes the emotional strength control capabilities present in
the proposed system unless there is a complex labeling of the emotional strength
of all the utterances in the training database, a process that is very hard and
costly and one of the main problems we avoid with out transplantation method.

A final limitation of this alternative is that the average voice model must
be trained with all the emotions we want to synthesize in our task, with the
utterances labeled accordingly. If we were to require the addition of a new
emotion to the task the AVM would have to be trained once again so it is
included in the decision tree. This is a process that can take a very long time,
increasing with each additional emotion, which is also something a problem we
wanted to solve with our proposed method.

3.2.2. Alternative 2: Transplanting into an average emotion

Another alternative is to join all our emotional data into an average emotion
model [35]. This average, when transplanted into a neutral speaker model, can
be expected to imbue an undefined emotion that removes the typical monotony
in read speech models. This alternative can also be expected to provide higher
quality speech when compared to transplanting a single emotion as the adap-
tation process for the average emotion can make use of much more data, thus
giving more stable adaptation functions. This approach could be very useful
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when the task does not require us to synthesize any particular emotion or if
we do not have enough emotional data to obtain good emotion transplantation
quality.

Naturally, this alternative also presents numerous shortcomings: if there
is a significant bias towards positive or negative data in the average emotion
model, transplanting the average emotion could be the same as transplanting
an emotion, resulting on unnatural synthesized utterances for opposite emotions
such as producing happy speech for a sad text. Another expected problem is
that the naturalness should be lower than transplanting the correct emotion for
the text to be synthesized.

4. Perceptual Evaluations

The goal of the perceptual evaluation was to verify if the expressiveness was
transplanted successfully in terms of naturalness, speech quality and emotional
strength. Naturalness measure was done by means of a preference tests, as
they are very useful when we want to compare systems that are similar between
them but with variation in some conditions [36], and are a reliable way to
obtain statistically relevant preference measures that are more separable than
the traditional MOS evaluations. Two different evaluations were carried out,
a first one that compared the proposed emotion transplantation system with
the traditional neutral synthetic voice to validate the transplantation method,
and a second one that compared the neutral synthetic voice with an average
emotion transplanted into the speaker (alternative 2 in section 3.2.2) in order
to prove that the benefits of transplanting the correct emotion into the speaker
are higher than just modifying the neutral speech to sound less machine-like.

Four emotions (anger, happiness, sadness and surprise) learned from the
Spanish Emotional Voices corpus were transplanted into 3 male speakers and
3 female speakers, so for each testing session the total number of systems was
24. Following the latin-square [37] approach this meant that we needed 24
different utterances to be synthesized (or selected from the natural database)
for all the systems, to be presented to the listeners in a random order without
repeating. In the test the listener was presented by means of a web interface
with two audio samples (transplanted correct emotion and neutral voice for the
first version of the test, transplanted average emotion and neutral voice for the
second), together with a transcription of the synthesized text and the intended
emotion to be transmitted. The samples could be played as many times as
desired by the listener, and the synthesized texts, not present in the training
data, were written by ourselves to present clear emotional context that always
corresponded with the transplanted emotion. Then, the listener was asked their
preference on which of the samples was more adequate to transmit the desired
emotion, ending with the traditional 5 point MOS evaluation for both speech
quality (very bad to very good) and emotional strength (very low to very high).
The evaluation for speech quality and emotional strength had to be answered
for both samples regardless of the selected preference.
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Table 1: Results for both preference tests

Preference | Transplanted Emotion || Transplanted Average
Anger 7% 66%
Happiness 96% 87%
Sadness 82% 61%
Surprise 95% 84 %

The results for the naturalness preference tests can be seen in table 1. The
results for each of the six speakers are averaged into the row of every emotion,
while the results for the first test that compares the transplanted correct emotion
with the neutral voice are shown in the second column (Transplanted Emotion)
and the results for the second test that compared the transplanted averaged
emotion with the neutral voice are shown in the third column (Transplanted
Average). The first result that can be drawn from the table is that for both
tests there is a significant preference for the transplanted system when compared
to the traditional neutral system according to the chi-squared significance test.
Nonetheless, the results for transplanting the correct emotion are in average
10% higher than for the average emotion transplantation. In particular, positive
emotions (happiness and surprise) show better results for both cases, reaching
an extremely good 95-96% preference in the case of the first test. On the other
hand negative emotions (anger and sadness) while still showing a very high
preference for the proposed transplantation (an average of 79.5% ), they are
not so good when transplanting an average emotion (63.5%). This means that
while transplanting the target emotion gives a huge boost in naturalness to the
synthesizer, coloring the voice with an undefined emotion helps the naturalness
of positive text synthesis, it is not so helpful for synthesizing negative texts.
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Figure 3: Boxplots for the speech quality results for the first and second test respectively.
Red bars always represent the neutral system while blue bars represent the desired emotion
transplantation results in the first boxplot and the average emotional model transplantation

in the second case. Ang, hap, sad and sur mean anger, happiness, sadness and surprise
respectively.

For the results of the MOS test for Speech quality we can look at the boxplots
in figure 3. In these boxplots the results of all the different speakers have been
averaged for all emotions, with the blue bars representing the neutral systems
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and the red bars representing the transplanted system in each of the two tests.
By looking at the plots it is clear that there is not a significant decrease in speech
quality overall, although particularly for sadness in the transplanted emotion
there is a slight decrease. In any case, we can also see that there is a greater
variance in speech quality for the proposed system, which is due to possible
inconsistencies in the spectrum transplantation to different speakers learned
from the limited emotional speech data. On the other hand, for the average
emotional model the results are very close to the original neutral synthetic
speech, something that we can assume to be due to the increased robustness
provided by the average emotional model.
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Figure 4: Boxplots for the emotional strength results for the first and second test respectively.
Red bars always represent the neutral system while blue bars represent the desired emotion
transplantation results in the first boxplot and the average emotional model transplantation
in the second case. Ang, hap, sad and sur mean anger, happiness, sadness and surprise
respectively.

The perceived emotional strength was also measured by means of a MOS
test, whose results we can see in the boxplots in figure 4. The structure of
these boxplots is the same as in the speech quality case. By looking at these
results it is evident that there is a significant increase in the perceived emotional
strength in most cases. Specially in the case of the first test, where we compared
the proposed transplantation system with the neutral system, we can see how
the perceived emotional strength is significantly superior in all cases excepting
anger, where there are not definite results. On the other hand, the second
test proves that an average emotional model is also capable of providing better
emotional strength results although not so much in this case for the negative
emotions, particularly sadness, as happened in the preference test.

Regarding the statistical significance of the results, for the preference test
we applied the chi-squared criterion and for the speech quality and emotional
strength MOS tests we applied the Wilkoxon Signed-Rank Test for a 95% con-
fidence ratio. The results of applying the test can be seen in table 2, where we
can see that all the results excepting the two closest ones (speech quality for
Anger in the first phase of the evaluation and speech quality for surprise in the
second phase) passed the verifications.

To sum up the results in the three categories for both tests, the proposed
emotion transplantation system provides an average 87% preference rate when

10



320

325

330

335

340

345

Table 2: Results of the significance tests. An X means that that particular result is statistically
significant and a blank means that it is not. The prefixes ”Pref” stands for preference test,
”?SQ” for speech quality test and "ES” for emotional strength test. The suffixes ”1” and ”2”
refer the first and second test respectively.

Emotion | Pref-1 SQ-1 ES-1 Pref-2 SQ-2 ES-2
Anger X X X X X
Happiness X X X X X X
Sadness X X X X X X
Surprise X X X X X

compared to the traditional neutral synthetic system while increasing the per-
ceived emotional strength in an average of 1.2 points at the cost of 0.4 points in
speech quality when using a 5 points MOS scale. At the same time, the contrast
average emotion transplantation system provides an average 75% preference rate
with an increase of 0.7 points in emotional strength at the cost of only 0.2 points
in speech quality. All in all, we can say that the system is clearly capable of
transplanting the emotional information learned from a source speaker into dif-
ferent target speakers regardless of gender with significant increases in perceived
naturalness and emotional strength when compared to traditional systems at a
slight cost in speech quality. This benefits are also validated by comparing
with a simpler transplantation that just aims to give color to the voice in or-
der to remove the excessive neutrality of traditional read speech synthesis, as
the proposed emotion transplantation system clearly improves the results at a
comparative decrease of only 0.2 points in speech quality.

5. Conclusions

We have proposed an emotion transplantation method capable of learning
the paralinguistic nuances of any particular emotion in order to transplant them
into a new target speaker for whom only traditional, neutral read speech record-
ings are available. This is done by means of chaining a pair of CSMAPLR adap-
tation functions, one that characterizes the target speaker identity and another
that defines the paralinguistic characteristics of the desired emotion. Finally
a pair of perceptual evaluations were carried out. For the perceptual evalua-
tion, four emotions (anger, happiness, sadness and surprise) from an Spanish
emotional database and six target speakers (three male and three female) were
considered. a first evaluation compared in terms of naturalness, speech quality
and emotional strength the proposed transplantation method with traditional
neutral read speech synthesis. This first test showed that there is a very clear
preference (an average of 87% preference between all the emotions) for the
emotional synthesizer, reaching as high as 96% for happiness, and a perceived
increase in emotional strength of an average of 1.2 points in the MOS scale
at a cost of only 0.4 points in speech quality. The second test compared an
average emotion transplantation with the neutral speech, and showed that just
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by adding an undefined color to the voice is able to improve the perceived nat-
uralness of the synthetic speech up to an average of 75% preference at a cost
of only 0.2 points in speech quality, although the average increase in perceived
emotional strength only reaches 0.7 points.
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