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4 Universidad Politécnica de Madrid UPM Spain
5 Technical University of Cluj-Napoca UTCN Romania

Version 1 (08/04/2013) 1 page 1 of 18



FP7-287678 SIMPLE4ALL deliverable D3.3

Project reference number FP7-287678
Proposal acronym SIMPLE4ALL
Status and Version draft 1
Deliverable title Evaluation of the new speech signal model in conjunction with HMM-based acous-

tic models
Nature of the Deliverable Report (R)
Dissemination Level Public (PU)
This document is available from http://simple4all.org/publications/

WP contributing to the deliverable WP3
WP / Task responsible WP3 / Task T3.3
Editor Tuomo Raitio (AALTO)
Editor address tuomo.raitio@aalto.fi
Author(s), in alphabetical order Paavo Alku, Tuomo Raitio, Antti Suni, Junichi Yamagishi
EC Project Officer Pierre Paul Sondag

Abstract

Developing vocoding techniques capable of handling a large variety of speaking styles constitutes an important re-
search topic of the SIMPLE4ALL project. This work is mainly represented by WP3. In this deliverable, the latest
studies in WP3 on evaluating vocoding techniques are documented by dividing our activites into three topics: (1)
analysis and synthesis of shouting voices, (2) prepration of our submission to the coming Bllizzard Challenge, and
(3) conducting a comparison of a large set of different vocoders. In evaluating the synthesis of shouted speech, our
results indicate that the GlottHMM vocoder enables generating synthetic shouted voices which resembles natural
shouted speech quite well. The quality of shouted synthetic speech, however, was not as good as that of synthetic
speech of normal speaking style. In the second topic, synthetic voices were created for four Indian languages and
preliminary evaluation indicates that the involvement of denoising in the GlottHMM vocoder seems to slightly im-
prove the sound quality in comparison to the STRAIGHT vocoder. Finally, the preliminary experiments conducted
in the third topic indicate that using a special 2-dimensional visualization space helps in evaluation of vocoders
particularly when a large set of techniques is to be compared simultaneously.
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1 Introduction

The general aim of the SIMPLE4ALL project is to provide TTS that is adaptive, capable of handling different
languages and can be easily embedded within complete applications. This calls for developing speech signal models
capable of modelling a large variety of speaking styles and vocal emotions, a topic which is represented mainly
by WP3. New speech signal representation are particularly needed in order to cope with non-modal speaking
styles, such as very soft or loud voices. These speaking styles are frequently used in natural human to human
communication but their synthesis with current TTS is not satisfactory.

Evaluation of our new speech signal models in analysis and synthesis of non-modal speaking styles has been
the main study area in T3.3 during months 13–18. Our studies have been organized into the following three
parts: (1) analysis and synthesis of shouted speech with the new signal model, (2) preparing a submission to
Blizzard Challenge 2013 where Indian voices are synthesized with the new acoustic models, and (3) conducting a
comparison between different vocoders. Our work on these three topics is described, respectively, in sections 2, 3,
and 4 of this document.

2 Analysis and synthesis of shouted speech with the new speech signal model

2.1 Background

Shouting is the loudest mode of vocal communications, which is usually used for increasing the signal-to-noise
ratio (SNR) when communicating over a distance or over an interfering noise. Alternatively, shouting can be used
for expressing emotions or intentions. Shouting is different from Lombard speech [1] or speech with increased
vocal effort; it lies at the extreme end of vocal effort continuum and is a voluntary phenomenon. It is a compromise
between increased sound pressure level (SPL) and intelligibility; while loudness-normalized Lombard speech or
speech with increased vocal effort is usually more intelligible than normal speech in the presence of noise [2, 3],
extreme shouting is less intelligible [2, 3].

In addition to a large increase in SPL, shouting is characterized by a higher fundamental frequency (F0) due
to increased subglottal pressure and vocal fold tension [4]. The F0 contour also shows less variety as F0 tends
to saturate towards high values due to physical constraints, due to which F0 contours of different speakers also
become similar to each other [4]. The relative length of the glottal closing phase decreases as the vocal effort is
increased [5]. In the frequency domain, this increased sharpening of the glottal pulse in the time domain results in
the emphasis of higher frequencies. In shouting, voiced sounds tend to elongate, unvoiced sounds become shorter,
and the vowel-to-consonant ratio increases. Shouted speech is also less articulated; especially the first formant,
and also the second, are shifted so that vowels become more similar to each other [6]. Due to the less accurate
articulation and relative decrease in consonant energy, shouted speech is less intelligible than normal speech [2].

The properties of shouted and normal speech are studied e.g. in [2, 4, 6, 7], and the intelligibility of shouted and
normal speech in the presence of noise is investigated e.g. in [2, 3]. Classification and detection of shouted speech
is studied e.g. in [8, 9]. The effect of increased vocal effort on speech has also been widely studied [10, 11, 12].
However, there are few studies that explicitly address the synthesis of shouted speech. Previous studies concentrate
on increased vocal effort in concatenative speech synthesis [13, 14, 15, 16] or in voice conversion [17, 18]. In the
context of statistical parametric speech synthesis [19], many studies concentrate on expressive speech synthesis,
but vocal effort is explicitly modeled only in [20, 21, 22], and no studies can be found on synthesis of shouted
speech.

Since there are no prevous studies on synthesis of shouting voices in the area of statistical speech synthesis, we
decided to launch an investigation on the topic as a part of our work in T3.3. The study involves first recording
and analyzing shouted and normal speech, as described in Sec. 2.2 and 2.3. Based on the analysis results, various
synthesis techniques for creating shouted speech are experimented with. The methods and evaluation results are
described in Sec. 2.4. Finally, Sec. 2.6 summarizes the main findings.
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Table 2.3a: Mean and 95% confidence intervals of speech features for female and male normal and shouted speech.

Feature Unit Female normal Female shout Male normal Male shout
Duration s 1.35 ± 0.03 1.62 ± 0.04 1.42 ± 0.04 1.76 ± 0.05
SPL dB 61.6 ± 0.1 79.2 ± 0.1 63.0 ± 0.1 82.7 ± 0.1
F0 Hz 209.9 ± 0.3 359.7 ± 0.7 102.4 ± 0.2 259.4 ± 0.6
H1–H2 dB 11.56 ± 0.05 9.26 ± 0.07 9.01 ± 0.04 9.44 ± 0.06
NAQ - 0.0729 ± 0.0003 0.0563 ± 0.0002 0.0607 ± 0.0002 0.0599 ± 0.0002

2.2 Data

Normal and shouted speech was recorded from 11 male and 11 female native speakers of Finnish. 24 sentences
were recorded both in normal phonation and shouting. 12 of the sentences are in the imperative mood, consisting
of one to four words. The semantic contents of these sentences represented vocal messages that people might use
in potentially threatening situations. The other 12 sentences, each consisting of three words, are in the indicative
mood and have a neutral, abstract information content. Recordings were performed in an anechoic room with
AKG CK92 omnidirectional capsule at 70 cm distance from the speaker with SE300B power supply. Speech was
sampled at 96 kHz with 24-bit resolution, after which the data was downsampled to 16 kHz. A calibration signal
(1 kHz, 92.3 dB) was also recorded to determine the actual SPL of recorded speech.

First, speech of normal vocal effort was recorded, after which the speakers repeated the sentences using shouted
voice. Speakers were instructed to use a very large vocal effort when shouting, which was controlled both by
listening the recording and monitoring the signal waveform on the computer. If the intensity of shouting was not
adequate, the talker was asked to repeat the sentence. A total of 528 sentences were recorded both in normal and
shouted voice.

Shouted speech from two additional speakers, whose normal speech databases already existed, was also recorded.
The normal databases consist of 599 and 1319 sentences spoken by a male and a female Finnish speaker. Both
databases are designed for hidden Markov model (HMM) based speech synthesis purposes. Both speakers shouted
100 new sentences, of which 30 were three-word sentences with varying focus conditions, and the rest were short
prose quotations with emotional content.

2.3 Analysis of normal and shouted speech

The recorded speech files were analyzed in terms of duration, SPL, F0, the difference between the first and the
second harmonic (H1–H2) [23], and the normalized amplitude quotient (NAQ) [24]. The reported SPLs were
calibrated to correspond to the actual SPLs in the recordings. Duration was analyzed per sentence while the rest
of the features were analyzed frame-wise using the new speech signal model, the GlottHMM vocoder [25]. The
results of the analysis are shown in Table 2.3a.

Analysis results show that the duration of shouted sentences were 20% and 24% longer compared to normal
speech for female and male speakers, respectively. The SPL of shouting was on average 17.6 dB and 19.6 dB
higher than that of normal speech for females and males, and the mean F0 for shouting was 71% and 152% higher
compared to normal speech for females and males, respectively. H1–H2 was on average 2.3 dB lower in shouting
than in normal speech for females, indicating decreased spectral tilt in shouting. However, for males H1–H2 was
0.4 dB higher in shouting than in normal speech. NAQ was 23% and 1% lower for females and males, respectively,
indicating tenser phonation type in shouting for both genders.

The frame-wise distributions of SPL, F0, H1–H2, and NAQ for normal and shouted speech are shown in Fig.
2.3a. The energy-normalized spectra of normal and shouted speech are shown in Fig. 2.3b, which describes how
the vowel-to-consonant ratio increases dramatically in shouted speech. The time and amplitude normalized average
female and male glottal flow derivative waveforms of normal and shouted speech are shown in Fig. 2.3c. For both
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genders, the pulse waveform in shouting shows a shorter glottal open phase and a more abrupt glottal closure.
Despite the rigorous recording arrangements, the properties of shouting vary considerably between speakers.

The average shouting SPL varies over a 17 dB range both for female and male speakers. This is probably due to
at least two reasons. First, speakers’ conception of shouting is different; some consider it as a loud voice, other
consider it as an extreme vocal expression in which the vocal apparatus is on its limits. Second, it is difficult
to elicit extreme shouting in laboratory conditions; speakers may find it embarrassing or inconvenient to use the
extreme volume of their voice. Despite the personal variation in shouting, the SPL difference between shouted
speech and normal speech ranged from 17 dB to 28 dB for the female speakers and from 15 dB to 33 dB for the
male speakers. This is in line with previous studies: Rostolland [4] reports C-weighted level differences between
shouted and normal speech of 20 dB and 28 dB for female and male speakers, respectively.

2.4 Synthesis of shouted speech

The ultimate aim of speech synthesis is to artificially create any type of vocal expression. Shouting is a rarely used
but very distinct and important type of vocal expression. Although SPL of an arbitrary audio signal can be increased
simply by amplifying the signal waveform, synthesis of natural sounding shouted speech calls for adjusting a
number of acoustical features as discussed in Sec. 2.1. Such modifications are required e.g. in creating speech with
emotional content, which finds use in human-computer interaction, creating virtual agents, and communication
aids. In the following, various techniques for synthesizing natural-sounding shouted speech are experimented with.

2.4.1 Analysis-synthesis

Compared to normal speech, shouting is characterized by a very high F0. This imposes difficulties in estimating
the formant structure of speech because the sparse harmonic peaks may distort the estimation of the correct formant
frequencies. Linear prediction (LP), commonly used for estimating speech spectrum, is especially vulnerable to
such errors. In order to avoid this problem, weighted linear prediction (WLP) [26] can be used to down-grade the
effect of the excitation in the computation of the formant estimates. In this paper, WLP is experimented with by
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Figure 2.3a: Distributions of SPL, F0, H1–H2, and NAQ for female (F) and male (M) normal and shouted speech.
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using two different weighting functions: short-time energy (STE) function [26] with stabilization (SWLP) [27] and
attenuation of the main excitation (AME) [28]. In STE weighting, excitation is attenuated by a window defined
by the short-time energy of the frame, while in the AME weighting the excitation is attenuated during the main
excitation, defined by the glottal closure instants (GCIs).

Experiments are performed with the GlottHMM vocoder [25], which is a physiologically oriented vocoder
that utilizes glottal inverse filtering [29] for speech analysis and natural glottal flow pulses for synthesis. It has
been shown to successfully synthesize e.g. Lombard speech [22]. The quality of vocoder analysis-synthesis was
experimented with the three spectral estimation methods: (1) conventional LP, (2) stabilized WLP with the STE
window (denoted as STE), and AME-WLP (denoted as AME). An ABX listening test comparing the analysis-
synthesis quality of these methods was conducted with normal and shouted speech. In the test, listeners were
presented with a natural reference sample and two vocoded samples. The task of the listener was to select the
one that sounded more like the reference sample (or no preference). 15 native Finnish listeners each evaluated a
total of 60 sample pairs, consisting of 20 samples from each method. The results, shown in Fig. 2.4a, indicate that
AME-WLP performs best with normal speech, while stabilized STE-WLP performs best with shouted speech.
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Figure 2.3b: Average spectra of energy-normalized normal speech and shouting for female (F) and male (M)
speakers. Top graphs represent the overall spectra, middle graphs only voiced spectra (v), and bottom graphs only
unvoiced spectra (uv).
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2.4.2 Conversion from normal to shouted voice

Voice conversion from normal speech to shouting is another way to artificially create shouted speech. Voice conver-
sion is especially useful in the case where there is not enough shouted speech for training or adapting a statistical
parametric speech synthesizer. Therefore, a simple voice conversion method is used. The method is implemented
in the pulse library version of the GlottHMM vocoder [30]. First, the vocoder is used to extract a database from the
available speech data of the desired style (e.g. shouting), which comprises voice source and vocal tract parameters
and extracted glottal flow pulses. In the voice conversion stage, the speech parameters of normal voice, generated
by a HMM-based synthesizer, are fed into the vocoder that adapts the means and variances of the source and filter
parameter trajectories and uses the pulses in the database to construct the voice source signal. The parameters in
the database are F0, energy, harmonic-to-noise ratio (HNR), voice source spectrum, and the vocal tract filter. In
addition, utterance durations are uniformly stretched by 20% to match the lengthening in shouted speech. Although
more sophisticated voice conversion techniques exist, this simple technique is used as a baseline in the evaluation
(see Sec. 2.5).

2.4.3 HMM-based synthesis

In concatenative speech synthesis [31, 32], building a voice with a specific speech style requires a large database of
style-specific speech for covering sufficient speech units. Especially with shouted speech, creating a large database
with constant quality is impractical. Statistical parametric speech synthesis (or HMM-based speech synthesis) [19]
provides an easy and flexible framework for synthesizing voices with different styles. A rather small database of
normal speech can be used for training the base voice, which can be then adapted [33] to any voice type using only
a small amount of speech with the specific style.

In this study, such an adaptation scheme is used to create synthetic shouted speech. Two normal speaking style
voices, a female and a male (see Sec. 2.2), were built with the standard HTS method [34], accommodated to the
extended stream structure of the GlottHMM vocoder [25], Then, the voices were adapted using the 100 sentences
of shouted speech with CSMAPLR + MAP method [33], which was tuned for previous Lombard speech synthesis
experiments in [22]. Two adapted shouting voices were built for both speakers, one with conventional LP and
another with stabilized STE-WLP parameterization of the vocal tract spectrum. For normal speaking style voices,
the vocal tract was parametrized with conventional LP.
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Figure 2.3c: Normalized average two-period glottal flow derivative waveforms of female and male normal and
shouted speech.
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Figure 2.4a: Results of the ABX test comparing LP, AME-WLP, and stabilized STE-WLP for normal and shouted
speech. The middle gray bar depicts no preference for either of the methods.
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Figure 2.4b: Subjective evaluation results (quality, impression of shouting and effort) for natural and synthetic
normal and shouted voices.

Phonetically and lexically balanced set of 32 test sentences were generated with both normal and shout-adapted
voices. Global variance [35] was not considered with the female voices due to observed artefacts in the shouted
LP-based voice, but moderate amount of post-filtering [36] was applied to compensate for the over-smoothing of
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the formants.

2.4.4 Effect of spectral estimation method to adaptation

Analysis-synthesis experiments with shouted speech showed that conventional LP is prone to biasing the spectral
estimate towards harmonics, thus creating artefacts. The same phenomenon is likely to happen when adapting the
normal speech material with shouted speech. Thus, stabilized STE-WLP, which performed best for shouted speech,
and LP are compared in terms of the quality of adapted shouted speech. A comparison category rating (CCR) test
was conducted to evaluate if spectral estimation method has effect on the quality. In the CCR test, subjects are
presented with speech sample pairs and the task of the listener is to rate the quality difference between the samples
on the comparison mean opinion score (CMOS) scale, which is a seven-point scale ranging from much worse (−3)
to much better (3). A total of 40 sentences (5 for each speech type) were presented to each 11 listeners. The
responses of the CCR test are summarized by calculating the mean score for each method with 95% confidence
intervals, which yields the order of preference and distances between the methods. The results of the CCR test,
shown in Fig. 2.5a, indicate that the stabilized STE-WLP is preferred over LP especially with the high-pitched
female voice.

2.5 Evaluation

A listening test was conducted in order to evaluate how synthetic shouted speech is perceived in comparison to
natural normal speech, natural shouting, and synthetic normal speech. In addition, a voice conversion from HMM-
based normal speech to shouted speech, described in Sec. 2.4.2, was used as a baseline. Thus, five different types
of speech were included in the test:

1. Natural normal speech

2. Natural shouted speech

3. Synthetic normal speech (LP)

4. Synthetic shouted speech (stabilized STE-WLP)

5. Synthetic normal speech + voice conversion to shouting

A mean opinion score (MOS) type test was used for evaluation. Listeners were presented with a speech sample at
a time and asked three questions assessing the quality of the speech sample, strength of perceived shouting, and
impression of the amount of vocal effort used by the speaker. The answers were given with a continuous slider
guided by five-point verbal scales. The questions and verbals scales are shown in Table 2.5a. The loudness of
the speech samples were normalized according to ITU-T P.56 [37] so that listeners perceived shouting not due to
increased sound intensity, but due to the other acoustics features generated by the synthesis technique. 11 native
Finnish listeners participated in the test conducted in quiet listening booths with headphones. Each listener rated
50 speech samples composed of 10 random samples from each category.

Table 2.5a: Questions and verbal scales of the subj. evaluation.

How would you rate the quality of the speech sample?
bad – poor – fair – good – excellent
How much does the sample resemble shouting?
none – little – moderately – much – very much
How much effort did speaker use for producing speech?
very little – little – moderately – much – very much
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Figure 2.5a: Quality of shout adaptation with respect to the spectral estimation methods for female (left) and male
(right) voice.

The evaluation results, guided by the five-point descriptions, were first converted to scale from 0 to 100, after
which means and 95% confidence intervals were computed for each speech type. The results of the listening test
are shown in Fig. 2.4b. The results indicate that the adapted shouting voice is rated inferior in quality compared
to normal synthetic speech. This is expected since adaptation of normal speech with small and very different data
produces artefacts to prosody and speech quality. However, the impression of shouting is fairly well preserved
as well as the impression of used vocal effort. The simple voice conversion technique, although rated similar in
quality to adapted shouting voice due to more consistent prosody, is deteriorated in the impression of shouting and
vocal effort.

2.6 Remarks

Shouting is a non-modal type of voice which is widely used in natural human-to-human vocal communication.
Synthesis of shouted speech, however, is challenging due to many reasons. First, it is hard to record a large
database of shouting with consistent quality. Second, the difference between normal speech and shouting is very
prominent. Shouting is characterized by high vocal energy and F0, increased duration, decreased spectral tilt, and
reduced dynamics of formant frequencies. These changes induce problems in many speech processing algorithms.
In this study, the biasing effect of high F0 to formant estimation was reduced by using specific spectral estimation
methods.

In this study, HMM-based synthesis of shouting was experimented through adaptation and voice conversion.
Subjective evaluation revealed that the quality of adapted shouting synthesis is degraded due to the aforementioned
challenges: the large difference between the two styles and the small amount of adaptation data. These problems
were most prominent in the prosody of synthesis. Stepwise adaptation from normal to shouted speech may improve
the quality, which will be a topic of future work. However, the impression of shouting and use of high vocal effort
is fairly well preserved. In contrast, voice conversion from synthetic normal speech to shouting exhibits more
consistent prosody, but the characteristics of shouting are less prominent.

3 Acoustic modeling of Simple4All Indian voices with GlottHMM for Blizzard
Challenge 2013

3.1 Blizzard Challenge 2013

In order to better understand and compare research techniques in building corpus-based speech synthesizers on the
same data, the annual Blizzard Challenge is organized. The basic challenge is to take the released speech data,
build synthetic voices, and synthesize a prescribed set of test sentences. The output from each synthesizer is then
evaluated through extensive listening tests.

This year, English audiobook data consists of a single female speaker, provided as approximately 300 hours
of chapter-sized mp3 files, plus approximately 19 hours of non-compressed wav files. The wav files have been
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segmented into sentences and aligned with the text. The task is to build two voices from the provided segmented
and unsegmented audio, respectively. For Indian Languages, which is pilot phase for the 2014 challenge, about
1 hour of speech data in each of four Indian languages (Hindi, Bengali, Kannada and Tamil) recorded by native
non-professional speakers in quiet office environments is provided. The task is to build one voice in each language
from the provided data.

With inconsistent recording conditions, small amount of training data and somewhat sketchy unsupervised
labels, the Blizzard Challenge 2013 with Indian voices required extra robustness for acoustic parameterization and
training. The four voices representing four major Indian languages were built in identical fashion, except that half of
the Bengali training data was discarded due to being recorded in barrel-like conditions. Other inconsistencies were
noted too. Style adaptive training and extra contextual labels were considered for different recording conditions,
but as there were no tools ready for unsupervised recording quality classification, we did not apply these methods,
in the spirit of the project.

3.2 Parameterization

The corpora were divided to training set of 950 sentences (except for Bengali) and development set of 50 sentences.
The training utterances were first denoised [denoising] and then parameterized with GlottHMM [25].

24 vocal tract LSF coefficients and 10 voice source LSF coefficients were extracted as well as harmonic-to-
noise ratio with 5 bands, energy and F0. In addition, pulse libraries [30] were extracted from 10 utterances for each
voice.

Some alternations to the parameterization scheme described in [25] were made to increase robustness. First,
the iterative adaptive inverse filtering method was replaced with direct inverse filtering using pre-emphasis filter
only. Second, the pre-emphasis filter was added to unvoiced analysis, to ensure continuous LSF trajectories across
voicing boundaries, thus reducing the audible distortion of voicing errors.

Notably, we did not use the vocal tract LSF parameters directly in the training, but instead converted the pa-
rameters to mel-cepstral representation via LPC spectrum, using SPTK [39] tools. As mel-cepstral coefficients
are decorrelated, focus on perceptually relevant frequencies and provide smooth trajectories, they might be more
suitable than LSFs for HMM training, especially on difficult material such as the current challenge. Further inves-
tigation on the subject is needed, though.

3.3 Training and synthesis

The HMM models were trained with standard HTS 2.0 [34] recipe modified for additional GlottHMM streams,
except using three iterations of decision tree clustering instead of two. MGE training was also applied. Parameter
generation was performed considering global variance, with stream dependent thresholds. Generated mel-cepstral
coefficients were converted back to the LSF form for stability checking and vocoding purposes. Excitation was
generated using the PCA-mean pulse approach [38].

Informal listening by authors and some native speakers suggested that this denoised GlottHMM version per-
formed better than previous Simple4All STRAIGHT voices built on the same data, but detailed analysis on the
exact reasons of this improvement are yet to be done.

4 Comparison of vocoders

In addition to the GlottHMM vocoder [25] discussed earlier, several new vocoders have been proposed mainly for
HMM-based speech synthesis recently. In the final section of this deliverable, we report a comparable study of
various vocoders based on perceptual experiments. In the perceptual experiments, we have also evaluated a few
sinusoidal models in addition to the vocoders because, although these sinusoidal models are not fully integrated into
HMM-based speech synthesis yet at this moment, it is interesting to see how close or how different the quality of
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re-synthesized speech using the vocoders is compared to those using the sinusoidal models, which are, in general,
more complex and high-dimensional speech representation.

4.1 Vocoders and sinusoidal models used for perceptual comparison

The followings are vocoder and sinusoidal models that we have used for perceptual comparison. For details of each
method, please refer to the original publications.

1. Mel-generalised cepstral (MGC) vocoder [40]

2. STRAIGHT vocoder [41]

3. STRAIGHT mel-cepstral vocoder with band-limited mixed excitation [42]

4. GlottHMM vocoder [25]

5. Deterministic plus stochastic model [43]

6. Harmonic-plus-noise model based MGC and F0 Extractor [44]

7. Harmonic-plus-noise model’ (where the number of parameters per frame is forced to be fixed)

8. Harmonic-plus-noise model [44]

9. Adaptive harmonic model [45]

STRAIGHT is a typical vocoder used for HMM-based speech synthesis. Since the original dimensions of the
STRAIGHT vocoder are too high, we reduce the dimension via DCT and band-pass filtering in prior to HMM
training [42]. GlottHMM vocoder and deterministic plus stochastic model are strongly related to each other in terms
of residual modeling. The former creates a library of glottal pulses whereas the latter applies HNM and PCA to the
residual signals. Mel-generalised cepstral vocoder and harmonic-plus-noise model based MGC and F0 Extractor
are also strongly related to each other because both of them extract mel-cepstra as spectral parameters. Harmonic-
plus-noise model based MGC and F0 Extractor and harmonic-plus-noise model’ are also an interesting pair to
compare with the original harmonic-plus-noise model because they convert varying parameters of the harmonic
plus noise model to fixed dimensional parameters for HMM training. Compared to adaptive harmonic model with
the harmonic-plus-noise model, we can see progress of the sinusoidal representation.

4.2 Perceptual comparison

For comparing various vocoders, the multi-dimensional scaling (MDS) has been used in order to visualize which
vocoder sounds similar to which vocoder and how listeners judge the quality of the vocoders. 40 listeners were
asked to compare two vocoders randomly chosen from 9 systems above and judge whether the quality is similar or
different.

Figure 4.2a shows the results of the 2-D MDS visualization, which explains about 79% of the original percep-
tual judgement scores. In the figure, Mgc represents [40], Str represents [41], StrHMM represents [42], Tuomo
represents [25], Drug represents [43], Error represents [44], Zam represents Harmonic-plus-noise model’ in the
section 4.1, Har represents [44], and Gille represents [45]. In the figure, three colors (green, red, black) show the
result of k-means clustering, indicating that there are three major categories for the vocoders and sinusoidal models
from listener’s points of view.

We have also conducted several analysis to find out the meaning of the first and second axis of the 2-D space.
From the analysis, we have found out that the first axis is strongly correlated with PESQ (r = 0.88, p < 0.01).
The PESQ is a standardized objective measure for speech quality mainly used for speech coding and this means
that x-axis of the figure 4.2a corresponds to the so-called speech quality. In addition, we can see that PESQ is not
sufficient to explain the human perceptual judgement because the second axis of the MDS results explain about
25% of the original perceptual judgement scores. (We’re now investigating the meanings of the second axis.)
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Figure 4.2a: Results of the MDS visualization of various vocoders and sinusoidal models. Mgc represents [40],
Str represents [41], StrHMM represents [42], Tuomo represents [25], Drug represents [43], Error represents [44],
Zam represents Harmonic-plus-noise model’ in the section 4.1, Har represents [44], and Gille represents [45].

We can see that this MDS result is appropriate because it is consistent with various results reported in literature.
For instance, from x-values, we can see that 1) GlottHMM vocoder is better than STRAIGHT mel-cepstral vocoder
with band-limited mixed excitation, 2) harmonic-plus-noise model based MGC and F0 extractor is better than MGC
vocoder, and 3) adaptive harmonic model is better than harmonic-plus-noise model.

In addition, we see several interesting tendencies. First forcing the number of parameters for HNM to be fixed
(Erro, Zam) result in loss of the quality (x-axis) and significant change in y-axis. Second GlottHMM vocoder
and deterministic plus stochastic model are judged to be different perceptually although it has similar motivations
behind. Instead deterministic plus stochastic model was judged to be similar to harmonic-plus-noise model based
MGC and F0 extractor interestingly. The deterministic plus stochastic model applies inverse filtering using the
MGLSA filter to acquire the residual single and apply NHM to the residual signal. On the other hand, harmonic-
plus-noise model based MGC and F0 extractor converts the harmonic amplitude to discrete cepstrum. Although the
concept of HNM is used for the two vocoders in different ways, the resulting synthetic speech seems to be similar
perceptually. These studies will tell us how we should improve the vocoders in the near future.

5 Conclusions

Today, both the quality and naturalness of many statistical speech synthesis methods is good as long as the voice
to be synthesized is of normal speaking style and low pitch. High-quality synthesis of non-modal speaking sytyles
is, unfortunately, not possible with existing methods. Therefore, developing TTS technology capable of handling a
large variety of speaking styles constitutes an important topic of the SIMPLE4ALL project. Work in this topic calls
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for progress in many key elements of the synthesizer. In this deliverable, we address the problem from the point of
view of the vocoder, the core of our activites in T3.3.

Utilizing the new speech signal model together with a variety of speaking styles has been studied jointly be-
tween the project particpants by dividing our activites into three sub-topics: (1) analysis and synthesis of shouting
voices, (2) prepration of our submission to the coming Bllizzard Challenge, and (3) conducting a comparison of
a large set of different vocoders. In sub-topic (1), our results indicate that by adapting the synthesizer based on
the use of the GlottHMM vocoder enables generating synthetic shouted voices which resembles natural shouted
speech quite well. Further research is, however, needed to achieve better quality for synthetic shouted speech. In
sub-topic (2), we prepared our Blizzard 2013 submission by buiding voices of four Indian languages. Preliminary
evaluation indicates that the involvement of denoising in the GlottHMM vocoder seems to slightly improve the
sound quality in comparison to the STRAIGHT vocoder. Finally, in sub-topic (3) we conducted a preliminary
experiment to understand how a large set of different vocoding techniques could be compared based on subjective
evaluation. Altogether nine vocoders were involved and the listeners were asked to judge the similarity of voices
produced with two randomly chosen vocoding techniques. The results, yet preliminary, are encouranging in indi-
cating that a 2-dimensional space can be used in visualizing the quality and similarity of synthetic speech produced
with different vocoding techniques.
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[21] Calzada, A. and Socoró , J., “Vocal effort modification through harmonics plus noise model representation”,
In Advances in Nonlinear Speech Processing. Vol. 7015 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2011, pp. 96–103.

Version 1 (08/04/2013) 16 page 16 of 18



FP7-287678 SIMPLE4ALL deliverable D3.3

[22] Raitio, T., Suni, A., Vainio, M. and Alku, P., “Analysis of HMM-based Lombard speech synthesis”, Proc.
Interspeech, 2011, pp. 2781–2784.

[23] Titze, I. and Sundberg, J., “Vocal intensity in speakers and singers”, J. Acoust. Soc. Am., 91(5):2936–2946,
1992.
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