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Abstract

On of the main goals of the SIMPLE4ALL is to replace the traditional approach to text-to-speech front-end text
processing with fully data-driven approaches based on machine learning and to develop unsupervised language-
independent methods for linguistic representation estimation. This report describes the final version of the linguis-
tic front-end of the SIMPLE4ALL system. The system for handling non-standard words, such as abbreviation,
numbers and acronyms, the system for building linguistic representations in a unsupervised fashion, and an auto-
matic prosody modelling system based on word prominences are described in Deliverable 2.1. This deliverable
describes the additional work done towards finalising the linguistic front-end.
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1 Introduction

Building a statistical text-to-speech synthesiser relies on large amounts of textual data and pre-recorded speech
signals. Moreover, the speech signals have to be labeled according to their written form. This is usually very time
consuming, and relies on manual effort from experts; it is, therefore, expensive and does not scale well to building
systems for large numbers of languages. However, the hypothesis that SIMPLE4ALL is testing is that all of the
methods for preparing data for TTS voice building can be automated; modern machine learning techniques that are
fully data-driven can replace the expensive human labor in the process.

Replacing the traditional linguistic front-end of TTS with a fully data-driven approach based on machine learn-
ing is one of the main goals of SIMPLE4ALL . In general, this calls for a set of language-independent methods for
linguistic representation estimation from data, which has itself possibly been acquired in a semi-automatic fashion
from non-standard sources and/or provided by non-expert users.

The project aims to demonstrate the construction of complete speech synthesis systems starting only from
speech and text, employing our novel methods for the front end in conjunction with a conventional state-clustered
context-dependent HMM waveform generation module.

This report describes the final version of the linguistic front-end of the SIMPLE4ALL system. The system
for handling non-standard words, such as abbreviations, numbers and acronyms, the system for building linguistic
representations in a unsupervised fashion, and an automatic prosody modelling system based on word prominences
are described in Deliverable 2.1. This deliverable describes the additional work done towards finalising the lin-
guistic front-end. The new features implemented to the linguistic front-end include improved methods for both
lexical decomposition into morph-like units and improved language modelling, as well as prosodic labeling and
automatic syllabification. The overall frame-work and its evaluation is described in Section 1, followed by descrip-
tions on automatic syllabification, morphological decomposition, and automatic prosodic tagging using wavelet
decomposition.

The current version of the system documentation is also attached as an Appendix to this Deliverable.

2 Description of the Python framework

2.1 System description

Whilst the software implementation has been cleaned up and rationalised considerably, the overall framework
remains very similar to that already presented in Section 3 of D2.1, and that description will not be repeated in full
here. To briefly recap, however, a front-end built using the Python framework consists of a sequence of utterance
processors, each of which accepts and enriches an XML representation of an utterance. The framework is designed
to be flexible so that the exact number of processors and their roles can be reconfigured by the developer/user. As
an example, a voice built using a typical naive configuration (such as the voices whose evaluation is discussed in
Section 2.2) will use the following types of processors:

Tokenisation Processors which: tokenise text based on regular expressions querying Unicode character classes,
classify tokens as word/space/punctuation etc., supply ASCII-safe representations of input text

Alignment Processors which, during training, extract acoustic features and create a time-alignment of text units
with those features

Vector Space Modelling Processors which in training construct vector space models from text data, and, at voice
training and synthesis time, tag textual units with VSM features

Pause prediction and phrasing Processors which in training find pauses detected during alignment and create a
predictor of those pauses, and which add phrase structure to utterance based on detected or predicted pauses

Rich contexts and label generation Processors which extract rich context label and question files suitable for use
in acoustic model training or at synthesis time
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Results

• E

• Two groups of languages?

Figure 2.2a: Absolute WERs for the full Tundra evaluation.

The most recent documentation for end users which is distributed with the released tools, probably constitutes
the most useful sort of system description, and interested readers are referred to the downloadable code (see D6.5)
for details.

2.2 Evaluation

22 synthetic voices (in 21 different languages) have now been built using the methods described above, and syn-
thetic speech from 16 of them has subjectively evaluated. The building of 14 of these has been published in [1],
which is appended in full to the current document. Briefly, that paper describes systems for Bulgarian, Dutch, En-
glish, French, German, Italian, Polish, Portuguese, Romanian, Spanish, Russian, Hungarian, Danish and Finnish.
Each of these systems was built from around 1 hour of ‘found’ data, gathered with minimal supervision, and us-
ing the naive system configuration. Systems in the first 10 languages listed above were subjectively evaluated for
intelligibility using a crowdsourcing service; systems in the final four languages listed were not evaluated because
it was not possible to recruit native listeners using the chosen service. As we do not have access to conventional
systems in most of these languages, and as we do not have Semantically Unpredictable Sentences (SUS) for them,
we set aside some chapters of the found material for use as a test set, and compared the systems’ synthetic speech
with natural speech. Full results for all languages were not available for publication by time of submission for
[1], and so an expanded graphical presentation of those results is presented here: Figure 2.2a shows the absolute
word error rates of listeners’ transcriptions of synthetic and natural speech for all 10 languages where systems were
evaluated.

Another way to visualise these results is as the ratio of the natural to the synthetic WER: these ratios are shown
in Figure 2.2b. These figures answer the question: How many times less intelligible than natural speech is synthetic
speech? For comparison, the corresponding ratio for the 2011 Blizzard Festival unit selection benchmark system
(albeit on SUS) was 1.47. It therefore appears that there is a group of languages where performance is reasonable
(Polish, Romanian, Bulgarian, Italian, and perhaps German), and a second group where performance is markedly
worse (Dutch, French, Portuguese and English).

However, the results of this evaluation must be treated with caution, because as well as language-specific
differences, we have obviously not been able to control for other differences between the data in the different
languages, such as speaker characteristics, recording conditions, and the inherent difficulty of transcribing material
from the various sources used. It is our working hypothesis that most of the differences in intelligibility (in terms of
ratio WER) between the different languages could be accounted for by language- and script-specific factors, such
as grapheme-to-phoneme complexity. On-going work – which may partly be carried out as part of a postgraduate
Masters dissertation project at UEDIN – will focus on further experiments in order to isolate the language-specific
factors from other factors such as speaker and recording quality (by, for example, building voices on multiple
datasets and speakers per language).
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Figure 2.2b: Ratio WERs for the full Tundra evaluation.

As mentioned in D2.1 (pp. 31–2), voices have been built previously using our tools for the 7 languages of the
IIIT-H databases: Bengali, Hindi, Kannada, Tamil, Malayalam, Marathi and Telugu. The 2013 Blizzard Challenge
presented an opportunity to rigorously evaluate systems in the first four of these languages: full details of the
Simple4All entry are given in [2] which is appended to the current document for convenience, and we just briefly
summarise it here. The initial STRAIGHT-based acoustic models that we built on this relatively noisy data pro-
duced apparently poor quality synthetic speech. Therefore for the Challenge, new acoustic models were built for the
four relevant languages, using the denoising techniques we first used successfully on the Tundra data, some manual
selection to remove the most reverberant section of the Bengali data, and GlottHMM-derived acoustic features.

Performance of our techniques relative to the other entries (which generally use traditional supervised and
resource-intensive approaches) for the Indian language tasks is most encouraging. For the speaker similarity and
naturalness sections of the evaluation for all 4 languages, our system tends to score somewhere in the middle of
all TTS systems. The intelligibility results published for Hindi and Kannada follow a similar pattern. In the Hindi
test, 4 TTS systems achieved lower (i.e., better) WERs than ours, 1 was worse, and 1 scored within 1% WER of
our system; in the paid listener subset, our system achieves precisely the middle rank in the Hindi intelligibility
results. In both listener group sections of the Kannada intelligibility test, our system also achieves precisely the
middle rank. No intelligibility results were available for Tamil or Bengali.

We regard the middling performance of our system in this evaluation of Indian language systems as a success,
given that our system makes no use of expert script knowledge, while other systems made use of at least the
phonetic annotation distributed for the challenge. This is the first formal evaluation of our letter-based front-end
as applied to a non-alphabetic script: we regard its reasonable performance on these four alphasyllabic scripts as a
validation of the unsupervised approach applied in a key target domain: under-resourced languages.

Besides the Indian language tasks, the Challenge included two English language tasks, for one of which we
prepared an entry. The poor performance of our system on this task was no surprise in light of results such as those
shown in Figure 2.2a, and of the high level of expertise that has been accumulated in English TTS where there is
no self-imposed limit on the amount of target-language expertise that can be used in a system. We chose, however,
to submit an English system built on exactly the same principles as for other languages we have tackled. It is
possible that the individual listener responses obtained for English may still be useful as a form of user feedback;
for example, they could be useful for developing lightly supervised and unsupervised lexicon induction techniques
by guiding us towards problematic words. Because the Blizzard stimuli will be released after the challenge, it
is possible to evaluate and later improved system by re-running the evaluation locally on a smaller scale, using
a subset of selected benchmark systems from the challenge which allow new results for improved systems to be
placed among existing Blizzard results. Having our own baseline among the original results is useful for sanity-
checking when projecting results for new systems into the space of existing results.

Finally, and separately from the Tundra and Blizzard voice building exercises, our techniques were used to build
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a voice from web-scraped Malay data, by a visitor at UEDIN , Lau Chee Yong (Universiti Teknologi Malaysia).
These results have not yet been published, but some initial findings will be briefly summarised here. Four voices
were evaluated to explore 2 factors in voice-building: the use of automatically-harvested data (see Section 6.1
of D1.6) versus purpose-recorded TTS data, and the use of wholly naive letter-based synthesis versus the partial
grapheme-phoneme rules obtained with active learning techniques described in D4.1). A listening test showed that
using active learning to manually disambiguate pronunciations of a single letter can greatly improve intelligibility.
Word error rates of 28 listeners’ transcriptions of Semantically Unpredictable Sentences were reduced from 41.67%
to 15.69% in the case of voices built on studio-recorded data, and from 54.65% to 40.42% for voices built on found
data. These initial results suggest that the active learning interface already developed for this experiment was
useful, and so should be integrated more closely with the front-end code.

3 Syllabification

Syllable is an important level in phonological hierarchy, carrying information on lexical stress, accent and rhythmic
properties of speech. In supervised TTS systems, syllable is always included in the modelling and it is certainly
desirable to attempt including it in the SIMPLE4ALL framework, too. Universally, syllable is composed of onset,
nucleus and coda, where nucleus consists of one or more vowels, and onset and coda of zero or more consonants.
Thus, the problem of unsupervised text-based syllabification of languages with alphabetic script can roughly be
split to four separate tasks;

1. Identifying which letters correspond to vowels and consonants.

2. Identifying syllable boundaries within consonant clusters

3. Identifying vowel sequences that form diphthongs

4. Identifying compound word boundaries

In addition, languages with weak letter to sound relationship would require identifying digraphs and trigraphs
in various contexts, such as ’th’ -> /dh/ or ’ou’ -> /u/ in english or ’sch’ -> /S/ in German, but this problem is not
currently dealt with. The initial language independent syllabification method described below is based on simple,
known universal tendencies in world’s languages. Future improvements will include augmenting the method with
acoustic evidence and user feedback.

3.1 Vowel – Consonant identification

Tho vowel-consonant classification is performed with iterative Sukhotin’s algorithm [3], where the only assump-
tions made of the language are that vowels and consonants tend to alternate, and that the most frequent letter of
the language is a vowel. Observing the performance of the default algorithm, slight modifications were made, by
including information on word boundaries and treating letter clusters of high mutual information as single letters.
The performance of the modified algorithm on selected languages can be found below. The remaining problems
relate to ambiguity of vowel status of some letters, like ’y’ in English (’You’ -> /ju:/ ’reallY’ -> /ri@li/), which
would require context dependent processing.

Figure 3.1a shows results of the syllabification algorithm in terms of grouping vowels and consonants for eight
European languages.

3.2 Identifying syllable boundaries within consonant clusters

Typically, three principles are mentioned in literature on the placement of syllable boundaries:
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Finnish  
vowels: a e ä i o u ö y  
consonants: g c b d f h k j m l n p s r t v   
 
Hungarian  
vowels: a á e i í ű o ő é ó u ö y ú ü  
consonants: l t c b d g f h k j m n p s r w v z   
 
Russian  
vowels: ! e " # $ % & ' ( ) *  
consonants: + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @   
 
Slovak  
vowels: a á e i í o é ó u ô y ú ý  
consonants: č n ľ ň b d š c ť g f h k j m l p s r t w v z ž   
 
German  
vowels: a e ä i o u ö ü  
consonants: m j l n s t g b ß c d f h k p r w v ?y x z   
 
English  
vowels: a e i o u  
consonants: m s t v c g x d b f k j l n p r w h ?y z   
 
Spanish  
vowels: a á e i í o é ó u ú  
consonants: j l ñ ?y v c g b d f h k m n p s r t w x z   
 
Romanian  
vowels :a ă â e i o î u  
consonants: ţ c ş d b g f h k j m l n p s r t w v y x z  
!

Figure 3.1a: Letters grouped to vowels and consonants using the Sukothin algorithm.

1. Legality principle (LP), states that consonant cluster can act as onset or coda only if the said cluster can begin
or end words in the language.

2. Maximal onset principle (MOP), states that in ambiguous cases, the onset of the syllable should be extended
in expense of the coda of the previous syllable.

3. Sonority sequencing principle (SSP), states that the sonority (loudness and voicing) of the sounds should
increase from onset to nucleus and then decrease from nucleus to coda.

Of these, SSP can not be implemented without additional acoustic analysis on the sonority of the letter. LP
and MOP have been implemented in modified form; Of LP, only onsets are considered, with additional frequency
constraint. As real texts often contain foreign names and loanwords with atypical orthography, only word-initial
clusters above certain percentage of all word-initial sequences are considered legal. On the whole, the exact place-
ment of boundaries might not be important for TTS purposes, as long as nucleii are correctly placed.

3.3 Identifying diphthongs

We have applied a diphtong guessing method that is, based on the assumption that vowels that are adjacent more
often than separated by one letter tend to be diphthongs [4]. Unfortunately, this method is rather weak and the
probleme, therefore, lends itself naturally to user input and crowd-sourcing.

3.4 Identifying compound word boundaries

Syllable boundaries should always coincide with compound word boundaries, which are to be acquired by Morfes-
sor catmap analysis, when integrated to the system.
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3.5 Initial observations of the method

The described method has been implemented and preliminary evaluation has been performed against supervised
methods on Romanian and Finnish. The results differ considerably; for Finnish, over 90% of token types were
correctly syllabified, whereas for Romanian there is only 50% agreement on word level. For Finnish, the remaining
problems concern diphtong identification, violation of the maximum onset principle and identification of compound
word boundaries. In Romanian, more context-dependency in syllabification would be required; vowel sequences
form diphthongs depending on position in word as well as morphology, and some letters may represent either
vowels or consonants depending on the position in the word. Figure 3.5a shows randomly chosen examples of
syllabification for Finnish, Russian, Romanian, German, and Spanish trained and tested on open subtitles word
lists (http://invokeit.wordpress.com/frequency-word-lists/).

Based on these observations, further development will concern acoustic evidence and user feedback on diphtong
identification, integrating Morfessor with syllabification for morphological context dependency and compound
words, adding context dependency to vowel identification.

To assess the amount of resources needed, evaluation will be perfomed on system level, comparing voices built
with unsupervised syllabification to both baseline method and systems built with gold standard syllabification.

Finnish: muut-tu-vat hyö-kä-tä sil-mäl-lä teh-kää saa-toin poi-ka 
mie-luum-min os-ta-maan kau-pun-ki-a ker-to-kaa to-del-li-nen o-len 
päi-väl-tä kai-kes-ta dan-ny ku-kas tar-koi-tat-ko kuo-len ta-val-
laan sait-te a-ja huo-leh-tii päi-vä-nä hen-gi-tä o-pet-ta-ja vaih-
toeh-to-a kol-men kään-tyy pää-see kuo-le-man tu-lem-me ker-ran lä-
hes-tyy ra-hat aa-vis-tus-ta-kaan ky-sy-myk-sen i-kui-ses-ti riit-ti 
vuo-ro-si kut-sut-tu mui-ta-kin häi-vy ku-lut-tu-a yh-tään pel-kään-
pä saak-ka ta-voin ar-voi-nen bob-by var-mis-ta mul-la voim-me-ko 
Russian: -!"-#$%& "-'"-&( &"-)$ *+-,+--( -(-)$& *(.-&$/ .*+&-0(-," &0+-1$-&2 
*$-*( 3$-*(-&"-&2 )(-,2-34 #+5-)6 !+-,2-7+* )$-8$-," ."-,$ *"-0+* 9+--"-#$(-
72 +.-&$-)+-#"-&(-.2 &$-:+-#$ .4-'2 )(-)$-#"--6 3#+-)"& 9,$-)(-&$ 90('.-&$#-,4% 
9+5-*6 9+-#(-'(-)"-( 63-)$(-&( /0(-)$ 06-:" )+-82% /+-0+-7$4 )$-#(0-)+ 9+.&-
0+-"-&2 9+-,6-8", .,(-'; 90+-'+,--"-&2 ,%!+-9;&-)+ .+1-,$-.() #.(-*6 )$-/+-
'4&-.4 '+-:$-3$-&(-,2.&-#+ '(-0(#-)( 9+.-:+-,2-:6 &$-:"-( #31,4-)"-&( :$0- 
Romanian: dist-rac-ţie tră-dat vân-tul ha-i-de bu-ni-ca scă-ri chi-na 
ca-do-u-ri fu-rios con-ti-nu-at me-di-ca-le bal-ta ga-ta pis-to-lul 
a-duc re-pe-ta fa-mi-li-i-le a-lea ur-mă-ri ve-ti ba-tem pa-sa su-năm 
con-cur-sul fe-te-le ba-ră do-va-dă fe-ri-ci-te ca-zi tâ-năr şo-fe-
rul lu-mi-na prin-ci-pa-lă sol-da-ţi ju-rul pur-tat a-le-gi prie-te-
nul pi-cioa-re surp-rins nu-mes-te na-sul ha-i gân-de-şti ne-ce-sar 
din-ţi a-ştept cla-sa u-ma-ne a-ra-ti ver-de sa-la a-mân-do-i tre-zi  
German: wo-chen bi-bel sol-cher mit-te ve-rär-gert an-statt mo-ral 
ar-me wei-te-res hun-dert bil-lig ein-stel-lung star-ken freun-din 
ter-ro-ri-sten gü-te ge-sich-ter städ-te kin-der ü-berp-rü-fen lei-
hen per-son kno-chen zu-ruck pa-ter e-arl jah-ren fürch-ten sag-te 
pa-tien-ten way-ne ge-kämpft fo-tos kal-te mur-taugh ju-les un-ten a-
li-ce of-fi-cer in-te-res-siert lie-ben um-so auf-neh-men ge-lan-gen 
mor-gens jo-nes rus-si-sche dau-er-te mi-nu-te verb-re-cher loc-ker 
dien-sten lö-schen rus-sell ca-sey zeu-gen größ-te te-leg-ramm den-
ken geb-racht blau-en ka-ne mil-lion raus-kom-men dop-pelt ak-ten 
Spanish: pre-sen-te par-ti-ci-par po-li-cías bien-ve-ni-do val-le pa-
ta vi-a-jar o-cur-rir ár-bol su-ce-da con-ta-ré gor-do nomb-re vi-vía 
sa-lón a-cei-te hi-cie-ra rep-re-sen-ta mue-re di-je-ra cu-ar-tel 
men-ti-ras bo-ni-ta al-bert cor-rec-ta co-mió tra-ba-ja-do-res nue-
vos be-bé ra-di-o at-rac-ti-va sob-re-vi-vir mué-ve-te di-as ru-mo-
res ce-nar gra-ve u-sa-do pue-sta i-a bus-can-do dá-me-lo que-da-do 
ri-dí-cu-lo per-fec-to ge-ren-te to-tal as-pec-to se-rás a-hi en-can-
to se-guir sos-pe-cho-so ar-chi-vo lla-man-do viu-da ent-re-vi-sta 
ha-ber-me mi-nu-to a-gen-tes ver-los que-das pu-tas ga-ra-je co-mien-
do en-se-ñó tri-bu-nal a-ma-da es-co-ger de-bi-ste pi-dió ron-da  

!
Figure 3.5a: Random examples of syllabification for Finnish, Russian, Romanian, German, and Spanish based on
the methods described in the text.
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4 Pseudo-morphological analysis (Morfessor)

A small proportion of the text in this section is similar to the part of D4.1 concerning Morfessor – this is intentional
and is designed to improve the readability of both deliverables in isolation without requiring excessive cross-
referencing.

4.1 Morfessor Baseline

Morfessor Baseline is a method for unsupervised segmentation of words into morphs using a probabilistic model. A
morph is theoretically the smallest part of language carrying meaning. Although similar to syllables in appearance
(a segmentation of a word into one or more substrings), morphs actually segment a word into information units
instead of phonological ones. Originally developed at AALTO [5, 6], improvements made within SIMPLE4ALL [7]
have now been integrated into the new front-end.

In training, a model is defined with a probabilistic model based on the Minimum Description Length principle
[8]. The MAP estimate of this model is optimized using an iterative procedure that tries to (recursively) split all
morphs present in the model to see if there is any increase in the sum of the lexicon cost and the likelihood of the
data. The final parameters of the model correspond to the segmentation of the training data. The method is in its
basic form completely unsupervised. No segmentation examples have to be provided to train the model.

After training of the model single utterances can be processed by the Morfessor module. The words are seg-
mented using Viterbi-segmentation to find the most likely split. The resulting morphs are stored as nodes below
the word level. The segmentation of morphs can be used in other tasks like the prediction of prominence tags, but
already information about the number of morphs is useful in synthesis.

As the model is completely probabilistic and does not contain any language specific component it is useful
for all languages that have words that can be split into morphs. The best results are obtained for agglutinative
languages like Finnish and Hungarian. Also other letter based scripts can be split with a varying degree of success.
On languages with a logosyllabic script (e.g. Chinese), this method will not result in a useful segmentation.

4.2 FlatCat extension

A new method in the Morfessor family called Morfessor FlatCat has been developed in this project.
FlatCat combines the morphotactic constraints from the Morfessor Cat-ML [9] and Cat-MAP [6] models, with

the corpus likelihood weighting and semi-supervised learning introduced in Morfessor Baseline. As opposed to
Cat-ML, FlatCat uses maximum a posteriori estimation, removing the need for heuristic controls for the model
complexity. The hierarchic lexicon of Cat-MAP, in which morphs can consist of two submorphs, has been replaced
with a flat representation where each morph must be spelled out. This has been done to facilitate the corpus
likelihood weighting.

FlatCat differs from Morfessor Baseline through the use of morph categories. FlatCat assigns to each morph
one of four categories: prefix, stem, suffix, or non-morpheme. Category membership probabilities use as features
the length of the morph and the predictability of the context in which it occurs. The use of categories allows word
internal relations between morphs to be modeled. An example of the benefit is refraining from incorrectly using a
valid suffix as a prefix, such as segmenting the word swing as s + wing.

The morph categories assigned by FlatCat can be used as features in prominence prediction and other tasks.
Tasks that benefit from stemming can emulate it by using only the morphs categorized as stems.

FlatCat introduces three new aspects to the Morfessor family: a novel weight learning method, a new shift
operation for the search for an optimal model, and the possibility to receive user feedback through the introduction
of labeled data during online training.
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4.3 Evaluation

For evaluation of Morfessor Baseline on both English and Finnish the datasets of the Morpho Challenge 2010 [10]
are used to test the unsupervised and semi-supervised segmentation that can be done by Morfessor. These results
are also published in a more extensive format in [7].

The choice of English and Finnish as testing data make the results cover a broad set of languages. Whereas
Finnish is a agglutinative, highly morphological language, English is highly irregular and does not contain many
natural morphs.

In Table 4.3a the description of both datasets is shown.

Table 4.3a: The numbers of word types in the English and Finnish Morpho Challenge 2010 data sets [10].
English Finnish

Unannoted training set 878 036 2 928 030
Annotated training set 1 000 1 000
Test sets 10×1 000 10×1 000

Table 4.3b: Semi-supervised training. (Morpho Challenge 2010 training data, test set scores.)
Run Epochs Pre. (%) Rec. (%) F-s. (%)
English
unsupervised 5 81.42 64.31 71.85
semi-supervised 5 81.93 76.53 79.14
Finnish
unsupervised 5 82.33 39.18 53.09
semi-supervised 2 82.89 54.26 65.58

For evaluation of the segmentation the micro-average segmentation boundary F-score [11] is used. As shown
in Table 4.3b, both in English and Finnish the semi-supervised version improves both in precision and recall, and
hence also the F-score. These semi-supervised results are important as the annotations used can be given by the
user as feedback, which is relevant for tasks in WP4.

5 Wavelet-based prominence tagging

The basic prosodic component in the system is based on prominence, namely word prominence, which is based
on the assumption that the lexical level is the main carrier of utterance and phrase internal structure that is not
directly computable from the text. That is, the utterance and phrase level prosody follows the textual structure that
is mainly marked with punctuation, whereas the sub-lexical structure can be directly computed from syllable and
segmental structure. The word prominence is directly related to all prosodic parameters that the system is designed
to handle: more prominent syllables are typically louder – reflected in their spectral and gain structure – and longer
in duration, moreover, they typically have a rising-falling type fundamental frequency contour.

We have in earlier studies used successfully four levels of prominence ranging from 0 (totally non-prominent
or unaccented) to 3 (emphatic prominence, e.g., narrow prosodic focus). The four levels have been successful for
both Finnish ([12]) and English ([13, 14]). The levels are also easy for non-experts to label [15].

In order to be used in a fully unsupervised system, the prominences need to be automatically tagged using
acoustic data. To this end we have studied several methods that use supervision to different degrees (see Deliverable
2.1, section 5.9). Here we describe the fully automatic labeling system based on continuous wavelet transform
(CWT) that has been implemented into the SIMPLE4ALL system. The labeling system, as well as a full system
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that also uses CWT based synthesis for f0 are further described in two recent publications by the group at UH
[16, 15]. The proposed CWT based method simplifies signinficantly the front-end design as it does not rely on
iteration in terms of synthesis training.

In [15] we studied how well the CWT decomposed f0 features corresponded with human labeled prominences
for more than 7600 separate words, which were all labeled by three separate labelers (all phonetics students). The
results were encouraging with the CWT contour peak level matching temporally to the word level explaining more
than 53% of the variance in human based labels (see Figure5.0b.

In addition to f0, the final system uses a weighted prominence estimate from both f0 and energy (the gain
parameter from the GlottHMM analysis).

Figure 5.0a: The word prosody scale is chosen from a discrete set of scales with ratio 2 between ascending scales
as the one with the number of local maxima as close to the number of words in the corpus as possible. The upper
pane shows the representations of f0 at different scales. The word level (4.2 Hz; see text) is drawn in red. The
lower pane shows the f0 curve. The abscissa shows the frame count from the beginning of the utterance (5 ms
frame duration).

5.1 System description

The method described in [15] has been implemented in the voice training part of the Python framework. In addition
to f0, wavelet analysis is also performed on signal energy, and a weighted sum of the normalized word-level wavelet
scale of two acoustic features are used to derieve word prominence related contextual features for HMM-training.
In addition, a method to add duration features to prominence labelling using a similar wavelet approach is in
preparation.

In synthesis time, the prominence labels are predicted with decision-trees, which are currently trained on po-
sitional features and morph vector space models. The evaluation of the prominence method will be conducted on
Tundra corpora, as the syllabification and morfessor get integrated to the framework.

The initial version of prosody prediction was described in Deliverable 2.1, section 5.6, which centered on pause
and phrase prediction.

5.2 Evaluation

The suitability of the CWT based tagging scheme was evaluated for Finnish (as described in [15]). Figure 5.0a
shows how the word level changes in f0 are more varied than e.g., the phrases, which contribute to the overall
contour in a regular fashion. Similarly the highest level, which can be interpreted as a general downtrend (or
declination) follows from the the whole utterance. The fact that the prominence related changes in the word
level cannot be straight-forwardly calculated from the surface f0 signal is further illustrated in Figure 5.0b how
the underlying temporal level corresponding to the word contributes to the overall f0 in a non-obvious way. In
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Figure 5.0b: Comparison of selected word scale and original f0 contour with detected peaks marked with gray
triangles. Observe that the wavelet contour is free of noise and declination trend.

summary, the CWT based prominence labeling corresponds very well with the human based values explaining
more than 53% of the variance in manual labels. In terms of the very few (four) distinct categories used for
prominence in the system, the automatic labeling based on CWT should outperform other methods as it can be
extended to include both f0 and other prominence related variables.
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Abstract
This paper presents techniques for building text-to-speech front-
ends in a way that avoids the need for language-specific ex-
pert knowledge, but instead relies on universal resources (such
as the Unicode character database) and unsupervised learning
from unannotated data to ease system development. The acqui-
sition of expert language-specific knowledge and expert anno-
tated data is a major bottleneck in the development of corpus-
based TTS systems in new languages. The methods presented
here side-step the need for such resources as pronunciation lex-
icons, phonetic feature sets, part of speech tagged data, etc. The
paper explains how the techniques introduced are applied to the
14 languages of a corpus of ‘found’ audiobook data. Results of
an evaluation of the intelligibility of the systems resulting from
applying these novel techniques to this data are presented.
Index Terms: multilingual speech synthesis, unsupervised
learning, vector space model, text-to-speech, audiobook data

1. Introduction
Collecting and annotating the data necessary for training a
corpus-based text-to-speech (TTS) conversion system in a new
language requires considerable time and expert knowledge.
Conventionally, audio data for training a synthesiser back-end
(or waveform generator) will be gathered during a specially-
arranged recording session. For this, a recording script must be
prepared, a suitable studio must be found, a voice talent must
be recruited and speech recording must be carefully supervised.
One of the primary goals of the Simple4All1 project is to reduce
the time and expert knowledge needed to produce new TTS sys-
tems. In [1] we presented a toolkit – developed as part of this
project – for segmenting and aligning existing freely-available
recordings (audiobooks), circumventing to some extent the need
to engineer purpose-recorded speech corpora. The outcome of
applying those tools to audiobooks in 14 languages is what we
have released under the name of the Tundra corpus.

However, the problems associated with TTS data-collection
do not stop when we have obtained transcribed speech data for
training a synthesiser back-end. TTS systems also require a
front-end (or text analysis module), which accepts input text
and outputs a representation of an utterance suitable for input
into the back-end. TTS systems generally represent utterances
in terms of units and features based on linguistic knowledge,
such as phonemes, syllables, lexical stress, phrase boundaries
etc. The components of the front-end that predict these from

1www.simple4all.org/

input text are either made up of hand-written rules or statisti-
cal modules; acquiring the expert knowledge required either to
manually specify those rules, or to annotate a learning sample
on which to train the statistical models, represents a major ob-
stacle to creating a TTS system for a new target language and re-
quires highly specialised knowledge. Such non-trivial tasks in-
clude, for example, specifying a phoneme-set or part of speech
(POS) tag-set for a language where one has not already been de-
fined; annotating plain text with POS tags, as required to train
a POS tagger and annotating the surface forms of words with
phonemes to build a pronunciation lexicon.

The toolkit we are developing in Simple4All includes tools
for constructing TTS front-ends which make as few implicit as-
sumptions about the target language as possible, and which can
be configured with minimal effort and expert knowledge to suit
arbitrary new target languages. To this end, the modules rely on
resources which are intended to be universal, such as the Uni-
code character database, and employ unsupervised learning so
that unlabelled text resources can be exploited without the need
for costly annotation. The current paper presents these tools
and explains how they were applied to the data of the Tundra
corpus to produce TTS systems in 14 languages. We present
the results of a listening test of the intelligibility of those sys-
tems, and thus evaluate the entire pipeline implemented by our
toolkit, which begins with raw found data and ends with trained
TTS systems. An initial public version of tools for this whole
pipeline (for segmenting and aligning found data and for pro-
ducing TTS systems with minimal expert knowledge) is due to
be released in November 2013.

In prior work addressing the bottleneck in TTS system con-
struction represented by the front-end, unified systems aimed at
producing complete systems have generally taken the strategy
of providing infrastructure to ease the collection by non-experts
of the conventional resources necessary for system construc-
tion. This infrastructure might take the form of user-friendly de-
velopment environments [2], or training and on-going support
[3]. Prior work has also presented unsupervised methods for
building systems based on letters rather than phonemes [4, 5],
induction of phone-sets [6, 7], syllable-like units [8, 9], or lexi-
cons [10]. However, this work has not been presented as an inte-
grated framework for producing end-to-end TTS systems. Fur-
thermore, despite the significant work on unsupervised learning
in Natural Language Processing [11, 12] and Information Re-
trieval [13, 14], potentially useful techniques developed in those
fields have not been applied to the problem of TTS front-end in-
duction.
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2. Database
The Tundra corpus [1] is a standardised multilingual corpus de-
signed for text-to-speech research with imperfect or found data.
It consists of 14 audiobooks in 14 different languages (Bulgar-
ian, Danish, Dutch, English, Finnish, French, German, Hungar-
ian, Italian, Polish, Portuguese, Romanian, Russian and Span-
ish) and amounts to approximately 60 hours of speech. A com-
plete list of the audiobooks with their sources and durations can
be found here http://tundra.simple4all.org.

The corpus provides utterance-level alignments obtained
with a lightly supervised process described in [15] and [16].
The accuracy of the alignment method, as described in [16] is of
7% SER and 0.8% WER, therefore some light post-processing
is required in order to eliminate some of the erroneous utter-
ances. Initial segmentation of the audiobooks into utterance-
size chunks was performed using the lightly supervised GMM-
based VAD described in [17]. As most of the used audiobooks
are recorded in non-specialised environments, the speech data
underwent a light cleaning process: normalising the DC offset,
applying a multi-band noise gate removal and an RMS-based
deverberation method, as described in [1].

3. System Construction
For each of the 14 languages of the Tundra corpus, a TTS sys-
tem was trained with no reliance of language-specific expertise.
Although speaker and recording differences mean that mean-
ingful comparison between languages is difficult, we wished to
make the training conditions for the 14 voices as uniform as
possible. Therefore, we selected a 1 hour subset of each of the
languages’ data on which to train voices for this evaluation: the
method of data selection we used is explained in Section 3.1.
Then text analysis and waveform generation components were
trained on that selected data as explained in Sections 3.2 and
3.3, respectively.

3.1. Lightly-supervised data selection

Our principal current interest in audiobook data is that it
presents a source of ‘found’ data from which TTS training
databases can be harvested without the need to construct a
recording script, recruit a native speaker of the target language,
and supervise the recording of a script from scratch. In the
present work, therefore, we ignore the other possible advan-
tage of using audiobook data: that harnessing the variety of
speaking styles present in audiobooks might enable us to pro-
duce less ‘mechanical’-sounding TTS systems. Although this
is a longer-term goal, we here follow an approach similar to the
one presented in [18], which aims to select a neutral subset of a
database containing diverse speech. In that paper, 9 utterance-
level acoustic features are used along with several textual cues
to exclude diverse speech from the training set. Thresholds over
these features are set manually by the system builder to exclude
non-neutral utterances.

For the current work we perform utterance selection using
an active learning approach, with uncertainty sampling [19].
Rather than being required to tune thresholds manually, the sys-
tem builder is presented with example utterances and asked to
indicate whether or not they are spoken in a neutral style. The
interface therefore insulates the user from the details of the fea-
tures used, and lets the user focus on what should be key: their
intuitive response to hearing speech samples. The procedure we
used is as follows:

1) Feature extraction First, frame-level features (F0, en-

ergy and spectral tilt – approximated by 1st mel cepstral co-
efficient) are obtained, from which utterance-level features are
computed. The fact that no thresholds need to be manually
tuned means that we can afford to use a great many more fea-
tures than the 9 employed in [18]. Our feature set is based on
the one described in [20]: we compute mean, standard devia-
tion, range, slope, minimum and maximum (6-level factor) for
F0, spectral tilt, and energy (3-level factor) in the following
sub-segments of each utterance: entire utterance, 1st and 2nd
halfs, all 4 quarters, first and last 100ms, first and last 200ms
(11-level factor), giving a total of 198 features.

2) Initial labelling The user is presented with the audio
of s randomly-selected seed utterances from the whole corpus
(via a text-based user interface) and asked to label them keep or
discard – utterances are labelled with the user’s decision.

3) Classifier training A classifier is trained on the labelled
examples. Our choice of classifier is a bagged ensemble of deci-
sion trees [21] because it can be trained quickly (allowing online
active learning in real time), is robust against noisy features and
able to accept unnormalised input variables, and mixtures of
discrete and continuous input variables (allowing a great many
different acoustic features to be used, and different types of fea-
tures), allows the space of utterances to be partitioned recur-
sively (enabling complex interactions between features to be
detected), and provides robust estimates of class probabilities
(important for step 4).

4) Uncertainty sampling The set of u uncertain examples
(utterances about which the classifier is most uncertain – in the
present case, the utterances which have closest to 0.5 keep prob-
ability). The utterances in this set are presented to the user for
labelling.

5) Steps 3 and 4 are repeated as many times as time allows.
6) The set of utterances either labelled keep by the user are

kept for training, as well as enough of the utterances to which
the trained classifier gives the highest keep probability to, to
make up the desired quantity of training data.

For the work presented here, s was set to 15 and u was set
to 1. That is, the user was asked to provide 15 labels at the
outset, and presented with a single uncertain example at each
iteration. The stopping criterion we used in this work was to
limit the number of iterations to 15 – in the present, utterance
selection time was limited to approximately 20 minutes per lan-
guage, and 15 was found to be a reasonable number of itera-
tions in that time. Informal comparison suggested the approach
outlined is beneficial for this task, but in ongoing work we are
testing this rigorously and comparing uncertainty sampling with
random sampling, as well as applying our active learning tool
to other TTS tasks.

3.2. Front-end construction with unsupervised learning

The TTS front-end building tools used for this work are based
on ideas outlined in [22] and applied to Spanish TTS in [23].
Input to the system consists of the audio of utterances selected
as described in Section 3.1, together with their text transcrip-
tion (aligned at the utterance level): in the present case, these
are taken from the Tundra corpus, and had been obtained as
summarised in Section 2. As an additional input, 5 million
words of running text data were obtained from Wikipedia in
the target languages for construction of the word- and letter-
representations described below.

Text which is input to the system is assumed to be UTF-8
encoded: given UTF-8 text, text processing is fully automatic
and makes use of a theoretically universal resource: the Uni-
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Letter < -0.03 in 
VSM dimension 3?

Figure 1: Use of a letter space to replace phonetic knowledge in decision-tree based state-tying. Shown here are 2 dimensions of the
actual letter space induced in training the Romanian system described in the paper. The 3 lines bisecting the space represent the 3
questions actually asked in the uppermost fragment (first three ‘generations’) of the state-tying decision tree for the central state of the
model for spectral envelope features. Letters shown in black are ‘heard’ by the system (i.e. are present in the transcriptions of the audio
training data) but ones shown in grey are only ‘seen’ (i.e. appear only in textual training data) and are mainly foreign language letters.

code database. Unicode character properties are used to to-
kenise the text and characterise tokens as words, whitespace,
punctuation etc. Our modules have so far been successfully
applied to a variety of alphabetic (Latin-based, Cyrillic) and
alphasyllabic (Brahmic) scripts. Our front-ends currently ex-
pect text without abbreviations, numerals, and symbols (e.g. for
currency) which require expansion; however, the lightly super-
vised learning of modules to expand such non-standard words
is an active topic of research [24], and we hope to integrate such
modules into our toolkit in the near future.

A letter-based approach is used, in which the names of let-
ters are used directly as the names of speech modelling units (in
place of the phonemes of a conventional front-end). This has
given good results for languages with transparent alphabetic or-
thographies such as Romanian, Spanish and Finnish, and can
give acceptable results even for languages with less transparent
orthographies, such as English [22, 4, 5, 7].

The induced front-ends make use of no expert-specified cat-
egories of letter and word, such as phonetic categories (vowel,
nasal, approximant, etc.) and part of speech categories (noun,
verb, adjective, etc.). Instead, features that are designed to stand
in for such expert knowledge but which are derived fully auto-
matically from the distributional analysis of unannotated text
(speech transcriptions and Wikipedia text) are used. The distri-
butional analysis is conducted via vector space models (VSMs);
the VSM was originally applied to the characterisation of doc-
uments for purposes of Information Retrieval. VSMs are ap-
plied to TTS in [22], where models are built at various levels
of analysis (letter, word and utterance) from large bodies of
unlabelled text. To build these models, co-occurrence statis-
tics are gathered in matrix form to produce high-dimensional
representations of the distributional behaviour of e.g. word and
letter types in the corpus. Lower-dimensional representations
are obtained by approximately factorising the matrix of raw co-

occurrence counts by the application of slim singular value de-
composition. This distributional analysis places textual objects
in a continuous-valued space, which is then partitioned by de-
cision tree questions during the training of TTS system compo-
nents such as acoustic models for synthesis or decision trees for
pause prediction. For the present voices, a VSM of letters was
constructed by producing a matrix of counts of immediate left
and right co-occurrences of each letter type, and from this ma-
trix a 5-dimensional space was produced to characterise letters.
Token co-occurrence was counted with the nearest left and right
neighbour tokens (excluding whitespace tokens); co-occurrence
was counted with the most frequent 250 tokens in the corpus. A
10-dimensional space was produced to characterise tokens.

Two dimensions of the letter space induced in training the
Romanian system are shown in Figure 1. It can be seen that
in these dimensions of the space, vowel and consonant symbols
are clearly separable. When a decision tree for clustering acous-
tic model states is built and allowed to query items’ positions in
these 2 dimensions, it can use all partitions of the space orthog-
onal to its axes. A decision tree question such as Is the letter’s
value in VSM dimension 3 < -0.03? is very nearly equivalent
to a question based on linguistic knowledge such as Is the letter
a consonant? The categories of vowel and consonant are use-
ful for clustering acoustic models, and so decision trees actually
built using this space use such partitions of the space: the 3 lines
shown bisecting the space in the figure represent the 3 questions
actually asked in the uppermost fragment (first three ‘genera-
tions’) of the state-tying decision tree for the central state of the
model for spectral envelope features.

Distributional analysis places linguistic or textual units in
a continuous space which is then partitioned on acoustic evi-
dence. The space constrains the possible groupings of objects
that can be considered during decision tree growing. Distribu-
tional analysis also allows splits made to generalise to items
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that are ‘seen’ by the system in text data but not ‘heard’ in the
audio data. This is most obviously useful where units such as
words are concerned, where many items not present in the train-
ing speech corpus are likely to occur at run-time. It can, how-
ever, also be useful where letters are concerned, and some ex-
amples that illustrate our models’ ability to generalise beyond
what is heard can be seen in the letter space shown in Figure
1. There, letters shown in black are ‘heard’ by the system but
ones shown in grey are only ‘seen’ – these are mainly due to
foreign language words within Romanian Wikipedia entries. It
can be seen that unheard foreign vowels such as á and ö are
suitably placed near the Romanian vowels, and unheard conso-
nants such as ß and q are placed near the consonants that are
actually heard. Splits such as those shown – made only on the
basis of the heard items – therefore generalise to unheard items.
In the case of letters, this allows rare and foreign letters to be
handled despite their absence in the transcriptions of acoustic
training data. It can also allow better handling of non-standard
spellings: in the case of the vowel î (i with circumflex), there
is a variant (with inverted breve instead of circumflex) which is
not present in any of the speech transcriptions but which is used
in a few Wikipedia articles. From Figure 1 it can be seen that al-
most identical representations are learned for these two letters,
meaning a decision tree built using those representations will
be able to handle the variant form correctly at run-time, even
though no instances of that variant were seen in the transcrip-
tion of the speech training corpus.

The front ends make use of decision trees to predict pauses
at the junctures between words. Data for training these trees
are acquired automatically by force-aligning the training data
with their transcriptions, and allowing the optional insertion of
silence between words. The independent variables used by the
trees are whether words are separated by punctuation or space,
and the VSM features of the tokens preceding and following the
juncture.

A rich set of contexts is created using the results of the anal-
ysis described here for each letter token in the database. Fea-
tures include the identity of the letter and the identities of its
neighbours (within a 5-letter window), the VSM values of each
of those letters, and the distance from and until a word bound-
ary, pause, and utterance boundary. In the current systems, word
VSM features are not included directly in the letter contexts, but
are used by the decision tree for predicting pauses at runtime.

3.3. Back-end construction

For training the waveform generation modules for the 14 voices,
the waveforms of the training corpora were parameterised al-
most as described in [25]. The one difference is that instead
of the committee of different pitch-trackers used in the earlier
work, pitch tracks obtained from a glottal source signal esti-
mated by glottal inverse filtering [26] were used for their greater
accuracy.

For all systems, speaker-dependent acoustic models were
built from this parameterised speech data and the annotation
described in Section 3.2, using the speaker-dependent model-
building recipe described in [27].

Static and interactive demos of the resulting voices are
available at http://tundra.simple4all.org/demo.
A screen shot of the geographically-organised demo page is
shown in Figure 2.

Figure 2: Demo screenshot: this geographical interface to
voices can be found at http://tundra.simple4all.
org/demo.

4. System Evaluation
4.1. Procedure

We are primarily interested in having our systems produce intel-
ligible speech; evaluation therefore focused on the intelligibil-
ity of TTS output as measured by the word and letter error rates
of listeners’ transcriptions of those outputs. Conventionally in
TTS evaluation, listeners are asked to transcribe semantically
unpredictable sentences (SUS) [28]. However, such SUS are
not currently available in all the Tundra languages and it is not
trivial to construct new SUS, and so we resorted to using short
natural sentences from the held-out test sets of the Tundra cor-
pus.

For all 14 Tundra languages, 40 sentences were manually
segmented from the held-out chapters of the relevant audio-
book. Note that these test sets are distributed with the Tundra
corpus, and so the results presented below can be considered
benchmarks for future work. An attempt was made to select
sentences of 6–8 words in order to make the inherent difficulty
of transcription as uniform as possible. However, in some lan-
guages these thresholds had to be relaxed; Table 1 gives statis-
tics of test-sentence lengths in all languages.

Subjects for the evaluation were recruited through a web-
based crowdsourcing service. The advert for the evaluation
specified that native speakers of the relevant language were re-
quired; in addition, participation in each part of the evaluation
was restricted to users registered in countries where the relevant
language is an official or majority language. We attempted to
recruit listeners to evaluate all 14 systems built. However, as
the option to restrict participation to workers registered in Den-
mark, Finland and Hungary was not available in the service we
used, listening test for only 11 of the systems were publicised.
The number of responses from participants varied greatly be-
tween languages. At the time of writing, responses from a suf-
ficient number of listeners (25+) had been collected in only 5
of the languages (Bulgarian, English, Italian, Polish and Ro-
manian) . Results for these five languages are presented here;
evaluation of the remaining voices is left for future work.

In all languages, two conditions were evaluated: the nat-
ural speech of the natural sentences from the test set, and the
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Table 1: Statistics of Tundra test-sentence lengths (number of
words)

Language Mean Standard deviation
German 6.63 0.87
Finnish 6.8 0.91
Bulgarian 6.85 0.83
English 6.88 0.94
Italian 6.9 0.87
Polish 6.95 0.88
Hungarian 7.05 0.81
Russian 7.13 1.18
Danish 7.4 1.19
Portuguese 8.08 1.47
Dutch 8.1 2.15
Romanian 8.55 1.97
French 8.58 1.96
Spanish 8.8 1.65

TTS system reading the same text. In the four languages of
the Simple4All consortium members (including two of the lan-
guages for which results are presented here: Romanian and En-
glish), however, SUS were available, and so for those languages
a third condition was evaluated: the TTS system producing SUS
texts. This is designed to provide a way of broadly gauging the
relative difficulty of transcribing natural and SUS sentences, al-
though language and text differences mean it is obviously not
advisable to treat extrapolation of the differences to the remain-
ing languages with any great confidence.

The evaluation was run as a set of webpages where partici-
pants were asked – using headphones – to listen to the samples
and to type in what they heard. Multiple listens were allowed
as some of the the natural sentences were longer than the short
SUS we would typically use. For the first two conditions, a bal-
anced design was used so that each listener heard each utterance
text only once, while each text was heard an equal number of
times in both conditions over the whole evaluation. Each lis-
tener heard 20 sentences spoken in each condition. For English
and Romanian where the SUS condition was also included, lis-
teners heard a further set of 20 SUS sentences.

4.2. Results

Word error rates for the first 2 conditions are shown in Figure 3.
For all languages besides English, a similar pattern can be ob-
served: listeners’ transcriptions of natural speech attain a WER
of 8–12%, and in all cases the TTS system attain WERs approx-
imately 1.5 times worse. This is consistent with the difference
between WERs for natural speech and decent benchmark sys-
tems in larger scale evaluations on standard corpora. For exam-
ple, natural speech and the Festival benchmark system attained
WERs of 17% and 25% respectively in the 2011 Blizzard Chal-
lenge evaluation [29]. The results for English are the exception
to the general pattern: the WER for synthetic speech is over 4
times worse than that of natural speech. From prior knowledge
and from looking at listeners’ transcriptions, it seems clear that
this is due to the fact that TTS is based on letters in a language
with such an opaque letter-to-sound relationship. In all lan-
guages except Polish, the difference between the first two con-
ditions (natural speech and TTS) found to be statistically signif-
icant (with α = 0.05) using the bootstrap procedure of [30].

As expected, WERs for the SUS sentences are much higher
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Figure 3: Word error rates for TTS systems and natural speech
for 5 of the 14 systems built from the Tundra corpus.

than those for natural sentences: 24.8% and 69.4% for Roma-
nian and English, respectively.

5. Conclusions
We have presented tools for building TTS front-ends in a way
that exploits unsupervised learning techniques to side-step the
need for language-specific expert knowledge and resources such
as pronunciation lexicons, phoneme inventories and part of
speech taggers. We have shown how the tools were applied
to the languages of the Tundra corpus to produce TTS sys-
tems in 14 languages. As we had previously built the Tun-
dra corpus from found data using minimal supervision and lan-
guage specific knowledge, these TTS systems represent the out-
put of our entire pipeline of tools, and show the type of voice
which any interested developer should be able to build using
our toolkit (which will be made freely available) despite a lack
of language-specific or speech technology expertise, if a source
of speech and text data can be found. Five of the voices were
evaluated in a listening test for intelligibility, which we con-
sider to show that systems of reasonable quality can be built by
applying our tools to publicly available audiobook data, assum-
ing orthographies of similar transparency to those of Bulgarian,
Italian, Polish and Romanian. While evaluation of the remain-
ing systems that can be heard in the demo is still ongoing, the
results for five languages published here – having been obtained
from a standardised, publicly available corpus – are intended to
be useful benchmarks against which future work can be com-
pared.
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Abstract
We describe the synthetic voices entered into the 2013 Blizzard
Challenge by the SIMPLE4ALL consortium. The 2013 Bliz-
zard Challenge presents an opportunity to test and benchmark
some of the tools we have been developing to address two prob-
lems of interest: 1) how best to learn from plentiful ‘found’
data, and 2) how to produce systems in arbitrary new languages
with minimal annotated data and language-specific expertise on
the part of the system builders. We here explain how our tools
were used to address these problems on the different tasks of
the challenge, and provide some discussion of the evaluation
results.
Index Terms: statistical parametric speech synthesis, speech
alignment, speech segmentation, style diarisation, unsupervised
learning, vector space model, audiobook data, glottal inverse
filtering, glottal flow pulse library

1. Introduction
This paper describes the synthetic voices entered into the
2013 Blizzard Challenge by the SIMPLE4ALL consortium.
SIMPLE4ALL is a European speech synthesis project focused
on creating speech synthesis technology that learns from data
with little or no expert supervision.1 The 2013 Blizzard Chal-
lenge provides a good opportunity to test and benchmark some
of the techniques we have been developing within the project.
Two problems of central importance for SIMPLE4ALL are
1) how best to learn from plentiful ‘found’ data, and 2) how
to produce systems in arbitrary new languages with mini-
mal annotated data and language-specific expertise on the part
of the system builders. We here explain how the differ-
ent tasks of the challenge relate to the problems of interest,
and give an overview of how we applied four parts of the
SIMPLE4ALL toolkit to the tasks.

Obtaining and transcribing the speech data for training a
corpus-based text-to-speech (TTS) system in a new language
requires considerable time and expert knowledge. Typically,
this speech data is collected during a specially-arranged record-
ing session, for which a recording script has to be prepared,
a suitable studio must be found, a voice talent must be re-
cruited and speech recording must be carefully supervised.
SIMPLE4ALL aims to ease the building of new voices by de-
veloping and distributing tools which allow the reuse of speech
data produced for other purposes. A prime example of such
‘found’ data is freely available audiobook recordings which

1www.simple4all.org/

have been released into the public domain. In [1] we presented
a part of our toolkit for segmenting and aligning such record-
ings, allowing us to circumvent the need to engineer purpose-
recorded speech corpora where existing recordings are avail-
able. Task EH1 of the challenge lets us test tools addressing
this problem, as it involves building a voice from a very large
set of audiobook data which is provided as approximately 300
hours of chapter-sized mp3 files.

As well as obtaining a segmentation and alignment for
audiobook data, it is also important to deal with the het-
erogeneity of such data. To this end, another part of the
SIMPLE4ALL toolkit was used to provide diarisation of the au-
tomatically obtained corpora. If audio from radio broadcasts are
to be used for training a TTS system, for example, it is crucial to
diarise audio into speech and non-speech (e.g. music, applause,
laughter). When pure speech has been obtained, it is further
necessary to diarise it into separate speakers, and it may also
be desirable to diarise a single speaker’s speech into different
emotions or speaking styles [2]. Ultimately the goal of the lat-
ter would be to build a synthesiser capable of producing speech
in a variety of styles. A more short-term approach is to exclude
more unusual speaking styles to produce a subset of relatively
homogeneous and neutral speech. This gives a set of training
data which is as much like a conventional TTS database as pos-
sible, but which doesn’t incur the associated costs. This is the
approach taken here.

A third part of the SIMPLE4ALL toolkit used for our Bliz-
zard Challenge entry is designed to enable the construction of
systems in languages where we have access to little or no lin-
guistic expertise or expert-annotated data. We think it is valu-
able for speech technology to venture beyond the handful of
the world’s languages where resources such as text normalis-
ers, lexicons and part-of-speech taggers already exist. Thus,
part of the SIMPLE4ALL toolkit includes tools for construct-
ing TTS front-ends which make as few implicit assumptions
about the target language as possible, and which can be con-
figured with minimal effort and expert knowledge to suit arbi-
trary new target languages. To this end, the modules rely on
resources which are intended to be universal, such as the Uni-
code character database, and employ unsupervised learning so
that unlabelled text resources can be exploited without the need
for costly annotation. Task IH1 lets us test tools addressing this
problem, as it involves building voices for four Indian languages
(Hindi, Bengali, Kannada and Tamil) for which the consortium
members have no language-specific expertise or resources.

The fourth and final part of the SIMPLE4ALL toolkit used
for our Blizzard Challenge entry is an implementation of new



speech signal models capable of modelling a large variety of
speaking styles and vocal emotions [3].

We note that an initial public version of tools for this whole
pipeline of tools is due to be released in November 2013.

2. System Description
2.1. Data preparation

As already mentioned, the training data for task EH1 of the chal-
lenge was provided without a sentence-level speech segmenta-
tion and text alignment. Therefore one of the sub-tasks was
to obtain the correct alignment, prior to building the synthetic
voices. Our previous work on automatic alignment of speech
with imperfect transcripts [4, 5, 6] has developed tools to per-
form the alignment without the use of high-level language ex-
pertise or existing acoustic models. The method involves two
major steps: 1) a sentence-level segmentation of the speech
data, and 2) automatic alignment of speech and text at sentence-
level. Both steps are lightly supervised and require only a mini-
mum amount of manually labelled data, also called initial train-
ing data. The following paragraphs describe them in more de-
tail.

Step 1. Speech segmentation is performed using a 16 Gaus-
sian Mixture Model (GMM)-based voice activity detection al-
gorithm [6]. Two GMMs are trained, one for silence and one for
speech, from 10 minutes of manually-labelled data, in which the
inter-sentence silences are marked. Feature vectors consist of
energy, 12 dimensional MFCCs, their deltas and the number of
zero crossings. After training the GMMs, for each frame within
the manually-labelled data, we compute the the log likelihood
ratio, followed by a median filter smoothing. This process also
detects short intra-sentence silences. In order to discriminate
between inter- and intra- sentence silence frames, two Gaussian
probability distribution functions are fitted onto the histogram
of silence durations. Their intersection represents the threshold
for sentence boundary silence duration. The GMMs are then
run on the entire speech resource. Results showed over 96%
accuracy in sentence boundary detection.

Step 2. The speech alignment step starts from the same 10
minutes of initial training data, which is now segmented and
needs to be orthographically transcribed. A first set of poor ini-
tial grapheme-level acoustic models is built from it. The models
are then used to recognise the entire speech resource with the
help of a highly restricted word network built from the full text
transcript (see [4] for more details). To determine the correctly
recognised utterances, the recognition is run over the speech
data with various degrees of freedom within the word networks,
and the obtained acoustic scores are compared. Confident data
is then used to re-train the acoustic models, and the process
repeats. A final step in the alignment is the re-estimation of
the acoustic models using tri-graphemes, and this increases the
aligned data by over 40% relative. However, for short speech
resources, this step might be unfavourable, as the number of tri-
graphemes is too large to obtain satisfactory statistics for them.
Previous results obtained with an English audiobook showed an
average 75% confident data with a 7% SER and 0.5% WER [5].

For the Blizzard Challenge task EH1 , each audiobook was
segmented and aligned individually, aligned percentages being
similar to our previous results.

2.2. Data selection

The speaker diarization system described in [7] was used to
cluster the segmented utterances obtained as described in sec-

tion 2.1 for a single audiobook. As we are clustering the speech
of a single speaker, the result is a set of ‘pseudo-speakers’, each
corresponding to some automatically detected speaking style as
in [2]. A difference in the current case is that we seek only
a single cluster of neutral style speech to use, and discard the
other clusters. 12 such clusters were produced by an iterative
process of speaker segmentation and agglomerative clustering
of segments. For each sentence, the system output the dom-
inant ‘speaker’ of the sentence and the purity of the sentence
(fraction of the sentence spoken by the dominant speaker). A
single cluster accounted for 90% of the sentences processed –
informal listening suggested that this corresponded well with
the speaker’s neutral style of reading. Taking only the com-
pletely pure utterances reduced this to 89%.

For the EH1 voice acoustic models, a 5 hour subset of this
pure neutral data was selected. Note however that the whole of
the data for which a confident alignment was obtained (section
2.1) was used for the pause prediction model (see section 2.4).

2.3. Text processing

The tools used for building TTS front-ends for entries to all
parts of the challenge are based on ideas outlined in [8], applied
to Spanish TTS in [9], and to 14 different languages in [10].
We summarise the tools here, drawing heavily on descriptions
given in those previous publications.

Input to the system consists of the audio of utterances to-
gether with their text transcription. For the EH1 voice, these
utterances made up 5 hours of the neutral speech extracted as
described in Section 2.2. For each of the Indian languages of
task IH1, 950 of the available 1000 sentences and their plain
orthography UTF-8 transcriptions were used as input; 50 sen-
tences were set aside for use as an internal development set.

As well as the training speech data and its transcripts, our
tools exploit the large amount of unannotated text data which
is available for many languages on the web. For the task IH1
voices, this consisted of approximately 13.4, 2.2, 4.4 and 6.4
million tokens of text for Hindi, Bengali, Kannada and Tamil,
respectively, which we obtained from Wikipedia. For the En-
glish voice for Task EH1, we used only the transcripts of the
full audiobook training corpus only as we wanted to experiment
with using only in-domain data. For all languages, these unan-
notated text data were used for construction of the word- and
letter-representations described below.

Text which is input to the system is assumed to be UTF-8
encoded: given UTF-8 text, text processing is fully automatic
and makes use of a theoretically universal resource: the Uni-
code database. Unicode character properties are used to to-
kenise the text and characterise tokens as words, whitespace,
punctuation etc. Our front-ends currently expect text without
abbreviations, numerals, and symbols (e.g. for currency) which
require expansion; however, the lightly supervised learning of
modules to expand such non-standard words is an active topic
of research [11], and we hope to integrate such modules into our
toolkit in the near future.

A letter-based approach is used, in which the names of let-
ters are used directly as the names of speech modelling units (in
place of the phonemes of a conventional front-end). This has
given good results for languages with transparent alphabetic or-
thographies such as Romanian, Spanish and Finnish, and can
give acceptable results even for languages with less transpar-
ent orthographies, such as English [8, 12, 13, 14]. We decided
to submit letter-based systems for both the EH1 and IH1 tasks,
even though high-quality lexicons are available for English. Al-



though the complicated letter-to-sound relations of English or-
thography mean that we expect this to severely degrade synthe-
sis quality, we wished to make use of the opportunity presented
by the Blizzard Challenge to evaluate this naive approach using
many listeners against state-of-the-art systems. In this way, we
have a useful benchmark against which to compare the results
of ongoing attempts to tackle the same problem in a less naive
way.

The induced front-ends make use of no expert-specified cat-
egories of letter and word, such as phonetic categories (vowel,
nasal, approximant, etc.) and part of speech categories (noun,
verb, adjective, etc.). Instead, features that are designed to stand
in for such expert knowledge but which are derived fully auto-
matically from the distributional analysis of unannotated text
(speech transcriptions and Wikipedia text) are used. The distri-
butional analysis is conducted via vector space models (VSMs);
the VSM was originally applied to the characterisation of doc-
uments for purposes of Information Retrieval. VSMs are ap-
plied to TTS in [8], where models are built at various levels
of analysis (letter, word and utterance) from large bodies of
unlabelled text. To build these models, co-occurrence statis-
tics are gathered in matrix form to produce high-dimensional
representations of the distributional behaviour of e.g. word and
letter types in the corpus. Lower-dimensional representations
are obtained by approximately factorising the matrix of raw co-
occurrence counts by the application of slim singular value de-
composition. This distributional analysis places textual objects
in a continuous-valued space, which is then partitioned by de-
cision tree questions during the training of TTS system com-
ponents such as acoustic models for synthesis or decision trees
for pause prediction. For the present voices, a VSM of letters
was constructed by producing a matrix of counts of immedi-
ate left and right co-occurrences of each letter type, and from
this matrix a 5-dimensional space was produced to characterise
letters. Token co-occurrence was counted with the nearest left
and right neighbour tokens (excluding whitespace tokens); co-
occurrence was counted with the most frequent 250 tokens in
the corpus. A 20-dimensional space was produced to charac-
terise word tokens.

2.4. Pause Prediction

Phrase-break prediction is an essential part in text-to-speech
synthesis because it determines the rhythm, as well as promi-
nence in the output synthetic speech. As previously stated, our
system tries to avoid supervised and language-dependent mod-
ules. Hence, our phrase-break prediction step is also lightly
supervised, and we treat silences detected from the acoustics as
surrogate phrase-breaks. We exploit the large amount of speech
data made available for task EH1, and extract a training set from
the forced alignment of the audio and its corresponding ortho-
graphic transcripts obtained in the alignment step (see Section
2.1). (The same approach was used for the IH1 voices, except in
those cases the training corpus was much smaller and a sentence
segmentation was already available.) To discriminate between
the short inter-word pauses and pauses which might signal ac-
tual phrase-breaks, we plotted the histogram of all the silence
segments within the available data. This lead to a separation
threshold of 200 ms. Silences below this threshold were dis-
carded and added to the no-pause (NP) set. A list of all the
consecutive pairs of words from the text and the length, and
existence of a phrase break constitutes our training data. This
method works under the assumption that the test data will be
part of the same domain as the training one (i.e. audiobooks),

and the phrase break durations would be similar, which also
means that the method is corpus-dependent.

But, as the surface form of the words does not inherently
contain enough information to predict the phrase breaks, we
rely on the vector representations of words mentioned in sec-
tion 2.3. The vectors for each pair of consecutive words from
the training data, along with their pause indicator constitute the
input for a classification and regression tree. Results showed
an overall 0.9 F-measure, but only an 0.4 F-measure for pause
instances (P). This is mostly due to the unbalanced training data
set (i.e. there are more NP word pairs than P). Even when the
set was artificially built from equal amounts of and NP pairs,
the results remained similar. This might be caused by the VSMs
not being able to capture the essential features required for the
pause prediction, and hence a more elaborate set of features
would be beneficial in future work.

Punctuation is also an important pause indicator, and so we
included the punctuation marks as word-pair constituents. This
lead to an increase of 0.1 in the F-measure of the P class. Still
the results are below expectation, but we estimate that they are
caused by the poor alignment of speech with its orthographic
transcripts, especially for English which is known to have a high
letter-to-sound complexity.

To estimate the phrase breaks in the testing data, we con-
verted the sentences into word pairs, extracted their correspond-
ing vectors and predicted the P/NP class with the previously
trained CART.

2.5. Acoustic Modelling

As mentioned previously, a five-hour subset of the available
training corpus for EH1 was used to train acoustic models. The
inconsistent recording conditions and small amounts of training
data for the IH1 tasks meant that extra robustness for acoustic
parameterization and training was required. The 4 IH1 voices
were each built in an identical fashion, except that half of the
Bengali training data was discarded due to being recorded in
excessively reverberant conditions. Various other inconsisten-
cies were present too. Style-adaptive training and the use of
extra contextual labels were considered for distinguishing these
different recording conditions, but our tools for unsupervised
recording quality classification are not yet ready.

2.5.1. Parameterisation

For the EH1 voice, the training data were parameterised using
STRAIGHT, almost as described in [15]. The only difference is
that instead of the committee of different pitch-trackers used in
the earlier work, pitch tracks obtained with GlottHMM (using
a glottal source signal estimated by glottal inverse filtering [3])
were used for their greater accuracy.

For the IH1 voices, full GlottHMM parameterisation [3]
was used after initial denoising of the training speech. 24 vo-
cal tract LSF coefficients and 10 voice source LSF coefficients
were extracted as well as harmonic-to-noise ratio with 5 bands,
energy and F0. Pulse libraries [16] were extracted from 10 ut-
terances for each voice.

Some alterations to the parameterization scheme described
in [3] were made to increase robustness. First, the iterative
adaptive inverse filtering method was replaced with direct in-
verse filtering using a pre-emphasis filter only. Second, the
pre-emphasis filter was added to unvoiced analysis, to ensure
continuous LSF trajectories across voicing boundaries, thus re-
ducing the audible distortion of voicing errors.



Notably, we did not use the vocal tract LSF parameters di-
rectly in the training, but instead converted the parameters to
mel-cepstral representation via LPC spectrum. As mel-cepstral
coefficients are decorrelated, focus on perceptually relevant fre-
quencies and provide smooth trajectories, they might be more
suitable than LSFs for HMM training, especially on difficult
material such as the current challenge. Further investigation on
this topic would be needed to verify this.

2.5.2. Training and synthesis

A rich set of contexts was created using the results of the anal-
ysis described in section 2.3 for each letter token in the training
data for all languages. Features used include the identity of the
letter and the identities of its neighbours within a window of
given length. A 5-letter window was used for the IH1 voices,
and a 9-letter window for the EH1 voice. Some informal exper-
iments suggested this to be an appropriate size for the 5 hour
subset of the EH1 data we used. Additional features were the
VSM values of each letter in the window, and the distance from
and until a word boundary, pause, and utterance boundary.

For the EH1 voice, speaker-dependent acoustic models
were built from the parameterised speech data and labelling us-
ing the speaker-dependent model-building recipe described in
[17].

For the IH1 voices, the HMM models were trained with
the standard HTS 2.0 [18] recipe, modified for additional Glott-
HMM streams, but using three iterations of decision tree clus-
tering instead of two. MGE training was also applied. Parame-
ter generation was performed considering global variance, with
stream-dependent thresholds. Generated mel-cepstral coeffi-
cients were converted back to the LSF form for stability check-
ing and vocoding purposes. Excitation was generated using the
PCA-mean pulse approach [19].

Informal listening by the authors and feedback from several
native speakers suggested that the denoised GlottHMM version
performed better than previous SIMPLE4ALL voices built on
the same data using the STRAIGHT vocoder, but detailed anal-
ysis of the exact reasons for this improvement remains to be
done.

3. Results

The identifier for our system in the published results is P.

On Task EH1 ours was consistently the worst-performing
system of all entries. On the intelligibility sections of the evalu-
ation, there was a c.10% gap in WERs between our system and
the second worst performing one. This gap was higher among
the paid subset of listeners, and lower among online volunteers
and speech expert listeners, where it dropped to c.5–6%.

Performance relative to the other systems in the IH1 tasks
was much better. For the speaker similarity and naturalness sec-
tions of the evaluation for all 4 languages, our system tends to
score somewhere in the middle of all TTS systems. The in-
telligibility results published for Hindi and Kannada follow a
similar pattern. In the Hindi test, 4 TTS systems achieved lower
WERs than ours, 1 was worse, and 1 scored within 1% WER
of our system; in the paid listener subset, our system achieves
precisely the middle rank in the Hindi intelligibility results. In
both listener group sections of the Kannada intelligibility test,
our system also achieves precisely the middle rank.

4. Conclusions
The poor performance of our system in EH1 was anticipated due
to the difficulty of TTS from the surface orthographic forms of
English words, and to the high level of expertise that has been
accumulated for doing TTS in English where there is no self-
imposed limit on the amount of target-language expertise that
can be used in a system. However, we wished to know exactly
how much the lack of a lexicon would set us back in an exten-
sive evaluation with many listeners. Furthermore, these results
are envisaged as being useful for on-going improvements to our
system, where light supervision and unsupervised lexicon in-
duction techniques are exploited. Because Blizzard stimuli are
released after the challenge, it is possible to evaluate improved
systems by re-running the evaluation locally on a smaller scale,
using a subset of ‘landmark’ systems from the challenge which
allow new results for improved systems to be placed among ex-
isting Blizzard results. Having our own baseline among the
original results is useful for sanity-checking when projecting
results for new systems into the space of existing results.

We regard the middling performance of our system on the
IH1 tasks as a success, given that the system makes no use of
expert script knowledge, while we assume that other systems
probably all make use of at least the phonetic annotation dis-
tributed for the challenge. This is the first formal evaluation of
our letter-based front-end as applied to a non-alphabetic script:
we regard its reasonable performance on the four alphasyllabic
scripts of IH1 as a validation for the unsupervised approach for
our main target domain of under-resourced languages.
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Abstract
The pitch contour in speech contains information about differ-
ent linguistic units at several distinct temporal scales. At the
finest level, the microprosodic cues are purely segmental in na-
ture, whereas in the coarser time scales, lexical tones, word ac-
cents, and phrase accents appear with both linguistic and para-
linguistic functions. Consequently, the pitch movements hap-
pen on different temporal scales: the segmental perturbations
are faster than typical pitch accents and so forth. In HMM-
based speech synthesis paradigm, slower intonation patterns are
not easy to model. The statistical procedure of decision tree
clustering highlights instances that are more common, result-
ing in good reproduction of microprosody and declination, but
with less variation on word and phrase level compared to hu-
man speech. Here we present a system that uses wavelets to
decompose the pitch contour into five temporal scales ranging
from microprosody to the utterance level. Each component is
then individually trained within HMM framework and used in
a superpositional manner at the synthesis stage. The resulting
system is compared to a baseline where only one decision tree
is trained to generate the pitch contour.
Index Terms: HMM-based synthesis, intonation modeling,
wavelet decomposition

1. Introduction
The fundamental frequency (f0) contour of speech contains in-
formation about different linguistic units at several distinct tem-
poral scales. Likewise prosody in general, f0 is inherently
hierarchical in nature. The hierarchy can be viewed in pho-
netic terms as ranging from segmental perturbation (i.e., mi-
croprosody) to a levels that signal phrasal structure and beyond
(e.g., utterance level downtrends). In between there are levels
that signal relations between syllables and words (e.g., tones
and pitch accents). Consequently, the pitch movements happen
on different temporal scales: the segmental perturbations are
faster than typical pitch accents, which are faster than phrasal
movements and so on. These temporal scales range between
several magnitudes from a few milliseconds to several seconds
and beyond.

In HMM-based speech synthesis paradigm, all modeling
is based on phone sized units. In principle, slower intonation
patterns are more difficult to model than segmentally deter-
mined ones. Moreover, the statistical procedure of decision tree
clustering highlights instances that are more common, result-
ing in a good reproduction of microprosody and overall trends
(such as general downtrends) and relatively poor reproduction

of prosody at the level of words and phrases. This shortcoming
calls for methods that take into account the inherent hierarchical
nature of prosody.

Traditionally the problem has been approached by using
superpositional models which separate syllable and word level
accents from phrases [2, 7]. On feature extraction side, dis-
crete cosine transform parameterization of f0 has been inves-
tigated, providing compact representation of the pitch contour
[12]. Typically, each voiced segment or syllable and phrase
are parameterized with a constant number of DCT coefficients,
statistical clustering is performed based on contextual features,
and synthesis is performed in additive fashion [11]. However,
the constant number of coefficients is problematic for variable
length units, and natural continuity between units is difficult to
achieve.

In HMM framework, decomposition of f0 to its hierarchi-
cal components during acoustic modeling has been investigated
[4, 15]. These approaches rely on exposing the training data to
a level-dependent subset of questions for separating the layers
of the prosody hierarchy. The layers can then be modeled sepa-
rately as individual streams [4], or jointly with adaptive training
methods [15]. Results indicate that syllable level modeling im-
proves prosody whereas higher levels do not provide benefits.

In HMM-based speech synthesis, f0 is modeled jointly with
voicing decision. The unit of modeling is typically a phone
HMM with five states. For each state, predefined contextual
questions concerning phones, syllables, words and phrases are
used to form a set of possible splits in a decision tree. The split-
ting decisions are made in a greedy fashion based on likelihood
increase. Thus the hierarchical nature of intonation is only im-
plicitly addressed by questions on different levels of hierarchy.
With multiple levels, including voicing decision, modeled by a
single set of trees, the rare or slow events can not be modeled
robustly, due to fragmentation of the training data by previous,
more urgent splits for the short time scale of the model.

In this paper, we present a solution to the problems out-
lined above based on continuous wavelet transform (CWT). The
CWT is used to decompose the f0 contour into several temporal
scales that can be used to model the levels ranging from micro-
prosody to the utterance level separately. As well as separating
the contour into meaningful temporally assigned levels – rang-
ing from microprosody to utterance level prosody – the CWT
produces a continous f0 contour which has further merits. Ear-
lier, wavelets have been used in speech synthesis context for
parameter estimation [3, 6, 10].

We chose four f0 modeling methods for comparison: (1)
The normal HTS method using the MSD stream, and two
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wavelet-based setups modeling the f0 contour on several dis-
tinct levels: (2) one with a joint model and (3) one where five
separate CWT based levels are modeled separately. In addi-
tion, (4) a continous interpolated f0 stream model was added.
The fourth method was added in order to evaluate the wavelet
based methods against another model using continuous trajec-
tories since interpolation alone has been reported to improve f0
modeling [14].

Objective comparison of the proposed methods is pre-
sented against single-stream baselines using two GlottHMM [9]
Finnish voices trained from a male and a female corpus.

2. Pitch decomposition and wavelets
2.1. Extraction and preprocessing of f0

GlottHMM vocoder was used for estimating the fundamental
frequency (f0) of speech. GlottHMM is a physiologically ori-
ented vocoder that uses glottal inverse filtering for separating
speech into the glottal source signal and the vocal tract filter.
The iterative adaptive inverse filtering (IAIF) method is used for
the separation, and the f0 is estimated from the glottal source
signal that is free from the distracting vocal tract resonances [9].

The autocorrelation method [8] was used to estimate the f0.
A range of possible f0 values is defined based on the speaker’s
f0 range in order to reduce gross errors. The voiced-unvoiced
decision is made based on the energy of the low frequency band
(0–1 kHz) and the number of zero-crossings in the frame. The
length of the frame from which the f0 is estimated is longer
than the speech analysis frame in order to estimate the lowest
possible f0 values, as low as 30 Hz. The frames determined as
unvoiced are marked as zeros. Parabolic interpolation was used
in order to reduce the estimation error due to finite sampling
period; a quadratic function is fitted to the peak of the autocor-
relation function (ACF) to find the refined f0 value.

Finally, post-processing is applied to the estimated f0 tra-
jectory. A repetitive process is applied which consists of 3-point
median filtering, filling small unvoiced gaps and removing out-
lier voiced sections, and detection of unnatural discontinuities
based on weighted linear estimation of each individual f0 es-
timate from previous and following samples. If the difference
between the estimated and the actual values is greater than a
specific threshold (based on the mean and variance of the f0
trajectory), the original value may be replaced with a secondary
f0 estimate from the ACF. This replacement depends on the
goodness of the fitting and the relative jump of the original f0
estimate. An example of extracted f0 is shown in the top pane
of Figure 1.

2.2. Completion of f0 over unvoiced passages

The wavelet method is sensitive to the gaps in the f0 contour
and therefore, the f0 contour is completed to yield a contin-
uous f0 trajectory. Since the wavelet approach aims at con-
necting the signal to the perceptually relevant information, the
linear frequency scale is transformed to the logarithmic semi-
tone scale. A simple linear interpolation method is used. First,
smoothed version of the original f0 was created, and then inter-
polated over unvoiced passages. The smoothed unvoiced parts
are then added to the original f0 with 3 point median smooth-
ing to reduce discontinuities in voicing boundaries. In addition,
to alleviate edge artifacts, constant f0 was added prior to and
after the utterance. The pre-utterance f0 value was set to the

Figure 1: Example of f0 parameterization. Top pane depicts
the baseline method, base, in linear frequency scale; the sec-
ond pane shows the interpolated baseline, contf0; third pane
shows the continuous wavelet transform of the f0 signal with
the ten chosen scales separated by an octave (method wave1);
the bottom pane shows the five scales that are merged from the
continuous wavelet picture forming the basis of wave5

mean f0 value calculated over the first half (in seconds) of the
utterance; the post-utterance f0 was set to the respective mini-
mum. Finally, the interpolated logf0 contour is normalized to
zero mean, unit variance as required by wavelet analysis. An
example of an interpolated pitch contour is depicted in the sec-
ond pane of Figure 1.

2.3. Wavelet based decomposition of f0 contour

Wavelet transforms can be used to decompose a signal into fre-
quency components similar to the Fourier transform. Although
several alternatives exist, here we have chosen to use contin-
uous wavelet transforms for f0 decomposition. To define the
wavelet transform, consider a (bounded) pitch contour f0. The
continuous wavelet transform W (f0)(τ, t) of f0 is defined by

W (f0)(τ, t) = τ−1/2

Z ∞
−∞

f0(x)ψ

„
x− t
τ

«
dx
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Figure 2: Example of synthesized f0 contours with evaluated methods on a female corpus test utterance, overlaid three semitones apart.

where ψ is the Mexican hat mother wavelet. The original signal
f0 can be recovered from the wavelet representation W (f0) by
inverse transform (for the proof, see [1, 5]):

f0(t) =

Z ∞
−∞

Z ∞
0

W (f0)(τ, x)τ
−5/2ψ

„
t− x
τ

«
dxdτ.

However, the reconstruction is incomplete, if all information on
W (f0) is not availabe. Here, the decomposition and reconstruc-
tion is approximated by choosing ten scales, one octave apart.
f0 is represented by the wavelets as ten separate streams given
by

Wi(f0)(t) =W (f0)(2
i+1τ0, t)(i+ 2.5)−5/2 (1)

where i = 1, . . . , 10 and τ0 = 5 ms, and the original signal is
approximately recovered by

f0(t) =

10X
i=1

Wi(f0)(t) + ε(t) (2)

where ε(t) is the reconstruction error. The reconstruction for-
mula (2) is ad hoc and no attempts were made in this stage to
optimize the computational efficiency. The accuracy of the re-
construction was evaluated by decomposing and reconstructing
ten utterances spoken by a male and a female. The correlation
between the original and the reconstructed f0 signal was 99.7%
with root mean square reconstruction error of 1.03Hz.

The continuous wavelet transform and ten distinct scales
are shown in the third pane of the Figure 1. The scales 0 and 1
correspond to phone level (50 and 25 Hz), scales 2 and 3 cor-
respond to syllable level (6 and 13 Hz), scales 4 and 5 show
word level (1.6–3 Hz), scales 6 and 7 correspond to phrase level
(0.4–0.8 Hz), and scales 8 and 9 correspond to utterance level.
The adjacent scales are combined and shown in the bottom pane
of the Figure 1. These five broad scales are separated by two
octaves from each other. The correspondance of the prosodic
levels of hierarchy and the wavelet scales is approximative and
the wavelet scales are not adjusted to optimize the fit. Hence,
e.g., not all the syllables have a duration that would fall in the
“syllable scale”.

3. Constructing the synthesis
3.1. Speech material

In order to carry out evaluation of the proposed f0 modeling
methods, two Finnish HMM-voices were trained, a male and

a female one. The male database (MV) used is a traditional
synthesis corpus, with rather carefully articulated set of 692
isolated sentences, while the female one (HK) is more diverse,
consisting of 600 phonetically rich sentences as well as contin-
uous prosodically rich read speech; 266 long sentences of fact
and 607 sentences of diverse prose. 92 sentences of the male
database was left out for evaluation purposes and 60 utterances
of prose for the female. Both corpora have been tagged for word
prominence on discrete scale ranging from 0 to 3, using acoustic
features [13]. The prominence labels were used in both train-
ing and evaluation as contextual features. Thus the evaluation
was not affected by TTS symbolic prosody prediction errors.
In addition to word prominence, full context labels were gen-
erated with conventional features: quinphones with positional
and length features of phones, syllables, word and phrases. No-
tably, more enriched labeling above word level would have been
preferable for the current topic of modeling the prosodic hierar-
chy.

3.2. Parameterization of f0 contours

Four different HMM-based statistical models for f0 generation
were compared. Synthesized f0 contours based on these four
and the original sentence f0 are depicted in Figure 2.

3.2.1. base

A standard MSD model for f0 is trained where each continuous
f0 passage between unvoiced segments is independently gener-
ated.

3.2.2. wave5

In the model wave5, five different f0 components w1, . . . , w5,
defined by

wi(t) =W2i−1(f0)(t) +W2i(f0)(t),

are independently trained by HMMs.

3.2.3. wave1

The different time scales correlate especially with their neigh-
bors, so a plausible alternative would be to jointly model all
the scales. This is done in wave1 where one vector V (t) =
{Wi(f0)(t)}10i=1 contains the time scales.
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3.2.4. contf0

Since the wavelet based methods wave5 and wave1 generate a
continuous f0 trajectory, and since interpolating the pauses in
the training data improves the synthesized contours [14], an al-
ternative, contf0, is offered where the unvoiced segments are
interpolated in the same way as in the preprocessing of the
wavelets.

3.3. HMM-training

The speech was parameterized with GlottHMM vocoder [9],
yielding a 5-stream HMM structure: vocal tract spectrum LSFs
and Gain (31 parameters), voice source spectrum LSFs (10),
Harmonic-to-noise ratio (5) and logf0 (1). f0 was then pro-
cessed as described in the previous chapter. 5 streams (1 pa-
rameter each) for method wave5, 1 stream (10) for wave1 and
one stream for continuous logf0. The baseline f0 method was
modeled as an MSD stream, others as continuous streams. With
dynamic features further added, HMM training was perfomed
in a standard fashion using HTS [16]. Stream weights affect-
ing model alignment were set to zero for all streams except
vocal tract spectrum LSFs and logf0. Decision tree cluster-
ing was perfomed individually for each stream without stream-
dependent contextual question sets. Using the MDL criterion on
decision tree building, the wave5 trees tended to become very
large compared to baseline. Attempts were made to control the
tree size with minimum leaf occupancy count, which was set to
10 on baseline MSD logf0 stream and 20, 25, 30, 60 and 70 for
respective wave5 streams. In addition, MDL factor was set to
0.6 for logf0 stream and 1.5 for wave5 streams.

4. Evaluation
4.1. Evaluation data

The fundamental frequency parameters of the test utterances
were generated from HMMs using original time alignments.
For wavelet methods, the f0 trajectories were constructed from
generated scales using Equation (1). Voicing decision for con-
tinuous f0 methods was based on the base MSD stream as well
as mean and variance of f0 for normalized wavelet methods.

The alignments were aquired by force-alignment method
with the monophone models estimated during synthesis train-
ing. The synthesized sentences were checked manually for
gross timing errors, and bad ones were excluded. The final MV
test data consisted of 41 isolated utterances, spoken in the same
formal style as the training data. By contrast, the HK test utter-
ances consisted of 60 sentences of expressive prose.

4.2. Performance measures

The synthesized f0 contours were compared to the original f0
contours, estimated with GlottHMM, by measuring the correla-
tion between the two curves and by calculating the root mean
square error for each test utterance. Within an utterance, only
the frames that were voiced with all methods were included.
Also, due to frequent creaky voice with erratic pitch on origi-
nal trajectories, the frames where the distance between original
and at least one of the synthesized trajectories was more than
8 semitones, were excluded as outliers. It should be noted that
these frames were completely excluded from the evaluation so
that the comparisons were performed on exactly the same data
sets. For the error calculation, the f0 was converted to semitone

Figure 3: Evaluation results shown scale by scale. The top pane
shows the correlations between the four synthesized contours
and the original; second pane depicts the difference between the
wavelet method wave5 and base; third pane shows the absolute
RMSE; in the fourth pane, the values are normalized by the
variation at the scale; the bottom pane shows the difference in
RMSE between the wave5 and base.

scale with base 40 Hz. A Wilcoxon signed rank test was used
to assess the statistical significance of the results.

4.3. Performance results

The correlations between the generated f0 values and original
contours showed significantly better performance for wavelet
methods than for the baseline for both speakers. For the female
data, the correlations over the test utterances were 0.76, 0.72,
0.72, and 0.68 for wave5, wave1, contf0, and base, respectively,
as shown in Table 1. The wave5 was better than wave1 (V =
1298, p < 0.05), better than contf0 (V = 1324, p < 0.05) and
base (V = 1445, p < 0.005). In addition, the wave1 was better
than base (V = 1329, p < 0.05) but not significantly different
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Figure 4: The reconstruction can be weighted to enhance the word level (blue curve) or the phrase level (red curve) intonation.

from contf0 (V = 1064, p > 0.1). The contf0 was marginally
better than the base (V = 702, p < 0.1).

The male data showed similar patterns. The correlations
over the test utterances were 0.85, 0.84, 0.81, and 0.81, respec-
tively. The wave5 was marginally better than wave1 (V = 288,
p < 0.1), better than contf0 (V = 129, p < 0.001) and
base (V = 88, p < 0.001). In addition, the wave1 was bet-
ter than base (V = 136, p < 0.001) and contf0 (V = 196,
p < 0.005). The contf0 and the base were not significantly
different (V = 439, p > 0.1).

Table 1: A summary of the performance results of the syntheses.
The means of the performance measures for each of the two data
sets (female, male).

wave5 wave1 contf0 base
corr (F) 0.76 0.72 0.72 0.68
corr (M) 0.85 0.84 0.81 0.81

RMSE (F) 1.38 1.44 1.48 1.53
RMSE (M) 1.57 1.60 1.75 1.76

The root mean square error patterns are similar to the cor-
relation results of the previous paragraphs. For the female data,
the root mean square errors were 1.38, 1.44, 1.48, and 1.53
semitones for wave5, wave1, contf0 and base, respectively. The
wave5 outperformed the wave1 (V = 1551, p < 0.001), the
contf0 (V = 1666, p < 0.001, and the base (V = 1781,
p < 0.001). The wave1 and the contf0 were statistically not
different (V = 1085, p > 0.1), but the wave1 was better
than the base (V = 1419, p < 0.005). The contf0 was bet-
ter than base (V = 599, p < 0.01). For the male data, the
root mean square error was 1.57, 1.60, 1.75, and 1.76 semitones
for wave5, wave1, contf0 and base, respectively. The wave5
was not different from the wave1 (V = 307, p > 0.1) but
was better than the contf0 (V = 143, p < 0.001) and the base
(V = 96, p < 0.001). The wave1 outperformed both the contf0
(V = 206, p < 0.005) and the base (V = 145, p < 0.001). Fi-
nally, the contf0 and base did not differ significantly (V = 433,
p > 0.1).

4.4. Temporal scale analysis of the results

In Figure 3, the performance measures over the female test sen-
tences are decomposed to the scale-wise components. Overall,
the wave5 is better than the baselines at all scales. However, the
difference is pronounced for the middle scales.

5. Discussion and conclusions
The results of the objective evaluation are in line with previous
research. Continuous f0 modeling is found significantly better
than the standard HTS method. On male voice, the synthesis of
f0 is very accurate, suggesting that existing methods are capa-
ble of modeling higher level structures to an adequate degree,
given consistent style and accurate labels of word prominence.
Consequently, the differences between evaluated methods are
rather small, though the wavelet based methods provide some
gains. As expected, the performance of all evaluated methods is
lower on female voice due to difficult test utterances of contin-
uous expressive prose, and also possibly due to more errors in
f0 estimation during analysis. Here, the individually modeled
wavelet scales provide a large improvement. However, subjec-
tive evaluation is still required for final conclusions.

Overall, the results suggest that the proposed method
largely solves the fragmentation problem caused by simulta-
neous decision tree clustering of all levels of prosodic hierar-
chy. Yet, somewhat contrary to expectations the improvements
seem larger on word level and syllable level than on phrase
level. Although technical problems of higher scales affected
by boundary effects on wavelet analysis may have an effect, this
mainly highlights the need for new contextual features on supra-
word level, beyond position and number. With the proposed
method the features representing for instance constituent struc-
ture, phrase type and utterance modality could actually have an
effect on the synthesized prosody.

The wavelet decomposition offers a possibility of adjusting
the weights of individual scales prior to reconstruction. This
could have potential applications in speaking style modifica-
tion. For example, informal listening suggested that increas-
ing the weight of the word level makes the synthesized speech
sound more resolute and perhaps more intelligible, while lis-
tening longer passages is less displeasing when phrase level is
emphasized. Moreover, moderate modifications do not seem to
have adverse effect on naturalness. Figure 4 presents an ex-
ample of this type of modification. Local weighting within ut-
terance could also be applied for e.g. emphasis reproduction.
Rapid adaptation of speaking style based on transform of the
scale weights alone could also be considered.

The current paper has presented a novel method of f0 mod-
eling based on wavelet decomposition. Many open questions re-
main. Selection of scales and model structure were made based
on intuition alone, no other wavelets beyond mexican hat were
considered, neither more popular discrete wavelet transform.
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Also, while the proposed method seems quite suitable for the
current HMM-synthesis framework, it is deeply unsatisfying to
model utterance level f0 contour with inherently sub-segmental
models, when the discrete cosine transform or discrete wavelet
transform could represent the level with only a few coefficients.
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Abstract
Wavelet based time frequency representations of various signals
are shown to reliably represent perceptually relevant patterns at
various spatial and temporal scales in a noise robust way. Here
we present a wavelet based visualization and analysis tool for
prosodic patterns, in particular intonation. The suitability of
the method is assessed by comparing its predictions for word
prominences against manual labels in a corpus of 900 sentences.
In addition, the method’s potential for visualization is demon-
strated by a few example sentences which are compared to more
traditional visualization methods. Finally, some further appli-
cations are suggested and the limitations of the method are dis-
cussed.
Index Terms: continuous wavelet transform; speech prosody;
intonation analysis; prominence

1. Introduction
The assumption that prosody is hierarchical is shared by pho-
nologists and phoneticians alike. There are several accounts for
hierarchical structure with respect to speech melody: In the tone
sequence models which interpret the f0 contour as a sequence
of tonal landmarks of peaks and valleys (e.g. [15]) the hierarchy
is mainly revealed at the edges or boundaries of units whereas
in superpositional accounts (e.g., [13, 6]) it is seen as a superpo-
sition of different levels at each point of the contour. The prob-
lem with the tone sequence models stems from their phonolog-
ical nature which requires a somewhat discretized view of the
continuous phonetic phenomena. The superpositional accounts
suffer, conversely, from the lack of signal based categories that
would constrain the analysis in a meaningful way. Both mod-
els suffer from being disjointed from perception and require a
priori assumptions about the utterances.

Wavelets emerged independently in physics, mathematics,
and engineering, and are currently a widely used modern tool
for analysis of complex signals including electrophysiological,
visual, and acoustic signals [5]. In particular, the wavelets have
found applications in several speech prosody related areas: The
first steps of the signal processing by the auditory periphery are
well described by models that rely on wavelets [23, 22, 17];
they are used in a robust speech enhancement in noisy signals
with unknown or varying signal to noise ratio, in automatic
speech segmentation, and in segregation along various dimen-
sions of speech signal in a similar way as mel-cepstral coeffi-
cients [2, 1, 8, 9]; the multiscale structure of the wavelet trans-
form has been taken advantage of in musical beat tracking [19].
The quantitative analysis of speech patterns through wavelets
might also be relevant for understanding the cortical processing
of speech (e.g. [3, 14, 7]).

In the present paper, we apply the wavelet methods to

recorded speech signals in order to extract prosodically impor-
tant information automatically. Here, only the fundamental fre-
quency of the speech signal is analyzed by wavelets although
similar analysis could be performed to any prosodically rele-
vant parameter contour (e.g., the intensity envelope contour or
a speech rate contour) or even the raw speech signal itself.

The analysis of intonation by wavelets is not a new idea.
Discrete wavelet analysis with Daubechies mother wavelets
was the key component in automatically detecting the cor-
rect phrasal components of synthesized f0 contours of the Fu-
jisaki model further developed under the name general super-
positional model for intonation proposed by van Santen et al.
[21, 12]. Continuous wavelet transforms with Mexican hat
mother wavelet have been used for Fujisaki accent command
detection by Kruschke and Lenz [10]. Overall, previous work
with wavelets and f0 have been mainly concerned with utilizing
wavelets as a part of model development or signal processing
algorithm, instead of using the wavelet presentation itself.

In Finnish, the prosodic word is an important hierarchical
level and the prominence at that level reveals much of the syn-
tactically and semantically determined relations within the ut-
terances. We have successfully used a four level word promi-
nence in text-to-speech synthesis in both Finnish and English
[20] and the automatic detection of word prominence is a pre-
requisite for building high quality speech synthesis. In relation
to both a tone sequence and superpositional accounts the suc-
cesfull detection of word prominence would be related to distin-
guishing the accentedness of the unit as well as the magnitude
of the accent.

Using an inherently hierarchical analysis we can do away
with a fixed model and try to directly link acoustical features of
an utterance to the perceived prominences within the utterance.
In order to evaluate the wavelet analysis we calculated CTW
based prominences for about 7600 separate words in 900 ut-
terances previously annotated by human labelers and compared
various wavelet and f0 based features with each other. In this
paper we first discuss the CWT and its application to f0 and
then show the quantitative evaluation followed by discussion
and conclusion.

2. Continuous wavelet transform
The continuous wavelet transform (CWT) can be constructed
for any one-dimensional or multidimensional signal of finite en-
ergy. In addition to the dimensions of the original signal, CWT
has an additional dimension, scale, which describes the internal
structure of the signal. This additional dimension is obtained
by convolving the signal by a mother wavelet which is dilated
to cover different frequency regions [5]. The CWT is similar to
the windowed Fourier transform: the CWT describes the time-
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Figure 1: Different analyses aligned temporally. Top pane depicts the continuous wavelet transform with Mexican hat mother wavelet
of f0, second pane shows the interpolated f0 contour; third pane shows spectrogram of the speech signal; the bottom pane shows gain.
The light gray vertical lines show the word boundaries. The text superposed to the third pane transcribes the uttered words (The ship
was moved outwards and the gap between the board of the ship and the gangplank got wider, still.)

frequency behaviour of the signal and the signal can be recon-
structed from the CWT by inverse wavelet transform. We use
here a Mexican hat shaped mother wavelet which corresponds
formally to the second derivative of the Gaussian, see pages 76–
78 in [11]. In the Figure 1, the top pane shows the CWT of the
f0 contour shown in the second pane. The peaks in f0 curve
show up in the CWT as well, but the size of the peaks in the
wavelet picture depends on the local context: the higher at the
picture, or in other words, the coarser the scale, the slower the
temporal variations and the larger the temporal integration win-
dow. Although several hierarchical levels emerge, the quantita-
tive evaluation of the suitability of the CWT to prosodic analysis
is only performed on word level. Note that in Finnish, content
words have a fixed stress on the first syllable, clearly visible
in the Figure 1. The third and fourth panes show the spectro-
gram and the intensity envelope of the same utterance. The time
scales in the wavelet picture range from the 67 Hz as finest to
less than 1 Hz as coarsest.

3. Quantitative evaluation
A visualization tool cannot be evaluated quantitatively as a
whole. However, if the different temporal scales reflect per-
ceptually relevant levels of prosodic hierarchy, the representa-
tion of f0 at any scale should correlate with judgements of the
relative prominence at that particular level. This hypothesis is
tested at the level of prosodic word. Although word prominence
is signaled by f0, it is, to large extent, signaled by other means
as well including intensity, duration, word order, and morpho-
logical marking. Hence, the f0 based prominence annotation is
compared to a simple baseline f0 prominence annotator and to
the labels obtained from phonetically trained listeners.

3.1. Recorded speech data

The evaluation data consisted of 900 read sentences by a pho-
netically trained, native female speaker of Finnish. Linguisti-

cally, the sentences represented three different styles: modern
standard scientific Finnish, standard Finnish prose, and phonet-
ically rich sentences covering the Finnish phonemes. The sen-
tences were recorded using high quality condenser microphone
in a sound proof studio, digitized, and stored on a computer
hard drive. The mean durations of the sentences had average
durations of 6.1 s, 3.5 s, and 3.8 s. The total duration amounted
to 1h 1 min. Acoustic features were extracted of the utterances
with GlottHMM [16], and then the utterances were aligned with
the text.

3.2. Fundamental frequency extraction

The fundamental frequency of the test utterances were extracted
by GlottHMM speech analysis and synthesis software. In Glot-
tHMM analysis, the signal is first separated to vocal tract and
glottal source components using inverse filtering, and the f0 is
then extracted from the differentiated glottal signal using au-
tocorrelation method. Parameters concerning voicing thresh-
old and admissible range of f0 values were tuned manually for
the current speaker. While GlottHMM performs some post-
processing on analyzed f0 trajectories, deviations from per-
ceived pitch remain, particularly in passages containing creaky
voice. Thus, f0 values were first transformed to logarithm scale
and then all values lower than 2 standard deviations below the
mean of log f0 were removed.

The unvoiced segments of the speech and the silent inter-
vals make the direct wavelet analysis impossible since f0 is not
well defined for these segments. Hence, the unvoiced gaps were
filled using linear interpolation. Additionally, to alleviate edge
artifacts, the continuous f0 contour was extended over the silent
beginning and end intervals by replacing the former by the mean
f0 value (logarithmically scaled) over the first half of the com-
pleted f0 contour, and the latter by the mean over the second
half. Then the f0 curve was filtered by a moving average Ham-
ming window of length 25 ms and finally normalized to zero
mean and unity variance.
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Figure 2: The word prosody scale is chosen from a discrete set of scales with ratio 2 between ascending scales as the one with the
number of local maxima as close to the number of words in the corpus as possible. The upper pane shows the representations of f0 at
different scales. The word level (4.2 Hz; see text) is drawn in red. The lower pane shows the f0 curve. The abscissa shows the frame
count from the beginning of the utterance (5 ms frame duration).

3.3. Baseline annotation based on f0 signal

For each word in the evaluation data, we extracted two common
measurements from the preprocessed and normalized f0 sig-
nal, the maximum value observed during word (BMax) and the
maximum minus minimum (BRange). The measurements were
not further processed, despite the scale differences compared to
manual annotation, as only correlation was being tested.

3.4. CWT annotation based on f0 signal

The CWT transform was first perfomed with one scale per oc-
tave, with finest scale being 3 frames or 15 ms. Then, the scale
of interest for word prominence was selected as the one with
positive peak count closest to the number of words (see Figure
2; the word scale corresponds to 4.2 Hz in the current data).
This is intuitively suitable for Finnish, with relatively few un-
accented function words. Three wavelet based measurements
were then extracted for each word, height of the first local max-
imum (WPeak) as well as the same two measurements as in f0

baseline (WMax, WRange). If the word contained no maxima,
then the prominence of the word was set to zero. Note that the
peak method is not applicable to raw F0, as the noisier con-
tour contains many peaks. More complex measurements were
experimented with, such as averaging over multiple scales, but
with only moderate success.

3.5. Prominence labeling

Ten phonetically trained listeners participated in prominence la-
beling. The listeners were instructed to judge the prominence
of each word in a categorical scale: 0 (unaccented, reduced); 1
(perceivably accented but no emphasis); 2 (accented with em-
phasis); 3 (contrastive accent). The listeners reported to have
based their judgements mainly on listening and secondarily to
the available Praat analyses of pitch, intensity, and spectrogram.
Every listener labeled 270 sentences in such a way that every
sentence was labeled by three listeners. The prominence of a
word was set to the average of the three judgements.

3.6. Statistical analysis

The two baseline annotations and the three wavelet based an-
notations were compared to the listeners’ judgements of word
prominence by linear regression analysis. The amount of vari-
ance explained (R squared) by the regression model was used
as an indicator for the goodness of the used measure.

3.7. Results

The baseline measure BMax has a strong correlation to the
prominence judgements with 37 % of the variance explained.
The other baseline measure BRange explained 36 % of the
variance. The wavelet based measures fitted better to the data:
WMax and WRange explained 47 % and 39 % of the vari-
ance, respectively. The more involved measures WPeak ex-
plained 53 % of the variance.

4. Discussion
The results of the evaluation show that it is fairly straightfor-
ward to extract prosodically relevant information form the CWT
analysis. In this case it was at the level of prosodic word (which
in Finnish correponds well with the grammatical word). As can
be seen in Figures 1 and 2, there are other levels both above
and below the word that are relevant and if discretized, form a
hierarchical tree which can be further exploited for instance in
text-to-speech synthesis. However, such an analysis is not free
of problems. For instance, the temporal scale corresponding to
syllables becomes coarser (higher levels in the Figure 1) when
the speech slows down, as is the case in e.g. pre-pausally.

What is important to notice here is that the CWT analysis
– as applied to the pitch contour – takes into account both the
f0 level and its temporal properties as cues for prominence. Al-
though we only used one level it is the analysis as a whole that
we are interested in. As mentioned earlier, the wavelet analy-
sis can be done on any prosodically relevant signal either alone
or jointly – although multidimensional may no longer be easily
visualizable.
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Figure 3: Comparison of selected word scale and original f0 contour with detected peaks marked with gray triangles. Observe that the
wavelet contour is free of noise and declination trend.

5. Conclusion
Continuous wavelet transfrom, a standard mathematical tool
for simultaneous analysis and visualization of various tempo-
ral scales of a signal, is applied to f0 signal of recorded speech.
At the temporal scale corresponding to prosodic word, the lo-
cal maxima correlate strongly with the listeners’ judgements
on the perceived word prominence. This is taken as evidence
that the small and large scale contributions induced by segmen-
tal micro-prosody and phrasal intonation components are effec-
tively removed by the analysis. Moreover, a hierarchical struc-
ture emerges which is easily visible and has similarities with the
classical description of prosodic structure through a prosodic
tree. Unlike other hierarchical models of prosody, the struc-
ture rises directly from the signal with no assumptions on the
f0 model.

Some interesting future directions could include building a
’spectrogram of prosody’ -visualization tool combining spectro-
gram and prosody in the same picture, attempting to discretize
the hierarchical structure for higher level applications, apply-
ing the decomposed prosodic features for TTS prosody models,
studying other prosodic features such as energy by CWT, and,
finally, exploring the relationship between the CWT analyses
and human auditory processing.
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