
FP7-287678 SIMPLE4ALL deliverable D2.1

Deliverable D2.1

Description of the initial version of the new front-end

The research leading to these results has received funding from the European Community’s Seventh
Framework Programme (FP7/2007-2013) under grant agreement number 287678.

Participant no. Participant organisation name Part. short name Country
1 (Coordinator) University of Edinburgh UEDIN UK
2 Aalto University AALTO Finland
3 University of Helsinki UH Finland
4 Universidad Politécnica de Madrid UPM Spain
5 Technical University of Cluj-Napoca UTCN Romania

Version 1 (02/11/2012) 1 page 1 of 41

FP7-287678 SIMPLE4ALL deliverable D2.1

Project reference number FP7-287678
Proposal acronym SIMPLE4ALL
Status and Version Complete, proofread, ready for delivery: version 1
Deliverable title Description of the initial version of the new front-end
Nature of the Deliverable Report (R)
Dissemination Level Public (PU)
This document is available from http://simple4all.org/publications/

WP contributing to the deliverable WP2
WP / Task responsible WP2 / T2.1
Editor Martti Vainio UH
Editor address martti.vainio@helsinki.fi
Author(s), in alphabetical order Juan Manuel Montero Martı́nez , Mircea Giurgiu, Rubén San–

Segundo, Antti Suni,
Martti Vainio, Oliver Watts

EC Project Officer Pierre Paul Sondag

Abstract

On of the main goals of the SIMPLE4ALL is to replace the traditional approach to text-to-speech front-end text
processing with fully data-driven approaches based on machine learning and to develop unsupervised language-
independent methods for linguistic representation estimation. This report describes the initial version of the lin-
guistic front-end of the SIMPLE4ALL system. The system for handling non-standard words, such as abbreviation,
numbers and acronyms, the system for building linguistic representations in a unsupervised fashion, and an auto-
matic prosody modelling system based on word prominences are described.

Version 1 (02/11/2012) 2 page 2 of 41

FP7-287678 SIMPLE4ALL deliverable D2.1

Contents

1 Introduction 4

2 Text normalisation 5
2.1 Summary . 5
2.2 Introduction . 5
2.3 State of the art . 5
2.4 Architecture description . 5

2.4.1 Pre-processing: Sentence Tokenization . 6
2.4.2 Token Translation . 7
2.4.3 Post-processing . 9

2.5 Experimental evaluation . 9
2.5.1 Experiments using isolated numbers . 10

2.5.1.1 Experiment 1 . 10
2.5.1.2 Experiment 2 . 11
2.5.1.3 Conclusions . 14
2.5.1.4 Future work . 14

2.5.2 Experiments using isolated dates . 14
2.5.3 Preliminary experiments with acronyms . 15

2.5.3.1 Including knowledge only at the translation module . 15
2.5.3.2 Delaying the hard decision whether a word is a standard word or an acronym 16
2.5.3.3 Analysis of features based on a character language model . 18
2.5.3.4 Conclusions . 19

2.5.4 Experiments with sentences . 20
2.6 Expanding to other languages . 22

2.6.1 Data required to create learnable text normalisation for any language . 22
2.6.1.1 Numbers . 22
2.6.1.2 Acronyms . 23

2.6.2 First Romanian experiments . 23
2.6.2.1 Experiments with numbers . 23
2.6.2.2 Experiments with acronyms . 26

2.6.3 First English experiments . 30

3 Text analysis 31
3.1 Introduction . 31
3.2 Utterances and utterance processors . 31
3.3 Tokenisation . 32
3.4 Lexicon and unsupervised phrase boundary detection . 33
3.5 Tagging: Letter-, morph- and word-representations . 33

3.5.1 Vector Space Model-based tagging . 33
3.5.2 Morphological decomposition using Morfessor . 34

3.6 Pause prediction and phrasing . 35
3.7 Rich contexts and label generation . 36

4 External evaluation of voices built using the unsupervised front-end 37

5 Prominence tagging 37
5.1 Method . 37
5.2 Future work . 38

6 Conclusions 39

References 40

Version 1 (02/11/2012) 3 page 3 of 41

FP7-287678 SIMPLE4ALL deliverable D2.1

1 Introduction

Building a statistical text-to-speech synthesiser relies on large amounts of textual data and pre-recorded speech
signals. Moreover, the speech signals have to be labeled according to their written form. This is usually very time
consuming, and relies on manual effort from experts; it is, therefore, expensive and does not scale well to building
systems for large numbers of languages. However, the hypothesis that SIMPLE4ALL is testing is that all of the
methods for preparing data for TTS voice building can be automated; modern machine learning techniques that are
fully data-driven can replace the expensive human labor in the process.

Replacing the traditional linguistic front-end of TTS with a fully data-driven approach based on machine learn-
ing is one of the main goals of SIMPLE4ALL . In general, this calls for a set of language-independent methods for
linguistic representation estimation from data, which has itself possibly been acquired in a semi-automatic fashion
from non-standard sources and/or provided by non-expert users.

The project aims to demonstrate the construction of complete speech synthesis systems starting only from
speech and text, employing our novel methods for the front end in conjunction with a conventional state-clustered
context-dependent HMM waveform generation module.

This report describes the first version of the new unsupervised linguistic front-end and its evaluation. There are
two separate modules being described: a fully automatic text normalisation module based on machine-translation
techniques and developed by UPM , and the linguistic analysis module developed by UEDIN . The evaluation of an
initial system that was used to produce several voices we entered into the Spanish Albayzin Challenge is reported.
Finally, a prominence based automatic prosody tagging and prediction system developed at UH is described.

The second version of the linguistic front-end is planned to include improved methods for both lexical decom-
position into morph-like units and improved language modelling, as well as prosody prediction. The requirements
for the current system are described in Deliverable 1.2, section 2.1.3.

Version 1 (02/11/2012) 4 page 4 of 41

FP7-287678 SIMPLE4ALL deliverable D2.1

2 Text normalisation

2.1 Summary

This part of the deliverable describes work in progress for developing the text normalisation module of a fully-
trainable text-to-speech system. The main target is to generate a language-independent text normalisation module,
based on data (instead of on expert rules) that is flexible enough to deal with all phenomena observed in the input
text. We propose a general architecture based on statistical machine translation techniques, comprising three main
modules: a tokenizer for splitting the text input into a token graph (tokenization), a phrase-based translation module
(token translation) and a post-processing module.

2.2 Introduction

Although text-to-speech (TTS) is an area where much effort has been devoted to text normalisation, dealing with
real text is a problem that also confronts other applications such as machine translation, topic spotting and speech
recognition (e.g., when preparing language modelling data, or when it is necessary to associate a phoneme sequence
to a written word).

In an ideal situation, text would comprise a string of fully spelled-out words, and for each word there would be
an unambiguous relationship between spelling and pronunciation. But in real text, there are non-standard words:
numbers, digit sequences, acronyms, abbreviations, dates, etc. The main problem for a text normalisation module
is to convert Non-Standard Words (NSWs) into regular words. This problem can be seen as a translation problem
between real text (including NSWs) and an idealised text where all the words are standardised.

2.3 State of the art

A good reference for current approaches to text normalisation, as used in TTS, is [1]. The authors propose a very
complete taxonomy of NSWs considering 23 different classes grouped in three main types: numerical, alphabetical
and miscellanea. Sproat et al describe the whole normalisation problem of NSWs, proposing several solutions for
some of the problems: a good strategy for tokenising the input text, a classifier for determining the class associated
to every token, some algorithms for expanding numeric and other classes that can be handled“algorithmically”, and
finally, supervised and unsupervised methods for designing domain-dependent abbreviation expansion modules.

Others have addressed specific problems of text normalisation too. For abbreviations and acronyms, there have
been several efforts to extract them from text automatically [2, 3, 4] and to model how they are generated [5, 6].

Numbers [7] and proper names [8, 9, 10] have also been targetted. Nowadays, much effort on text normalisation
is focused on SMS-like language used via mobile phones and social networks like Facebook or Twitter [11, 12, 13].

As a consequence of advances obtained in machine translation in the last decade, there has been an increasing
interest on exploring machine translation capabilities for dealing with the problem of text normalisation [14, 15].

We therefore propose to use a general architecture based on statistical machine translation techniques for deal-
ing with all challenges included in the problem of text normalisation. The main target is to generate a language-
independent text normalisation module, learned from data (instead of on expert rules) that is flexible enough to
deal with all situations presented in this research line. Note that we expect the model will need re-training for each
new language: it is the architecture that is language-independent, not the translation model’s parameters. Also,
wherever we say ‘language’ we could also say ‘domain’, since domain-specific systems are one of our sub-goals.

2.4 Architecture description

Figure 2.4a shows the architecture of our proposed system. It is composed of three main modules: a pre-processing
module that splits the text input into a token graph (tokenization), a phrase-based translation module (token trans-
lation) and a post-processing module for removing some tokens.

Version 1 (02/11/2012) 5 page 5 of 41

FP7-287678 SIMPLE4ALL deliverable D2.1

Figure 2.4a: Architecture diagram

2.4.1 Pre-processing: Sentence Tokenization

In this first module, the input text is split into tokens. This process is carried out in two steps. In the first step, a
preliminary token sequence is generated considering a small set of rules. As one of the main targets of this work is
to provide a language-independent architecture, the main rules should be language-independent:

• The first rule assumes that blank characters provide an initial segmentation in tokens.

• The second rule subdivides initial tokens (sequences of characters between blank characters) considering
some homogeneity criterions:

– Tokens must have only alpha or numerical characters. If there is a change from alpha to number or
vice-versa, the token must be subdivided.

– Punctuation characters must be considered as independent tokens

We are currently excluding languages that do not use blank characters to divide text into tokens, but will consider
at a later stage whether to address such languages, noting that there are existing approaches that can be applied to
many of these languages (e.g., Arabic) In addition to these rules, it is possible to add new rules focused on one
language or on a set of languages (e.g., Romance). For example, in English, it is possible to consider subdividing
a token if there is a change between lower and upper letters or vice-versa [1].

In the second step, some of the tokens are re-written in a different format in order to facilitate their subsequent
translation into standard words. This starts by classifying each token as a standard word (W) or as a non-standard
word (NSW). This classification can be done considering a dictionary of standard words in this language, or by
considering a more complex classifier based on some features obtained from the target token and its context:
character language model, vowels, capitals, etc.

If the token is classified as a NSW, it is split into letters including some separators at the beginning and at the
end of the letter sequence. For example, UPM (Universidad Politcnica de Madrid in Spanish) is rewritten into # U
P M #. This way of rewriting an alpha token tries to introduce a high flexibility to facilitate the text normalisation
process. Considering sequences of letters, some unseen acronyms could be normalised by spelling (using the
translations of its graphemes individually).

Also, all numbers are rewritten dividing the token into separated digits. Every digit is complemented with its
position in the number sequence. For example: 2012 is rewritten as 2 4 0 3 1 2 2 1, where 2 4 means the digit
2 in the 4th position (beginning from the right). Roman numerals are first translated into Arabic digits and then
rewritten digit by digit.

As we will see, the translation module can deal with graphs of tokens as input, not just linear strings. Thanks
to this possibility, it is possible to delay hard decisions when classifying tokens as standard words or NSWs. By

Version 1 (02/11/2012) 6 page 6 of 41

FP7-287678 SIMPLE4ALL deliverable D2.1

representing the text as a token graph, both alternatives can be considered (with different weights if necessary).
Figure 2.4b shows an example of token graph for the sentence “Welcome to UPM2012”.

Figure 2.4b: Token graph for the sentence “Welcome to UPM2012”

The token “UPM2012” is divided into two tokens: UPM and 2012. The first one, UPM, is rewritten considering
two possibilities: as it is, and letter by letter. The second one is a number and it is rewritten digit by digit, including
information about its position.

The standard vs. non-standard word classifier needs to detect standard words with high accuracy, in order to
reduce the token graph complexity, avoiding alternative paths in these cases.

2.4.2 Token Translation

The translation of tokens into a sequence of standard words is performed using a phrase-based machine translation
system. The phrase-based translation system is based on the software released from the NAACL Workshop on
Statistical Machine Translation in 2012. The translation process uses a phrase-based translation model and a target
language model. These models were trained using a procedure outlined in Figure 2.4c.

Figure 2.4c: Process for training the translation and target language models

The first step is word alignment. In this step, the GIZA++ software [16] is used to calculate alignments between
source and target tokens. In order to establish these alignments, GIZA++ combines the alignments in both direc-
tions. As there are many standard words, they are the same tokens in source and target languages, so are important
reference points for the alignment.

Version 1 (02/11/2012) 7 page 7 of 41

FP7-287678 SIMPLE4ALL deliverable D2.1

The second step is phrase extraction [17]. All token phrase pairs that are consistent with the token alignment
are collected. For a phrase alignment to be consistent with the word alignment, all alignment points for rows and
columns that are touched by the box have to be in the box, not outside. The maximum size of a phrase was increased
to 20 in order to deal with token graphs including sequences of letters and digits properly.

Finally, the last step is phrase scoring. In this step, the translation probabilities are computed for all phrase
pairs. Both translation probabilities are calculated: forward and backward.

The Moses decoder (http://www.statmt.org/moses/) is used for the translation process. This program is a beam
search decoder for phrase-based statistical machine translation models. In order to build the N-gram target language
model needed by Moses, the SRI language modelling toolkit was used [18].

1. Factored translation models

Using Moses, one can train factored models in order to include this information in the translation process
[19]. This possibility is an extension of phrase-based statistical machine translation models that enables
the straightforward integration of additional annotations at the word or token level (linguistic markup or
automatically generated word classes). The main idea is to add additional annotation at the word level. A
word in this framework is not only a token, but a vector of factors that represents different levels of annotation.

The translation of factored representations of input tokens into the factored representations of output tokens is
broken up into a sequence of mapping steps that either translate input factors into output factors, or generates
additional output factors from existing output factors. The information included in these factored models can
be a tag with semantic information, Part-Of-Speech of a word (name, article, verb, adverb, preposition, etc.),
gender or number features , verb tense, types of adverbs, etc.

In order to increase the generalisation capability of the proposed architecture, it is possible to add, to the
input token graph, an additional factor per node with information that might be useful to the normalisation
process (Figure 2.4d).

The additional factor on the source side is W for standard word, NSW for non-standard word, L for letter and
N x for digits where x is the position of the digit in the number. Including this additional factor, it is possible
to increase the generalisation capability of the system.

2. Corpora necessity

In order to learn this token translation module, it is necessary to train both a translation and a target language
model. For training the translation module it is necessary to have a parallel corpus including examples of all
possible types of NSWs as described in the taxonomy from [1]. Some examples are:

• Abbreviations and Acronyms: “The UPM is ” and “The Universidad Politecnica de Madrid is ...”.
• Numbers: “more than 120 cars” “more than one hundred and twenty cars”.
• Dates and times: “On May 3rd, 2012” “on may third , two thousand and twelve”.
• Webs and emails: “lapiz@die.upm.es” “lapiz at D I E dot U P M dot E S”.
• Money and percentages: “$3.4 billions” “three point four billion dollars”.
• Misspelling or funny spelling: “CU8er” “see you later”.

This is the most important aspect when developing the text normalisation module. The system performance
depends strongly on the data used to train the translation model. Parallel corpus generation is a costly task
that should be supported with automatic procedures to reduce cost. With this idea, many efforts have been
devoted to obtaining appropriate corpora from raw text with the least amount of supervision [9, 3, 7].

One interesting characteristic of Moses is the possibility of combining different phrase tables (translation
models) during the translation process using different weights. Considering this possibility, an interesting

Version 1 (02/11/2012) 8 page 8 of 41

FP7-287678 SIMPLE4ALL deliverable D2.1

Figure 2.4d: Input token-graph with an additional factor

analysis for future work will be to compare the possibility of training individual phrase tables for each type
of NSW.

One important thing to consider is that the source language (in the parallel corpora) must be pre-processed
in the same way as the input text (see 2.4.1) with the difference that, in this case, the parallel corpus does not
have token graphs with two alternatives but only token sequences with the correct alternative.

Regarding the target language model, it is important to use the target side of the parallel corpora, but also
additional normalised sentences from different contexts in order to learn the best normalisation for a given
NSW, depending on the context.

2.4.3 Post-processing

This module performs several actions in order to finally arrive at fully normalised text to be passed into the speech
synthesiser. One of the main actions is to remove unnecessary tokens. For example, if after the translation mod-
ule there are any # tokens remaining (which were used for defining the limits of letter sequences), they must be
removed.

2.5 Experimental evaluation

The main aspects of the text normalization module that need to be tested are:

Version 1 (02/11/2012) 9 page 9 of 41

FP7-287678 SIMPLE4ALL deliverable D2.1

• Dealing with numbers. In this case, the main target is to define how the architecture can be adapted to deal
with numerical numbers. Initially, we perform some experiments focused on isolated numbers, and then
some experiments on text that includes numbers.

• Dealing with acronyms. In this case, there are two main challenges. The first one is to translate acronyms,
by considering a list of known acronyms. The second challenge is to distinguish when a token is a NSW
(acronym or abbreviation) or a standard word.

2.5.1 Experiments using isolated numbers

In this section, some experiments focused on numbers will be reported and some comments about the best config-
uration option for adapting the translation platform to deal with numbers.

2.5.1.1 Experiment 1

Description Amount
Number of parallel sentences 30
Number of numbers per sentence 10
Example:
10030 20131 30232 40333 50434 60535 70636 80737 90838 90939 .
diez mil treinta veinte mil ciento treinta y uno treinta mil doscientos treinta y
dos cuarenta mil trescientos treinta y tres cincuenta mil cuatrocientos treinta
y cuatro sesenta mil quinientos treinta y cinco setenta mil seiscientos treinta
y seis ochenta mil setecientos treinta y siete noventa mil ochocientos treinta y
ocho noventa mil novecientos treinta y nueve punto

Table 2.5a: Initial database

The first experiment was carried out with the small database summarised in Table 2.5a. As we will note in
section 2.5.3.4, the target language should be specified as words or in morphemes. For example, in Finnish, we
suggest a morpheme based representation separating consecutive morphemes with dashes, and different words with
blank characters.

Performance was measured by computing the BLEU (BiLingual Evaluation Understudy) metric and the WER
(Word Error Rate). BLEU is a positive measurement (higher BLEU reveals a better system) with a limit of 100%
and WER is a negative measurement (lower is better). In these very first experiments, the same set of sentences
was used for training, tuning and testing. There were many problems in the alignments when training the phrase
table (translation model). Table 2.5b gives the results.

System BLEU (%) WER (%)
Baseline (considering a grow-dial-final alignment
strategy during training)

37.6 >60

Considering a tgttosrc alignment during training 65.7 55.7
Introducing a separator between consecutive num-
bers in the same sentence: #

85.3 22.2

Table 2.5b: Initial experiments

These problems had the following causes:

Version 1 (02/11/2012) 10 page 10 of 41

FP7-287678 SIMPLE4ALL deliverable D2.1

• Large difference in number of tokens between source and target languages: While having many digits in the
source language (for example: 5000000 -> 5 7 0 6 0 5 0 4 0 3 0 2 0 1), in the target language there were
only two words: five million. In order to solve this problem, we changed the alignment strategy, obtaining
the best results by using the “tgttosrc” configuration option. With this option, the alignment for training the
phrase-table is lead by the target language. As shown in Table 2.5b, we get a very good improvement when
modifying the alignment method.

• Consecutive numbers caused alignment problems: To solve this, a separator was included between consecu-
tive numbers in the same sentence, which gives another improvement in results (Table 2.5b) For example:

– # 10030 # 20131 # 30232 # 40333 # 50434 # 60535 # 70636 # 80737 # 90838 # 90939 # .
– # diez mil treinta # veinte mil ciento treinta y uno # treinta mil doscientos treinta y dos # cuarenta mil

trescientos treinta y tres # cincuenta mil cuatrocientos treinta y cuatro # sesenta mil quinientos treinta
y cinco # setenta mil seiscientos treinta y seis # ochenta mil setecientos treinta y siete # noventa mil
ochocientos treinta y ocho # noventa mil novecientos treinta y nueve # punto

Of course, this experiment used a very small dataset. Our next experiment used a new database with many
more training examples.

2.5.1.2 Experiment 2

Description Amount

Training
Number of parallel senteces 800
Number of numbers per sentence 1

Tuning
Number of parallel senteces 1000
Number of numbers per sentence 1

Testing
Number of parallel senteces 4000
Number of numbers per sentence 1

Examples:
0,105 . cero coma ciento cinco punto
201 . doscientos uno punto
504,47 . quinientos cuatro coma cuarenta y siete punto
1.496,514 . mil cuatrocientos noventa y seis coma quinientos catorce punto
71.370,656 . setenta y uno mil trescientos setenta coma seiscientos cincuenta
y seis punto
1.018.448 . un milln dieciocho mil cuatrocientos cuarenta y ocho punto
88.297.519 . ochenta y ocho millones doscientos noventa y siete mil quinientos
diecinueve punto
8.128.939.435 . ocho mil ciento veintiocho millones novecientos treinta y
nueve mil cuatrocientos treinta y cinco punto cero coma cuatrocientos noventa
y cuatro punto

Table 2.5c: Isolated number database

The next experiments were carried out using the larger database presented in Table 2.5c. This database was
been generated randomly by taking into account several patterns of numbers:

Version 1 (02/11/2012) 11 page 11 of 41

FP7-287678 SIMPLE4ALL deliverable D2.1

X, XXX-XXX-XXX, XXX-X.XXX, XXX-XXX.XXX, xXXX-X.XXX.XXX-XXX.XXX.XXX-XXX.XXX.XXX.XXX.
All the numbers belongs to only one of the sets: training, tuning or testing.

System or experiment BLEU (%) WER (%)
Baseline (using tgttoserc alignment):

80.5 10.3
Example: 123.400,2 -> 123 . 400 , 2 -> 1 3 2 2 3 1
. 4 3 0 2 0 1 , 2 1
Removing dots, marking millions and thousands

96.1 2.2
Example: 123.400,2 -> 123400 , 2 -> 1 6 2 5 3 4
4 3 0 2 0 1 , 2 1
Not dividing in different tokens using commas

96.0 2.6
Example: 123.400,23 -> 123400,23 -> 1 6 2 5 3 4
4 3 0 2 0 1 , 2 -1 3 -2
Not dividing in different tokens using commas

96.6 1.9Example: 123.400,23 -> 123400,23 -> 1 6 2 5 3 4
4 3 0 2 0 1 , 2 -2 3 -1
In this case the codification of decimals digits starts
at the end of the token

Table 2.5d: Experiments with isolated numbers

We obtain better results when considering isolated numbers for training and testing the module with a bigger
database. In the baseline system in this experiment, we considered both “.” and “,” as token separators. So,
the decimal and integer parts of a number are different tokens. Also, considering dots for separating millions, and
thousands, the dots divide the number in several tokens. Analysing the errors generated by the baseline, we realised
that most of the errors came from the confusion between dots referring to millions or thousands.

In order to avoid this confusion, we decided to remove dots from the numbers avoiding the system to divide the
integer part in different tokens: the whole integer part is one token (see Table 2.5d for some examples). In this case,
the improvement is very good, increasing the BLEU substantially, while reducing WER to close to 0%. We then
decided to consider a different codification for the decimal part. But in this case, we did not get any improvement.
The remaining errors are mainly of three types:

• Different ways of expressing the decimal parts: 0,04 (cero coma cero cuatro) 0,041 (cero coma cero cuarenta
y uno).

– Input: 0,91

∗ Reference: cero coma noventa y uno punto
∗ Output: cero coma novecientos dieciséis punto

• Errors when inserting the word “mil” and “millones” but not referring to a specific number:

– Input: 1724023:

∗ Reference: Un millón setecientos veintiacuatro mil veintitrés punto
∗ Output: Un millón setecientos veintiacuatro mil mil veintitrés punto

• Errors because there is not enough training data:

Version 1 (02/11/2012) 12 page 12 of 41

FP7-287678 SIMPLE4ALL deliverable D2.1

– Input: 314.746.651:

∗ Referente: trescientos catorce millones setecientos cuarenta y seis mil seiscientos cincuenta y uno
punto

∗ Output: trescientos quince cuatro millones setecientos cuarenta y seis mil seiscientos cincuenta y
uno punto

Experiment: tuning experiments BLEU (%) WER (%)
Not dividing into different tokens using commas

96.6 1.9Example: 123.400,23 -> 123400,23 -> 1 6 2 5 3 4
4 3 0 2 0 1 , 2 -2 3 -1
In this case the codification of decimals digits starts
at the end of the token
Increasing from 6-gram to 8-gram the LM 96.7 1.8

Table 2.5e: Tuning experiments

In order to deal with the problems reported above, new experiments were run (Table 2.5e). The first change
was to reorganise the codification for the decimal part. Instead of coding the distance to the comma, we tested to
code the distance to the end. We got a small improvement: the other types or errors are still important. The second
change was to consider an 8-gram target language model instead of the 6-gram LM used in previous experiments.
We get a small improvement. In order to analyse the effect of the size of the training set, we performed 2 additional
experiments increasing and reducing the amount of data available for training (Table 2.5f). It appears that good
size for the training database is around 1000 examples, in order to obtain a WER lower than 2%.

Considering different amount of training data BLEU (%) WER (%)
400 numbers (half of the training model) 92.7 4.3
800 numbers 96.7 1.8
1800 numbers (including validation for training the
models)

97.5 1.5

Table 2.5f: Experiments with different training sets

Finally, a new strategy for coding the numbers was tried and evaluated. The idea is to mix the alternatives
considered previously. Initially, the number is divided in groups of 3 digits. Every group of 3 digits is coded
independently (as the original proposal). This way we have less variability and more data to train. In order to deal
with the problem of distinguishing “mil” and “millones” sets, specific tokens are included to help in the process.
Results are given in Table 2.5g.

In order to analyse the effect of the size of the training set for this final version of the method, we performed 2
more experiments, this time reducing the amount of data available for training (Table 2.5h).

The most interesting conclusion is that we can now reduce the training set but still obtain very good results.
The main types of error remaining are:

• Ambiguity like “uno mil” instead of “un mil”, or “ciento mil” instead of “cien mil”. This is the most impor-
tant one.

• The second error is related to the ambiguity in several patterns. For example 1034 must be written as “mil
treinta y cuarto” instead of “mil cero treinta y cuatro”. This error happens because the decimal part is coded

Version 1 (02/11/2012) 13 page 13 of 41

FP7-287678 SIMPLE4ALL deliverable D2.1

System or experiment BLEU (%) WER (%)
Not dividing in different tokens using commas

96.6 1.9Example: 123.400,23 -> 123400,23 -> 1 6 2 5 3 4
4 3 0 2 0 1 , 2 -2 3 -1
In this case the codification of decimals digits starts
at the end of the token
Including additional tokens

98.2 0.9Example: 123.400,2 -> 123 . 400 , 2 -> 1 3 2 2 3 1
mil 4 3 0 2 0 1 coma 2 1
In this case the codification of decimals digits starts
at the end of the token

Table 2.5g: Final experiments with isolated numbers

Considering different amount of training data BLEU (%) WER (%)
200 numbers 97.5 1.3
400 numbers 98.2 0.9
800 numbers 98.2 0.9

Table 2.5h: Final experiments with different training sets

in a similar way than rest of 3-digit sets. This error happens only when the 3-digits set starts with 0 (10%
of cases). But the error does not always appear because the language model helps with the discrimination
process: on the left context there is a “comma / dot” word. It is possible to use a different codification for
the decimal part, but using the same codification, we have 25% more training data for the 3-digits sets so the
performance is better with less training data (fewer than 800 training examples).

2.5.1.3 Conclusions
• In order to get the best results, it was necessary to modify the tokenization process (first module) by adapting

some rules to Spanish (not language independent).

• The best tokenization alternative requires to include special symbols for “mil” and “millones” recoding in
groups of 3 consecutive digits. With this solution, it is possible to effectively have of more examples in the
training set and it is also possible to distinguish between “mil” and “millones”.

2.5.1.4 Future work
• We think it will be interesting to consider independent translation models for every NSW. We believe this

solution will be necessary to adapt the translation model configuration to every NSW type.

• To evaluate other codification strategies or using factored models.

2.5.2 Experiments using isolated dates

In this section, some experiments focused on dates will be reported and some comments given about the best
configuration option for adapting the translation platform to deal with numbers.

The database has been generated randomly by taking into account several patterns of dates:
XX/XX/XX,XX/XX/XXXX,XX/sep/XX,XX-XX-XX,XX-XX-XXXX and XX-sep-XX. All the dates belongs to
only one of the sets: training (900 dates), tuning (1000 dates) or testing (4000 dates).

Version 1 (02/11/2012) 14 page 14 of 41

FP7-287678 SIMPLE4ALL deliverable D2.1

System or experiment BLEU (%) WER (%)
Baseline (using tgttoserc alignment): 99.7 0.1

Table 2.5i: Experiments with isolated dates

The experiments produced very good results, so we conclude that this problem is relatively easy. The few errors
detected are in fact errors in the translation of some numbers.

2.5.3 Preliminary experiments with acronyms

The experiments for acronyms were carried out in two phases. In the first phase, we performed some experiments
considering this as a translation problem in the same was as for numbers and dates. Initially, we did not consider
any modifications of the tokenization step. Only the word alternative (see section 2.4.1) is considered (the token
is not rewritten into characters). All the knowledge is included in the translation module. In the second phase, we
included some additional knowledge in the tokenization process: both graph alternatives (word and spelling) are
considered and they have different graph scores depending on certain information.

2.5.3.1 Including knowledge only at the translation module
For these experiments, we used the database described in Table 2.5j. The division into training/tuning/testing

sets was made randomly.

Description Amount

Training
Number of parallel sentences 4054

Number of acronyms per sentence 1

Tuning
Number of parallel sentences 500

Number of acronyms per sentence 1

Testing
Number of parallel sentences 671

Number of acronyms per sentence 1
Examples:
La OTAN lanzar un . La OTAN lanzar un punto
PNV ETA ha empezado . pe ene ube ETA ha empezado punto
de PSV reventaran los . de pe ese ube reventaran los punto
del PNV , Joseba . del pe ene ube , Joseba punto

Table 2.5j: Database description for experiments with acronyms

In the training set, we included examples of the correspondence (in spoken Spanish) for every character in both
standard and capital letters: for example: F (efe) , f (efe). As in the experiments with numbers, the performance of
the text normalization module was measured by computing the BLEU (BiLingual Evaluation Understudy) metric
and the WER (Word Error Rate). All these experiments share the same training, tuning and testing sets of sentences.
Table 2.5k presents the results for this experiment.

The errors mainly arise from three causes. The first one is of course acronyms that do not appear in the training
set (12 cases):

• Example: Original: SLMS) , .

– Reference: “ese èle ème ese) , punto”

Version 1 (02/11/2012) 15 page 15 of 41

FP7-287678 SIMPLE4ALL deliverable D2.1

Initial Experiments BLEU (%) WER (%)
Baseline 96.1 2.9
Including 800 numbers for training the translation model 95.8 2.8

Table 2.5k: Initial Experiments

– Output: “SLMS) , punto” (leave the acronym as it is)

Secondly, we found that some times or dates are not correctly handled (2 cases).

• Example: Original: 21:37 GMT, pero.

– Reference: “veintiuna horas y treinta y siete minutos ge ème te , pero punto”
– Output: “veintiuno : treinta y siete minutos ge ème te , pero punto” (not treated yet)

The third type of error is related to some numbers that the acronym module does not translate properly. The problem
is caused by numbers that do not appear in the training data (3 cases):

• Example: Source language: ESP) 1.144 .

– Reference: e ese pe) mil ciento cuarenta y cuatro punto
– Output: e ese pe) mil uno cuatro cuatro punto

Finally, there are other types of errors such as insertions or other types of processing required (3 cases):

• Example: la CEOE << punto

– Reference: la CEOE menor que menor que punto
– Output: la CEOE << punto

In order to isolate the influence of the errors in numbers, we repeated the experiment but added to the training
set the training set from the earlier number experiments. We only obtained a very small improvement because the
number of errors due to numbers is not very high. Also, the numbers in this test set appear in a context and in
the training set they appear alone, so it would be necessary to train a better language model that covered more
numbers in different contexts. These differences depend also on how the tuning process trains the weights, but the
differences are not significant.

2.5.3.2 Delaying the hard decision whether a word is a standard word or an acronym

Experiments Word Spelling BLEU (%) WER (%)
Baseline (without numbers) 1.00 0.00 (disable) 96.1 2.9
More probability to word 0.99 0.01 42.6 40.2
Same probabilities 0.50 0.50 15.7 67.4
More probability to the spelling 0.01 0.99 15.0 67.8

Table 2.5l: Experiments with different costs

Version 1 (02/11/2012) 16 page 16 of 41

FP7-287678 SIMPLE4ALL deliverable D2.1

Using the same database as the previous section, we conducted several experiments with different weights for
each graph alternative (Table 2.5l). With the baseline system, we obtained the same results as presented in Table
2.5k. When including the possibility of spelling out a word, the error is increased a lot. This increase is due to the
fact that when a word is not in the training the best alternative is to spell, including any actual words. For example:
for the source sentence “la ONU, Occidente .”

• Reference: “la ONU, Occidente punto”

• Output: “la ONU, o ce ce i de e ne te e punto”: “ONU” is in the training set but “Occidente” not

To consider further these types of error, we decided to start introducing some knowledge in the tokenization
process. The first idea was to allow spelling only in those tokens that do not appear in the source language training
set. It means that we allow spelling only for those tokens not used to train the translation model. If the token is
already in the training set, it means that the translation model can have learnt how to translate it. It is possible to
consider a threshold in the number of appearances. As it is shown in Table 2.5m, the results improve but there
is still an important difference with the baseline. What we saw is that when spelling is permitted, this option is
considered in most of the cases independently of the weight (the system prefers spelling than an unknown token).

Experiments Word Spelling BLEU (%) WER (%)
Baseline (without numbers) 1.00 0.00 (disable) 96.1 2.9
More probability to word 0.99 0.01 55.6 29.8
Same probabilities 0.50 0.50 56.3 29.8

Table 2.5m: Experiments with different costs and not spelling for tokens in the training set

In order to increase the number of constraints for spelling a word, we considered the perplexity of the sequence
of characters, computed using a language model trained with the character sequences of the target language training
set. We used a 6-gram language model. If the perplexity is lower than a threshold, then the word is not spelled: it
means that the character sequence is similar to previously-observed common sequences in Spanish and the word
should therefore be pronounced directly without spelling. Table 2.5n shows the performance for different perplexity
thresholds. (Note: pronouncing an acronym as a standard word instead of spelling it, it is an alternative valid
in Spanish but perhaps not in every language.)

Experiments Word Spelling BLEU (%) WER (%)
Baseline (without numbers) 1.00 0.00 (disable) 96.1 2.9
PP threshold = 50 0.50 0.50 92.2 5.6
PP threshold = 100 0.50 0.50 95.7 3.5
PP threshold = 250 0.50 0.50 96.0 3.0
PP threshold = 500 0.50 0.50 96.2 2.8
PP threshold = 1000 0.50 0.50 96.1 2.9
PP threshold = 10000 0.50 0.50 96.1 2.9
PP threshold = 100000 0.50 0.50 96.1 2.9

Table 2.5n: Experiments with different PP thresholds

Analysing the perplexity threshold, we see that there is a value at which we can improve slightly the results.
This improvement is very small. We can analyse possible causes. The 12 cases of acronyms that do not appear in
the training set are given, with their perplexity, in Table 2.5o.

Version 1 (02/11/2012) 17 page 17 of 41

FP7-287678 SIMPLE4ALL deliverable D2.1

CSD 36.63 BCCI 29.05 WASP 55.60
MNAC 25.00 AMX 513.59 MCB 40.74
SLMS 52.17 IND 30.00 SCMM 40.39
TMC 22.24 Javier 11.64 CJC 66.07

Table 2.5o: Acronyms that do not appear in the training set, with their perplexity

Analysing the data, we see that there are several errors. For example, “Javier” appears as a spelled name but
it should be considered a standard word. Also in the training set, there are several cases like UGT or RTVE that
appear as standard words. Their translation is the same word. These examples also introduce errors in the language
model estimation process.

One interesting example is IND. IND is part of a word in Spanish so it has a low perplexity. In this case, the
algorithm should also consider a mark for beginning and end of the character sequence: <s> I N D </s>. This
way, it is possible to distinguish if it is a whole word or a part of a word. In Table 2.5p, we present the results for
different PP thresholds. We do not get much improvement but we think the model is better.

Experiments Word Spelling BLEU (%) WER (%)
Baseline (without numbers) 1.00 0.00 (disable) 96.1 2.9
PP threshold = 50 0.50 0.50 94.9 2.9
PP threshold = 100 0.50 0.50 95.8 3.3
PP threshold = 250 0.50 0.50 96.2 2.8
PP threshold = 500 0.50 0.50 96.2 2.8
PP threshold = 1000 0.50 0.50 96.2 2.8
PP threshold = 10000 0.50 0.50 96.1 2.9
PP threshold = 100000 0.50 0.50 96.1 2.9

Table 2.5p: Experiments with different PP thresholds considering end and begin marks

Analysing the results, we also realized that considering the perplexity of the whole character sequence may not
be a good feature. In some cases, part of the character sequence is very frequent in Spanish. For example: MNAC,
NAC has a very high probability and only MN generates a low probability. Considering the whole perplexity we
miss the details. One alternative could be to consider the probability character by character and to compute the
lowest probability, the average and the standard deviation. Table 2.5q shows experiments considering the lowest
probability

This measure (lowest probability) could be useful but it depends on how well the character language model has
been trained. This measurement is more unstable than perplexity, so it needs a better character language model.

Analysing in more detail both measurements, we realized that for this test set, using the perplexity sorts the
tokens better. But there are still several aspects that the system can not deal with. The most important aspect is that
with high PP, we find acronyms but also foreign words (English words) that must be translated as they are (based
on the test reference) while the system spells them. For further analysis, it would be necessary to have a database
with acronyms in order to analyse in detail the best features for discriminating the best sequence.

2.5.3.3 Analysis of features based on a character language model
In this analysis, we considered several features based on a character language model in order to detect if an

acronym must be spelled or pronounced as a standard word. We have considered a database with 1340 acronyms:
685 must be spelled (SPE set) and 654 can be pronounced as standard words (SW). Considering the SW set,

Version 1 (02/11/2012) 18 page 18 of 41

FP7-287678 SIMPLE4ALL deliverable D2.1

Experiments Word Spelling BLEU (%) WER (%)
Baseline (without numbers) 1.00 0.00 (disable) 96.1 2.9
Lowest probability less than = -2.0 0.50 0.50 57.3 29.1
Lowest probability less than = -1.0 0.50 0.50 53.3 29.1
Lowest probability less than = -5.0 0.50 0.50 95.5 3.8
Lowest probability less than = -6.0 0.50 0.50 96.1 3.0
Lowest probability less than = -7.5 0.50 0.50 96.2 2.8
Lowest probability less than = -10.0 0.50 0.50 96.2 2.8
Lowest probability less than = -15.0 0.50 0.50 96.2 2.8
Lowest probability less than = -100.0 0.50 0.50 96.1 2.9

Table 2.5q: Experiments with different lowest probability thresholds considering end and begin marks

we trained a 6-gram character language model. For each acronym, we have computed several features trying to
discriminate between both sets. The analysed features are:

• Character Perplexity: considering the character language model what is the perplexity of the character se-
quence, given an acronym. It is expected that SW set acronyms must have lower perplexity than SPE set
acronyms

• Minimum probability: the minimum probability computed along the character sequence.

• Maximum probability: the maximum probability computed along the character sequence.

• Average N-gram: This measurement is the average order of N-gram for computing the probability of every
character.

• Minimum N-gram: the minimum order considered to compute the probability of one of the character in the
acronym

• Maximum N-gram: the maximum order considered to compute the probability of one of the character in the
acronym.

Figure 2.5a shows ROC curves for all the features. As can be seen, the best features are the character perplexity
and average N-gram order. In both cases, it is possible to reach a 10% EER (Equal Error Rate). When combining
all the features it is possible to reduce the EER to 8.5%. We have obtained the best classification result by training
a J48 decision tree.

2.5.3.4 Conclusions
In the future, it will be possible to extend this analysis and to consider other heuristic measurements including

features from contextual tokens or even the information of a token language model. Also, it is interesting to consider
the length of the token (long tokens tend not to be acronyms) and the use of capital characters. These two aspects
are probably very important for distinguishing acronyms from foreign words, for example.

When using a character language model, it is very important to improve this character language model. In
these experiments, we only considered 3500 words (from the target language training set) with only 1 appearance
per word. One idea to improve the character language model is to include a very large database from a dictionary
and/or to consider the word frequency in the estimation of the probability of the character sequence.

Version 1 (02/11/2012) 19 page 19 of 41

FP7-287678 SIMPLE4ALL deliverable D2.1

Figure 2.5a: ROC curves for the different features

2.5.4 Experiments with sentences

After analysing isolated numbers and acronyms, we now turn to some preliminary experiments on real sentences
from newspapers. We obtained 2100 sentences from the web and divided them randomly into training (80%),
validation (10%) and testing (10%) sets. In the training set, we also include the training sets for the numbers and
acronyms.

Taking into account the isolated acronym classification results described in Section 2.5.3.3, and using the same
features introduced there, we trained a J48 decision tree classifier for detecting acronyms in sentences. Initial
testing gave WER=15% and BLEU=87%. These results need to be improved in future experiments. We have
already detected several errors that must be addressed next:

• The sentences include dates and times that are not processed in this approach.

• Certain punctuation marks like -,:; and so on must be addressed properly.

• There is confusion between the tokenization process for numbers and several punctuation marks. For exam-
ple, the comma: the number 0,34 is coded as 0 1 , 3 -1) 4 -2). The comma should probably be coded in a
different way than the standard comma for pauses.

After correcting some of the errors mentioned previously, by using a new strategy to code numbers (see 2.5.1)
and by including more data in the training set, such as isolated letters, a round of experiments under different
conditions were made in order to discover whether the changes were successful.

Version 1 (02/11/2012) 20 page 20 of 41

FP7-287678 SIMPLE4ALL deliverable D2.1

There were two main groups during the experimentation: one including dates in all the sets (training, tuning and
testing) and another with no dates at all. In both cases, the experiments were made including only upper case letters
and including both upper and lower case letters in the training set. This will help pinpoint the possible differences
between the various methods of training.

To do the experiments, the 2000+ sentences were divided into eight groups of similar size. Six of them include
acronyms, numbers, letters and, if necessary, dates training sets, becoming a complete training set. One will be
used to tune the system and the last one will test it. This process will be repeated until all the parts of the sentences
are used to train, tune and test (i.e., a round-robin design), contrasting results.

Finally, as shown in 2.5r and 2.5s, it can be seen that there is not any remarkable difference between the two
main groups of experiments. An important conclusion may be that the inclusion of dates does not deteriorate the
system.

Upper and lower case
Round BLEU (%) WER (%)

1 96.40 2.45
2 96.23 2.92
3 95.68 3.14
4 96.08 2.46
5 90.85 5.57
6 94.21 4.04
7 96.25 2.62
8 96.27 2.64

Average 95.25 3.23

Table 2.5r: Results obtained from the experiments not including dates

Upper and lower case
Round BLEU (%) WER (%)

1 96.66 1.97
2 96.18 2.46
3 95.87 2.64
4 96.55 1.94
5 92.65 4.29
6 92.99 4.77
7 96.63 2.03
8 96.33 2.27

Average 95.48 2.80

Table 2.5s: Results obtained from the experiments including dates

Some of the mistakes made by the system are illustrated in these examples:

• El Schalke se complica la Champions veintidós de abril del dos mil doce punto
El Schalke se complica la Champions veintiós de abril de dos mil doce punto

Version 1 (02/11/2012) 21 page 21 of 41

FP7-287678 SIMPLE4ALL deliverable D2.1

• Con respuesta al acontecimiento del treinta de junio de mil novecientos sesenta se han reunido cincuenta mil
ochocientos cincuenta y cinco personas punto
Con respuesta al acontecimiento del treinta mil del j 2 u 1 de de mil novecientos sesenta se han reunido
cincuenta mil ochocientos cincuenta y cinco personas punto

• Partido Comunista del Pueblo Andaluz (pe ce pe a)
Partido Comunista del Pueblo Andaluz (PCPA)

• Declaro el veintiocho de diciembre del trece como el dı́a de la hamburguesa punto
Declaro el veintinueve barra doce barra trece como el dı́a de la hamburguesa punto

• Morirás el trece de enero del dos mil seiscientos cuarenta y tres punto
Morirás el trece mil del e junio de del dos mil seiscientos cuarenta y tres punto

The errors are marked in bold. Some of these mistakes are fairly common, such as the first one, where the word
“del” is translated into “de” because both words exist and “de” is a highly frequent word in Spanish. Other common
mistakes are related to the new coding used in the numbers translation and spelling pronounceable acronyms or not
spelling the non-pronounceable ones.

2.6 Expanding to other languages

2.6.1 Data required to create learnable text normalisation for any language

In order to perform some of these experiments with other languages, and to gauge the eventual requirements when
working with a much wider variety of languages later in the project, the consortium partners were asked to provide
data in their languages. For all the cases, we suggested the following format:

• Text files in UTF-8 format.

• One sentence, number or acronym per line.

• Since the data are a parallel corpus, there are two files. The first one (with .so extension) contains sentences
in the source language (original text), and the second one (with .ta extension) contains sentences in the target
language (normalized text).

When the system is used by naive users, they will need to create these files for the appropriate language. Expanding
un-normalised text out into a string of words is not very difficult, and we do not anticipate any problem with this
step. Instructions can be simply in the form of example files for some widely-understood languages such as Spanish
and English.

2.6.1.1 Numbers
The first dataset should consist of numbers. In this case, we suggest two parallel corpora: the first one contain-

ing isolated numbers (cf. Table 2.6a) and the second containing sentences that include numbers (cf. Table 2.6b).
For isolated numbers, we suggest generating sufficient numbers to covering all possible combinations (all ten digits
in all possible positions). Depending on the language, the quantity required for acceptable performance might vary.
We suggest that 2000 sentences be considered a minimum requirement.

Source Target
1.234,45 Mil doscientos treinta y cuatro con cuarenta y cinco
1.000.023 Un milln veintitrs
456.234 Cuatrocientos cincuenta y seis doscientos treinta y cuatro

Table 2.6a: Examples of isolated numbers in Spanish

Version 1 (02/11/2012) 22 page 22 of 41

FP7-287678 SIMPLE4ALL deliverable D2.1

Source Target
Dame 100 euros Dame cien euros
Salen 456 toneladas de petrleo Salen cuatrocientas cincuenta y seis toneladas de petrleo
Son 23,5 euros Son veintitr’es con cinco euros

Table 2.6b: Examples of sentences with numbers in Spanish

In some languages (like Finnish), it will be necessary to divide the number pronunciation (target language)
into morphemes since the number of word types would be too large for the statistical machine translation approach
to succeed. Because of this, we suggest creating the target language data divided into morphemes at least for
languages with rich morphology (such as Finnish). Morphemes belonging to the same word should be separated
with dashes, while different words should be separated with blank characters. For example for Finnish:

• 32534756 (source language)

• kymment-kaksi miljoonaa viisi-sataa-kolme-kymment-nelj-tuhatta seitsemn-sataa-viisi-kymment-kuusi (tar-
get language)

2.6.1.2 Acronyms
The second set of training data required consists of acronyms. In this case, we suggest three parallel corpora.

The first one contains characters that can be part of an acronyms and how they are pronounced (Table 2.6c). The
second one consists of isolated acronyms (Table 2.6d) and the third one contains sentences including acronyms (Ta-
ble 2.6e). For characters, we propose that all possible characters that can be part of an acronym are included.
For isolated acronyms, we suggest to generate as many as possible (including at least the 1000 most frequent ones).
For the number of sentences containing acronyms, we again suggest 2000 as a minimum requirement.

Source Target
A B
B Be
C Ce

Table 2.6c: Examples of characters in Spanish

Source Target
ABC A be ce
ONU Onu
UGT U ge te

Table 2.6d: Examples of isolated acronyms in Spanish

2.6.2 First Romanian experiments

2.6.2.1 Experiments with numbers
In this section, some experiments focused on Romanian numbers will be reported and some comments made

about the best configuration options required when adapting the translation platform to deal with numbers.

Version 1 (02/11/2012) 23 page 23 of 41

FP7-287678 SIMPLE4ALL deliverable D2.1

Source Target
Acuerdo de la ONU Acuerdo de la onu
5 reivindicaciones de UGT Cinco reivindicaciones de u ge te
Llamaron al peridico ABC Llamaron al peridico a be ce

Table 2.6e: Examples of sentences with acronyms in Spanish

Number of examples Results
Train Validation Test BLEU (%) WER (%)
399 1007 3999 85.54 8.88
800 1007 3999 94.53 3.32
1007 800 3999 95.13 3.06
3999 800 1007 98.69 0.79

Table 2.6f: First experiments with numbers in Romanian

The experiments were made on data provided by UTCN - about 6000 isolated numbers without dots, divided
into training, validation and test sets. The results we see, shown in Table 2.6g, are that performance improves
steadily as the training set becomes larger.

Next, in a similar experiment to that on Spanish, a new strategy for coding the numbers has been proposed
and evaluated. The idea is to mix the alternatives considered previously. Initially, the number is divided in groups
of 3 digits. Every group of 3 digits is coded independently (as in the original proposal). This way we have less
variability and more data to train. In order to deal with the problem of distinguishing “mil” and “millones” sets,
specific tokens are included to help in the process.

System or experiment BLEU (%) WER (%)
Not dividing in different tokens using commas

94.5 3.3Example: 123.400,23 -> 123400,23 -> 1 6 2 5 3 4
4 3 0 2 0 1 , 2 -2 3 -1
In this case the codification of decimals digits starts
at the end of the token
Including additional tokens

98.0 1.2Example: 123.400,2 -> 123 . 400 , 2 -> 1 3 2 2 3 1
mil 4 3 0 2 0 1 coma 2 1
In this case the codification of decimals digits starts
at the end of the token

Table 2.6g: Experiments with isolated numbers

In order to analyse the effect of the size of the training set, we performed additional experiments, with the
results shown in Table 2.6h. Other results are presented in the remaining tables. Table 2.6i outlines the most
relevant tests that have been undertaken using different n-gram word order, alignments and amounts of data used
in training, tuning and testing.

An example of number and its translation is:
12.134 “douasprezece mii o suta treizeci si patru”(in Romanian)

Version 1 (02/11/2012) 24 page 24 of 41

FP7-287678 SIMPLE4ALL deliverable D2.1

Considering different amount of training data BLEU (%) WER (%)
200 numbers 96.9 1.7
400 numbers 97.4 1.7
800 numbers 98.0 1.2
1000 numbers 98.3 1.1

Table 2.6h: Romanian experiments with different training sets

No. Training Tunning Testing Alignment N-gram BLEU [%] WER [%] SER [%]
1 800 1007 4000 default 3 95.36 1.98 19.23
2 800 1007 4000 default 6 95.43 1.80 18.78
3 800 1007 4000 default 8 95.20 2.08 19.93
4 800 1007 4000 tgtosrc 3 95.93 1.73 17.70
5 800 1007 4000 tgtosrc 6 95.99 1.80 18.30
6 800 1007 4000 tgtosrc 8 96.22 1.80 17.20
7 1007 800 4000 default 3 93.69 2.30 21.41
8 1007 800 4000 tgtosrc 3 96.45 1.65 14.70
9 4000 800 1007 tgtosrc 3 99.13 0.41 4.47

10 4000 800 1007 tgtosrc 6 98.96 0.54 5.16
11 4000 800 1007 tgtosrc 8 98.96 0.48 5.26

Table 2.6i: The influence of the size of training data, alignment type and n-gram order on the translation accuracy
for the text pronunciation

The system has been trained starting with a small amount of data (800 sentences) which was increased gradually
(1007 sentences, then 4000 sentences). These data sets have been successively rotated for training, tunning and
testing. Again, unsurprisingly, the amount of training data is important, as it may be seen in line 9 (Table 2.6i).
Next, the type of alignment was changed. Smaller error rates were obtained after modifying the alignment method
from ‘default’ (grow-diag-final-and) to ‘tgttosrc’ (target to source) alignment. The experiments presented in lines
1 and 4 in Table 2.6i show the new alignment setting’s impact, lowering the WER from 1.98% to 1.73% , SER
19.23% to 17.7%, and BLEU is increased by about 0.6%. Then, the order of the n-gram target language model was
varied. The choice of a 3, 6 or 8 n-gram results in differences in performance, with the 3-gram providing the lowest
error rate when combined with “tgttosrc” alignment and a larger amount of training data. Experiment 9 illustrates
the most successful combination of the three factors, with a BLEU of 99.13%, WER 0.41% and SER 4.47%. We
believe this represents a satisfactory level of performance for text-to-speech.

Table 2.6j gives the results when separating the words into sublexical units, like morphemes. For example, the
number:

12.134 is translated now as: “doua-spre-zece mii o suta trei-zeci-si-patru” (in Romanian), compared with the
first approach (12.134, as “douasprezece mii o suta treizeci si patru”).

Line 9 of Table 2.6j highlights a notably lower word error rate (WER) compared with experiments reported in
Table 2.6i. This method, unlike the experiments reported in Table 2.6i, obtains only a small improvement with the
increase of amount of data (column BLEU in Table 2.6j), but this is because error rates are already so low even
with small amounts of training data – e.g., just 800 sentences for isolated numbers (lines 4-6 in Table 2.6j).

The experiments with Romanian numbers also adopted the new codification proposed in the Spanish experi-
ments: we separated groups of 3 digits with a separator (X3 - thousands, X6 - millions, X9 - billions, depending on
the value of the group of digits) as in the following examples of numbers:

Version 1 (02/11/2012) 25 page 25 of 41

FP7-287678 SIMPLE4ALL deliverable D2.1

No. Training Tunning Testing Alignment N-gram BLEU [%] WER [%] SER [%]
1 800 1007 4000 default 3 97.88 0.99 10.38
2 800 1007 4000 default 6 97.91 0.95 10.28
3 800 1007 4000 default 8 97.87 0.99 10.33
4 800 1007 4000 tgtosrc 3 97.23 1.12 14.65
5 800 1007 4000 tgtosrc 6 97.49 1.12 13.30
6 800 1007 4000 tgtosrc 8 97.26 1.10 13.23
7 1007 800 4000 default 3 88.36 4.09 39.13
8 1007 800 4000 tgtosrc 3 97.66 0.92 11.85
9 4000 800 1007 tgtosrc 3 99.17 0.39 6.06

10 4000 800 1007 tgtosrc 6 98.90 0.5 7.05
11 4000 800 1007 tgtosrc 8 98.88 0.4 6.65

Table 2.6j: The influence of the size of training data, alignment type and n-gram order on the translation accuracy
for text split into morphemes

No. Training Tunning Testing Alignment N-gram BLEU [%] WER [%] SER [%]
1 4000 800 1007 tgtosrc 3 99.65 0.12 2.28

Table 2.6k: The influence of the new codification of tokens on the translation accuracy for normal text

405.101.542.023,301 is coded as 4 3 0 2 5 1 X9 1 3 0 2 1 1 X6 5 3 4 2 2 1 X3 0 3 2 2 3 1 , 3 -1 0 -2 1 -3.
The results for RO numbers (we considered only the best configuration obtained in previous tests) with the new

codification are in Table 2.6k. The results are better than the baseline approach (Table 2.6i): The WER decreased
from 0.41% to 0.12% and the SER decreased from 4.47% to 2.28%.

For experiments in which the new codification of the numbers is applied and the associated text is decomposed
into morphemes, the results are presented in Table 2.6l for the best configuration: 4000 sentences for training, 800
sentences for tunning and 1007 sentences for testing.. Compared with the translation results where the group of
digits are not separated, but text is still decomposed into morphemes (Table 2.6j) for the same training - tuning
- testing configuration, in this case the WER increased from 0.39% to 0.66%, and SER increased from 6.06% to
8.34%. There are more tests planned for this case.

2.6.2.2 Experiments with acronyms
The experiments carried out with acronyms were performed with approximately 50 acronyms and 350 abbre-

viations. For the experimental data set in Romanian, the number of abbreviations (87.5%) is higher than acronyms
(12.5%). In Spanish these percentages are more balanced when estimated automatically from one month of data
from El Mundo corpus (see Deliverable 1.1).

The set of acronyms were divided into four parts: three of these were used to build the language model, and
the remaining part was used for calculating the features of the acronyms (these features will be calculated with the
language model generated before). Once this process was completed with all the possible combinations, we used
the features calculated from the acronyms and abbreviations in the WEKA toolkit using a decision tree classifier,
in order to obtain a way to discriminate between acronym and abbreviations. The features considered in this
experiments are the same that those described in 2.5.3.3 plus three new features:

• Average N-gram Loss: For each character, the system computes the difference between the N-gram for
computing the probability, and the maximum possible N-gram for this case. This feature is the average along
the character sequence.

Version 1 (02/11/2012) 26 page 26 of 41

FP7-287678 SIMPLE4ALL deliverable D2.1

No. Training Tunning Testing Alignment N-gram BLEU [%] WER [%] SER [%]
1 4000 800 1007 tgtosrc 3 98.52 0.66 8.34

Table 2.6l: The influence of the new codification of tokens on the translation accuracy for the normal text separated
into morphemes

• Minimum N-gram Loss: the minimum N-gram order difference (between the real and the theoretical maxi-
mum order) along the acronym.

• Maximum N-gram Loss: the maximum N-gram order difference.

Algorithm Accuracy % Error instances %
Decision Stump 87.6 12.4

FT 88.3 11.7
LMT 88.8 11.2

NBT Tree 89.3 10.7
REP Tree 90.0 10.0
LAD Tree 90.0 10.0
ADT Tree 90.5 9.5

J48 91.1 8.9

Table 2.6m: First experiments with acronyms in Romanian

After applying various forms of tree classifiers available in Weka, the results shown in Table 2.6m were ob-
tained. The best results were obtained with the J48 algorithm, and we show the confusion matrix and ROC curves
for this algorithm in Table 2.6n and Figures 2.6a and 2.6b. We ranked the features using Weka depending on the
gain of information they provide: Table 2.6o.

Class Abbreviations Acronyms
Abbreviations 338 14

Acronyms 22 28

Table 2.6n: Confusion Matrix (J48)

Version 1 (02/11/2012) 27 page 27 of 41

FP7-287678 SIMPLE4ALL deliverable D2.1

Figure 2.6a: ROC Curve for the pronounceable acronyms

Information Gain Feature
0.2338 Min. prob.
0.1282 Max. prob
0.0503 Max. ngram loss
0.0429 Perplex.
0.0308 Av. ngram loss
0.0268 Perc. 1gram
0.0249 Av. ngram
0.0236 Min. ngram

0 Min. ngram loss
0 Max. ngram

Table 2.6o: Ranked features

¿¿¿¿¿¿¿ .r153

Version 1 (02/11/2012) 28 page 28 of 41

FP7-287678 SIMPLE4ALL deliverable D2.1

Figure 2.6b: ROC Curve for the non pronounceable acronyms

Version 1 (02/11/2012) 29 page 29 of 41

FP7-287678 SIMPLE4ALL deliverable D2.1

2.6.3 First English experiments

A small-scale experiment was performed for English, using 6000 isolated numbers without dots. They were divided
into sets to train, validate and test the system in varying proportions as showin in Table 2.6p. Once again, larger
training sets tend to lead to better performance, and it appears that satisfactory performance can be obtained using
approximately this amount of data.

Train Validation Test BLEU (%) WER (%)
400 1000 4000 97.5 1.3
800 1000 4000 98.3 1.0
1000 800 4000 98.5 0.9
4000 800 1000 99.2 0.7

Table 2.6p: First experiments with numbers in English

Version 1 (02/11/2012) 30 page 30 of 41

FP7-287678 SIMPLE4ALL deliverable D2.1

3 Text analysis

Many of the tools developed for training the text analysis modules implement similar ideas to those outlined in
our previous publications [20, 21]. However, those ideas have been re-implemented, and tools implementing new
techniques have been added. This part of the deliverable focuses on the practical implementation of these tools in a
Python framework that will eventually integrate all front-end processing, including the text normalisation from the
previous section and the prosodic analysis that will be introduced in the next section.

3.1 Introduction

The goal of developing these tools is to provide a user-friendly system which is maximally flexible and customis-
able, and which minimises the time and effort necessary to apply the tools to any new language. The tools have
now been used to build working front-ends in a number of languages; however, for these preliminary systems only
a limited number of the configurations allowed by the tools have been explored. The tools are designed to allow
the rapid implementation and testing of new methods.

The implementation of the tools in SIMPLE4ALL has made use, where possible, of existing general-purpose
resources and standards. An example of this is the Utterance class which the system uses to represent linguis-
tic/textual structures: this class uses an XML tree to store this structure. XML was chosen with the aim of speeding
development as it allows the use of existing open-source XML libraries and parsers.1 Additionally, the wide use
of XML means that users are likely to be familiar with the format of utterance structures even though they are not
specialists in text-to-speech: this increases the chance the the tools developed will be usable by a wide audience.
Finally, it is hoped that the XML format will encourage integration of the tools with other external software by
interested parties, again increasing the usefulness of the tools.

The following sections will describe text analysis modules that can be built with the tools to create a working
text analysis system for TTS. The flexibility of the tools means that many different recipes can be used to build a
system; the modules described here are largely those of the system built using the tools for the Albayzin 2012 TTS
challenge.2 Consequently, the text of these sections is based heavily on the system description submitted for the
challenge, which will be published as [22]. However, considerable extra detail about implementation is included
here, to emphasise the ways in which the new tools are flexible and customisable. It should be emphasised that
although the system is explained with reference to this Spanish example, there is nothing that is specific to Spanish
about the recipe used: it is generally applicable to text ananlysis for TTS in any language making use of an
alphabetic script and marking word boundaries orthographically. For example, we have used same recipe for
all seven Indian languages of the IIIT-H Indic speech databases3 to good effect. Finally, while complete TTS
systems can be built with these tools, the current toolset should be seen just a baseline example of the use of
the framework. The Python framework, use of XML, standardized configuration format and uniform interface to
utterance structure provide a solid foundation for further integration and development of more elaborate methods,
from unsupervised extraction of relevant phonological and prosodic features, all the way to supervised language-
dependent gold standard systems if desired.

3.2 Utterances and utterance processors

As already mentioned, the Utterance class stores utterance structures in XML trees, and provides methods for
operations such as constructing an utterance from input text, loading/saving XML from/to file, visualising utterance
structure as a graph etc.

1Specifically, the lxml Python XML library is used (http://lxml.de/ – BSD license), which in turn builds on libxml2 and libxslt2
(http://xmlsoft.org/ and http://xmlsoft.org/XSLT/ – MIT license).

2http://iberspeech2012.ii.uam.es/index.php/call-for-evalproposals-2/speech-synthesis
3http://speech.iiit.ac.in/index.php/research-svl/69.html

Version 1 (02/11/2012) 31 page 31 of 41

FP7-287678 SIMPLE4ALL deliverable D2.1

The heart of a voice is a list of utterance processors. All utterance processors have an apply to utt method,
which performs some modification to the XML structure of an utterance object. To synthesise speech, a voice
applies each of the processors in its list to an utterance, with the following method:

def synth_utterance(self, input_string):
utt = Utterance(input_string)
for processor in self.processors:

processor.apply_to_utt(utt)
utt.save()

Utterance processors add to the utterance structure incrementally; the final processors used at synthesis time syn-
thesise a waveform for an utterance and play it. The following sections outline some of the analysis and enrichment
of utterance structure performed by typical utterance processors before this happens.

3.3 Tokenisation

Text input into the text analyser is currently expected to be in fully normalised form, of the sort produced by the
tools described in Section 2. Integration of the text normalisation tools into the Python framework remains to
be carried out in the near future. A typical first step to analyse normalised text is to chunk it into tokens. All
language-specific knowledge used to provide this chunking in the system developed is derived from the Unicode
character database. Each input character is assigned a coarse category by lookup in the that database. The three
coarse categories used are formed by merging Unicode general categories: coarse category letter is made by made
by combining general categories L, M and N, coarse category space maps exactly to general category Z, and all
remaining general categories map to a coarse category called punctuation.

Tokenisation is performed by placing token delimiters at the ends of contiguous sequences of characters be-
longing to the coarse category letter. The chunks between these delimiters are tokens. For example, a Spanish
utterance might be initialised from text as follows:

<utt text="Sı́, con seguridad."/>

After the utterance processor which performs tokenisation has been applied to the utterance, it will look like this:

<utt text="Sı́, con seguridad."
<Token token_class="utt_end" safetext="_UTTEND_" text=""/>
<Token text="Sı́" token_class="letter" safetext="s_LATINSMALLLETTERIWITHACUTE_"/>
<Token text=", " token_class="punc" safetext="_COMMA__SPACE_"/>
<Token text="con" token_class="letter" safetext="con"/>

[...]
</utt>

As well as adding the text of tokens as children of the utterance, it can be seen here that various other information
is added. Each token is assigned a token class, from an inventory of three classes which share the names of the
coarse categories. Assignment of a class to a token is performed by placing the coarse categories are placed in an
order of precedence: letter, punctuation, space. A given token is classified by traversing this sequence of categories
from left to right; if all characters in that token belong to the current category or to a category on the left, the token
is assigned to that token class.

Another feature that has been attached to tokens in the example above is safetext, which enables the use of
tools which can only handle ASCII characters and avoids confusion with special symbols such as field delimiters
during processing. Again, use of the Unicode standard means that these forms can be constructed automatically,
and allows us to avoid the problems of identifying letters from an unknown character stream.

It should be emphasised that the utterance processor for performing tokenisation described here is very general
and easily customisable. It makes heavy use of an existing resource that is in theory universal: Unicode. This means
that the processor can be applied to arbitrary new scripts with likely success: for example, it has been applied to
the seven Indian languages of the IIIT-H Indic speech databases as mentioned above.

Version 1 (02/11/2012) 32 page 32 of 41

FP7-287678 SIMPLE4ALL deliverable D2.1

However, the processor is easily user-configurable: the regular expression used for tokenisation and the map-
ping from Unicode general classes to coarse classes can be done without modifying code, through setting con-
figuration options. Furthermore, all characters encountered in the text of the training data are stored in a text
file along with their automatically generated coarse categories and safetexts. This allows a user to manually in-
tervene to correct bad categorisation of characters due to text encoding mistakes or due to errors in the Unicode
database, and to specify more user-friendly safetexts than the automatically generated ones (see e.g. the long-
winded LATINSMALLLETTERIWITHACUTE for the character ı́ in the example above). However, automatically
generated categories and safetexts have so far been used successfully with no manual intervention.

3.4 Lexicon and unsupervised phrase boundary detection

A naive ‘lexicon’ is used, in which the safetexts of letters of ‘letter’-class tokens are used directly as the names
of speech modelling units, in place of the phonemes of a conventional front-end. This has given good results
for languages with transparent alphabetic orthographies such as Romanian, Spanish and Finnish, and can give
acceptable results even for languages with less transparent orthographies, such as English [21, 23, 24, 25]. Using
the pronunciations provided by this lexicon, a set of labels is initialised for the speech part of the database by
iteratively estimating a set of HMMs and using these to force-align the speech with the labels using a procedure
based very closely on that described in [26]. Tokens which are assigned by the tokeniser to the punctuation and
space token classes are allowed by the naive lexicon to be pronounced both as a silence symbol (sil) or as a non-
emitting symbol (skip). As well as determining the timing of letter-boundaries, therefore, the forced alignment
procedure determines which space and punctuation tokens are realised as a pause, and which are skipped.

The utterance already shown in the example above looks like this after processors associated with the lexicon
have been applied to it:

<utt text="Sı́, con seguridad."
<Token token_class="utt_end" safetext="_UTTEND_" text="">

<Letter modelname="sil"/>
</Token>
<Token text="Sı́" token_class="letter" safetext="s_LATINSMALLLETTERIWITHACUTE_">

<Letter modelname="s"/>
<Letter modelname="_LATINSMALLLETTERIWITHACUTE_"/>

</Token>
<Token text=", " token_class="punc" safetext="_COMMA__SPACE_">
<Letter modelname="sil"/>

</Token>
<Token text="con" token_class="letter" safetext="con">

<Letter modelname="c"/>
<Letter modelname="o"/>
<Letter modelname="n"/>

</Token>
[...]

</utt>

3.5 Tagging: Letter-, morph- and word-representations

3.5.1 Vector Space Model-based tagging

The system makes use of no expert-specified categories of letter and word, such as phonetic categories (vowel,
nasal, approximant, etc.) and part of speech categories (noun, verb, adjective, etc.). Instead, features that are
designed to stand in for such expert knowledge but which are derived fully automatically from the distributional
analysis of a text corpus are used. The distributional analysis is conducted via vector space models (VSMs);
the VSM was applied in its original formulation as a model for Information Retrieval to the characterisation of

Version 1 (02/11/2012) 33 page 33 of 41

FP7-287678 SIMPLE4ALL deliverable D2.1

documents. VSMs are applied to TTS in [21], where models are built at various levels of analysis (letter, word
and utterance) from large bodies of unlabelled text. To build these models, co-occurrence statistics are gathered
in matrix form to produce high-dimensional representations of the distributional behaviour of e.g. word and letter
types in the corpus. Lower-dimensional representations are obtained by approximately factorising the matrix of
raw co-occurrence counts by the application of slim singular value decomposition. This distributional analysis
places textual objects in a continuous-valued space, which is then partitioned during the training of TTS system
components such as acoustic models for synthesis or decision trees for pause prediction. For the voices submitted
to the Albayzin Challenge, the text corpus used to provide letter and word features was selected to roughly match
the domain of the speech corpus: the entire text of Cervantes’ Don Quijote (c. 400,000 words), and the text of c.
1800 news stories drawn randomly from those published by the El Mundo newspaper in 2006 (giving c. 1 million
words). For those voices, a VSM of letters was constructed by producing a matrix of counts of immediate left and
right co-occurrences of each letter type, and from this matrix a 5-dimensional space was produced to characterise
letters. Token co-occurrence was counted with the nearest left and right neighbour tokens which are not of the class
space; co-occurrence was counted with the most frequent 250 tokens in the corpus. A 10-dimensional space was
produced to characterise tokens.4

The utterance already shown in the example above looks like this after processors for adding word features
have been applied to it:

<utt text="Sı́, con seguridad."
[...]

<Token text="Sı́" token_class="letter" safetext="s_LATINSMALLLETTERIWITHACUTE_"
word_vsm_d1="-0.650222271361"
word_vsm_d2="-0.496160551984"
word_vsm_d3="0.218498104075"
word_vsm_d4="0.390019669926"
word_vsm_d5="-0.230137647805"
word_vsm_d6="0.237969378599"
word_vsm_d7="0.0707729364758"
word_vsm_d8="0.0592845156536"
word_vsm_d9="0.0343895210226"
word_vsm_d10="0.10899576363">

<Letter modelname="s"/>
<Letter modelname="_LATINSMALLLETTERIWITHACUTE_"/>

</Token>
[...]

</utt>

3.5.2 Morphological decomposition using Morfessor

In previous experiments [21], the word VSM as described in the previous section was found to be inadequate for
Finnish: the morphological richness of such languages means that frequency counts of the co-occurrence of surface
orthographic forms are too sparse even when large text corpora are used. For such languages, VSMs should be built
on the morph instead of the token level. Thus, we have recently integrated Morfessor [28] to our framework, which
extracts a morpheme-like segmentation of unannotated text in an unsupervised fashion. However, experiments with
morph VSMs have not yet been performed. Possible further applications of Morfessor and its more recent variant,
Morfessor Categories MAP, will be found in phrase and accent prediction, lemmatization and compound word
detection.

4The package Gensim [27] was used for performing the singular value decomposition needed to obtain these features.

Version 1 (02/11/2012) 34 page 34 of 41

FP7-287678 SIMPLE4ALL deliverable D2.1

3.6 Pause prediction and phrasing

The system uses a decision tree to predict whether a token of class space or punctuation is realised as a pause or
not. Data for training the tree is produced from the time-aligned transcriptions of the training data. The predictor
variables used for tree training are the token class of the token in question (i.e. whether it is punctuation or space)
and the VSM features of the tokens preceding and following the token. The annotation of training data is done by
detection of silence in the audio during forced alignment as already described. At run-time, the tree’s predictions
are used.

It should be noted that the pause predictor makes use of a fully general CARTProcessor object, configured in
this way:

object_class = CARTProcessor.CARTProcessor
processor_name = pause_predictor
config_file = %(VOICE_COMPONENTS)s/pause_predictor.cfg
cart_location = %(VOICE_COMPONENTS)s/pause_CART.cfg
target_nodes = //Token[@token_class=’space’]|//Token[@token_class=’punc’]
tree_context_file = %(VOICE_COMPONENTS)s/pause_contexts.txt
output_attribute = silence_predicted

Here, output attribute is the response of a decision tree, and tree context file lists the independent
variables as XPATH expressions (see Section 3.7 below). CARTProcessor is configured in this way to add an
attribute called silence predicted to some set of target nodes of an utterance when applied to that
utterance (or to train a tree to do this when ‘train’ method is called). However, it is a general processor that can be
configured to predict an arbitrary response from arbitrary input features from an utterance (and to train a tree to do
this).

Detected or predicted pauses are used as surrogate ‘phrasebreaks’: they are used to impose phrase structure
upon the XML representation of the utterance, so that the structure of the utterance already shown in the examples
above is modified as follows:

<utt text="Sı́, con seguridad."
[...]

<Token token_class="utt_end" safetext="_UTTEND_" text="" [...]>
<Letter modelname="sil" [...] />

</Token>
<Phrase>

<Token text="Sı́" token_class="letter" [...]
[...]

</Token>
[...]

</Phrase>
[...]

</utt>

This is the most intricate restructuring of an utterance done by any of the processors developed so far, as it involves
adding additional nodes between root and leaves rather than simply adding children to leaf nodes. Also, note that
not all tokens become children of phrase nodes: the end-of-utterance token in the above example is not counted
as belonging to any phrase. When making XML modifications of this sort, it is easy to err and e.g. let nodes get
out of document order. However, the code that has been developed for imposing phrase structure over tokens is
fully general, and it is foreseen that this will speed the future development of similar processors for imposing e.g.
morpheme and syllable structure.

Version 1 (02/11/2012) 35 page 35 of 41

FP7-287678 SIMPLE4ALL deliverable D2.1

3.7 Rich contexts and label generation

Information extracted from the utterance structures resulting from text processing is used to create a set of rich
contexts for each speech unit in the database. The nature of the features that are extracted from an utterance is
specified by a list of XPATH expressions. As with the use of XML for the utterance structures, the wide use of
XPATH outside TTS means that users are who are not specialists in text-to-speech likely to be familiar with this
formalism. For example, features relating to the length of an utterance are expressed as the following XPATHs:

length_utterance_in_phrases
count(ancestor::utt/descendant::Phrase)

length_utterance_in_words
count(ancestor::utt/descendant::Token[@token_class=’letter’])

Note that the use of XPATH lends robustness to the system. For example, removing the processor which adds
phrase structure from a voice will render the first feature irrelevant (i.e. it will have the value 0 for each context-
dependent model), but the second feature will not be harmed, despite the fact that the nodes which must be traversed
between the root of an utterance and Token nodes will be altered. This eases the re-use of feature specifications
between different configurations of a synthesiser (for example, configurations with and without phrase structure
processors).

The features used in systems built with the tools so far (e.g. the Albayzin Challenge entry) include the identity
of the letter to be modelled and those of its neighbours (within a 5-letter window), the VSM values of each of those
letters, and the distance from and until a word boundary, pause, and utterance boundary. Word VSM features were
not included directly in the contexts, but were used by the decision tree for predicting pauses at runtime.

An utterance’s rich-contexts are stored in a label file which can be used for acoustic model training (at training
time) or from which speech can be synthesised (at run-time). An utterance’s XML structure points to the location
of this label file once it has been created, as follows:

<utt text="Sı́, con seguridad."
lab="%(TEMPDIR)s/lab/synth_output.lab"
[...]

</utt>

Version 1 (02/11/2012) 36 page 36 of 41

FP7-287678 SIMPLE4ALL deliverable D2.1

4 External evaluation of voices built using the unsupervised front-end

As mentioned above in Section 3, voices built using the new front-end described here were built for the Albayzin
2012 TTS Challenge (http://iberspeech2012.ii.uam.es/index.php/call-for-evalproposals-2/
speech-synthesis, [22]).

This Challenge focused on the synthesis of speech in a set of emotions for which training data were provided,
and the evaluation reflects this. Evaluation was carried out in four parts: identifiability of the emotion, overall
quality of synthetic speech, similarity to the natural voice of the speaker, and perceived emotional intensity. The
first of these is scored by accuracy of listeners’ guesses at the emotion of the synthetic speech, and the others are
scored by normalised Mean Opinion Scores; all four scores are combined using an extended F-measure termed
Emotional Performance measure.

The other set of synthetic voices entered by the consortium – and those entered by the remaining two groups
which took part in the Challenge – employ conventional front-ends incorporating expert linguistic knowledge.
For example, they all use a phoneme set and letter-to-sound rules . As such, the unsupervised system was not
expected to outperform those systems: the goal was rather to match the performance of these systems as closely
as possible but without their reliance on expert knowledge. The unsupervised system achieved an Emotional
Performance measure of 0.08, lowest of all systems (0.10, 0.14, 0.15, natural speech: 0.30). However, the gap
between the unsupervised system and the lowest-scoring supervised one is small. Furthermore, the unsupervised
system outperformed all other systems on the speaker similarity task for the emotions happiness, surprise, and
sadness. We consider these acceptable results for an initial baseline system built without any expert language-
specific knowledge. Further evaluation of the neutral system – including evaluation for intelligibility – is ongoing.

5 Prominence tagging

Producing expressive prosody, including signalling contrast and emphasis, is a difficult task for a synthesizer based
on text-based features only, especially if the features are unreliable, as is the case with current unsupervised meth-
ods. Therefore, we opt to integrate acoustics-based word prominence tagging to the SIMPLE4ALL framework.
Apart from setting the weights for acoustic parameter types, our current method is unsupervised.

5.1 Method

A universal tendency for signalling prominence is assumed. For example, in the case of F0 and energy, the higher
the maximum value within the unit and the larger the movement between the current unit and the next, the more
prominent the unit is perceived.

However, direct measurement of these features is not adequate; energy is heavily influenced by phonetic details
and F0 varies depending on position in the utterance and, with some languages, phonological tone. To solve this
problem, we use a normalization method based on HMM-generated features. A simple synthesizer is first trained,
with a deliberately limited contextual feature set. This feature set is designed to allow modelling of phonetic
details as well as phrase and utterance level phenomena, but treats the units of interest (words and/or syllables)
equally. With the simple synthesizer we generate prosodic parameters for the training data, using with original
time alignments. We then subtract these generated parameters from the original analyzed parameters from the
natural speech. We further apply a detrending method with a long window for the resulting trajectory to account
for long term inconsistencies between utterances in terms of energy, speech rate etc. The resulting difference
trajectories should then contain only prominence related information: i.e., the differences between a naive HMM-
based prediction and the natural data are attributed to the phenomenon of prominence.

The best set of parameters and measurements is still under development, but currently we use F0, energy and
duration as acoustic features. From the difference trajectories, we calculate the rise, mean and fall of each feature
type in relation to the current syllable. The mean value is used instead of the maximum for robustness. Weights

Version 1 (02/11/2012) 37 page 37 of 41

FP7-287678 SIMPLE4ALL deliverable D2.1

are set manually to F0=0.5, energy=0.25, duration=0.25. Rise, fall and max have been given equal weight. The
weighted sum of these measurements is then calculated and quantised down to 3 or 4 classes, corresponding roughly
to unaccented, weakly accented, strongly accented and emphasis.

The system was implemented for English in the GlottHMM entry for the Blizzard Challenge 2012 with promis-
ing results [29]. Figures 5.1a, 5.1b, and 5.1c give an example of the described method, on Finnish speech.

0 200 400 600 800 1000 1200 1400
100

50

0

50

100

150

200

250

300

Original F0
Generated F0
F0 diff

Figure 5.1a: Example of prominence annotation: Original and generated F0 and their normalized differences

0 200 400 600 800 1000 1200 1400
100

50

0

50

100

150

200

250

300

Original F0
F0 diff
Energy diff
HNR diff
Duration diff

Figure 5.1b: Example of prominence annotation: Weighted sum of all acoustic features

200 400 600 800 1000 1200
100

50

0

50

100

150

F0 diff
Energy diff
HNR diff
Duration diff

2

2

1

2

11 1

väki tuleevasten rantaan
KE tä lähtee

VAR ta

2

0 100

katsomaan

AA muSUN nuntai

oli JOU tilas

jolloin

2

Figure 5.1c: Example of prominence annotation: Annotated prominence labels on a scale of 0-2

5.2 Future work

The prominence tagging method has not yet been implemented within the text-analysis framework described earlier,
because the prerequisite software infrastucture has only just been finalized. Other future work includes compar-
ing the prominence-tagged synthesis to a text-based word-SVM method, finding proper unsupervised features for
prominence prediction and assessing the feasibility of using syllables based on unsupervised syllabification as units
of prominence.

Version 1 (02/11/2012) 38 page 38 of 41

FP7-287678 SIMPLE4ALL deliverable D2.1

6 Conclusions

We have developed all the necessary components for the first version of our front end. A combination of supervised
and unsupervised learning from data is used in the various stages. Where supervised learning is used, the data
requirements are modest and can easily be met by unskilled end users (i.e., parallel data of unnormalised and
normalised numbers). The software framework has been developed and integration of the various components into
this framework has now been started. Evaluations of all components have been performed, and performance is
satisfactory.

Version 1 (02/11/2012) 39 page 39 of 41

FP7-287678 SIMPLE4ALL deliverable D2.1

References

[1] R. Sproat, A. Black, S. Chen, S. Kumar, M. Ostendorf, and C. Richards. A normalization of non-standard
words. Computer Speech and Language, 15:287–333, 2001.

[2] S. Yeates. Automatic extraction of acronyms from text. In Proceedings of New Zealand Computer Science
Research Students’ Conference, pages 167–170, 1999.

[3] Leah Larkey, Paul Ogilvie, Andrew Price, and Brenden Tamilio. Acrophile: An automated acronym extractor
and server. In Proceedings of the ACM Digital Libraries conference, pages 205–214, 2000.

[4] J.T. Chang, H. Schtze, and Altman. R.B. Creating an online dictionary of abbreviations from medline. J Am
Med Inform Assoc., 9:612–620, 2002.

[5] G. Cannon. Abbreviations and acronyms in english word–formation. American Speech, 64:99–127, 1989.

[6] Pennell D. and Liu Y. Toward text message normalization: Modeling abbreviation generation. In Proceedings
of the IEEE, pages 5364–5367, 2011.

[7] R. Sproat. Lightly supervised learning of text normalization: Russian number names. In Proceedings of the
IEEE Workshop on Spoken Language Technology, pages 436 – 441, 2010.

[8] R. Bikel, D.and Schwartz and R. Weischedel. An algorithm that learns what’s in a name. Machine Learning,
34:221–231, 1999.

[9] M. Collins and Y. Singer. Unsupervised models for named entity classification. In Proceedings of
EMNLP/VLC-99, pages 100–110, 1999.

[10] D. Bikel, R. Schwartz, and R. Weischedel. Nemo: Extraction and normalization of organization names from
pubmed affiliations. J Biomed Discov Collab, 5:50–75, 2010.

[11] S. Brody and Diakopoulos. N. Cooooollllllll!!!!!!!! using word lengthening to detect sentiment in microblogs.
In Proceedings of EMNLP (Conference on Empirical Methods in Natural Language Processing), pages 562–
570, 2011.

[12] Han B. and T. Baldwin. Lexical normalisation of short text messages: Makn sens a #twitter. In Proceedings
of ACL/HLT, pages 368–378, 2011.

[13] M. Kaufmann. Syntactic normalization of twitter messages. In Proceedings of ACL/HLT, pages 368–378,
2010.

[14] A.T. Aw, M. Zhang, J. Xiao, and J. Su. A phrase-based statistical model for sms text normalization. In
Proceedings of ACL, pages 33–40, 2006.

[15] Pennell D. and Liu. Y. A character-level machine translation approach for normalization of sms abbreviations.
In Proceedings of the IJCNLP, pages 974–982, 2011.

[16] Och J. and Ney. H. A systematic comparison of various alignment models. Computational Linguistics,
29:19–51, 2003.

[17] P. Koehn, F.J. Och, and D Marcu. Statistical phrase-based translation. In Proceedings of the Human Language
Technology Conference (HLT-NAACL), pages 48–54, 2003.

[18] A. Stolcke. Srilm - an extensible language modelling toolkit. In Proceedings of ICSLP, pages 257–286, 2002.

Version 1 (02/11/2012) 40 page 40 of 41

FP7-287678 SIMPLE4ALL deliverable D2.1

[19] P. Koehn and H. Hoang. Factored translation models. In Proceedings of the 2007 Joint Conference on
Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pages
868–876, 2007.

[20] Oliver Watts, Junichi Yamagishi, and Simon King. Unsupervised continuous-valued word features for phrase-
break prediction without a part-of-speech tagger. In Proc. Interspeech, pages 2157–2160, Florence, Italy,
August 2011.

[21] Oliver Watts. Unsupervised Learning for Text-to-Speech Synthesis. PhD thesis, University of Edinburgh,
2012.

[22] Jaime Lorenzo-Trueba, Oliver Watts, Roberto Barra-Chicote, Junichi Yamagishi, Simon King, and Juan M
Montero. Simple4all proposals for the albayzin evaluations in speech synthesis. Accepted at Iberspeech 2012,
2012.

[23] A. Black and A. Font Llitjos. Unit selection without a phoneme set. In IEEE TTS Workshop 2002, 2002.

[24] G.K. Anumanchipalli, K. Prahallad, and A.W. Black. Significance of early tagged contextual graphemes in
grapheme based speech synthesis and recognition systems. In Acoustics, Speech and Signal Processing, 2008.
ICASSP 2008. IEEE International Conference on, pages 4645–4648, 31 2008-April 4 2008.

[25] Matthew P. Aylett, Simon King, and Junichi Yamagishi. Speech synthesis without a phone inventory. In
Interspeech, pages 2087–2090, 2009.

[26] Robert A. J. Clark, Korin Richmond, and Simon King. Multisyn: Open-domain unit selection for the Festival
speech synthesis system. Speech Communication, 49(4):317–330, 2007.

[27] Radim Řehůřek and Petr Sojka. Software Framework for Topic Modelling with Large Corpora. In Proceed-
ings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, pages 45–50, Valletta, Malta,
May 2010. ELRA.

[28] Mathias Creutz and Krista Lagus. Unsupervised models for morpheme segmentation and morphology learn-
ing. ACM Transactions on Speech and Language Processing, 4(1), January 2007.

[29] A. Suni, T. Raitio, M. Vainio, and P. Alku. The glotthmm entry for blizzard challenge 2012: Hybrid approach.
In In Proceedings fo the Blizzard Challenge 2012 Workshop. ISCA, 2012.

Version 1 (02/11/2012) 41 page 41 of 41

