
Realisation and Simulation of

the Mel Log Spectrum Approximation Filter

Simple4All Internship Report, August September 2012

Aalto University, Finland

Jiunn Lin Wong

Jacobs University Bremen, Germany

he main tasks of the internship with Professor Paavo Alku
were as follows: I. Background reading on speech
synthesis techniques, with a focus on hidden Markov

model (HMM) – based approach. II. Implementation of a
recursive algorithm to obtain truncated mel-cepstral
coefficients from linear prediction (LP) coefficients [1]. III.
Implementation of the mel log spectrum approximation
(MLSA) filter [2].

In this report, a condensed presentation of my interpretation
and translation of the given MLSA filter block diagrams in [2]
into Matlab algorithms as well as simulation results of the
implantation will be given.

I. RECURSIVE ALGORITHM FOR CEPSTRAL COEFFICIENTS

The mel-cepstral coefficients ()c m can be calculated from the

LP transfer function by

1

1

log () ()
1 ()

m

m m

m

K
c m z F z

a m z





 



 
 

  
 

 

 (1)

where ()a m are the LP coefficients. From this, a recursive
algorithm was derived [1]. Here, a Matlab function based on
the pseudocode in [1] is realised:

function [c] = mel_cepstrum_LP(a,K,N,alpha)

% A recursive algorithm to estimate truncated

mel_cepstral coefficients

% c = [c1 c2 ... cN].' from linear prediction

coefficients a = [a1 a2 ... aM]

% from K.Tokuda,T.Kobayashi and S.Imai,"Recursive

calculation of mel-cepstrum from LP

coefficients,"Nagayo Institute of Technology, 1

April 1994.

% Input:

% a --- linear prediction coefficients a = [a1 a2

... aM]

% K --- all-pole filter coefficient such that

% log [K / (1+sum(a(m) z^-m))] = sum(c(m)

z^-m)

% N --- desired(truncated)length of 'c'

% alpha --- pole location, such that |alpha| < 1

% Output:

% c --- estimated mel-cepstrum coefficients c = [c1

c2 ... cN].'

M = length(a);

c = zeros(N,1); convo = 0;

% Let v = a~ in literature:

v = zeros(1,N); v(1) = a(1);

for i = -M:-1

 v_old = v;

 v(1) = a(-i)+ alpha*v_old(1);

 v(2) = (1-alpha*alpha)*v_old(1) +

alpha*v_old(2);

 for m = 3:N

 v(m) = v_old(m-1) + alpha*(v_old(m) - v(m-

1));

 end

end

K_tilde = K/v(1);

v = v/v(1);

c(1) = log(K_tilde);

for m = 2:N

 for k = 2:m-1

 temp = (k/m)*c(k)*v(m-k);

 convo = convo + temp;

 end

 c(m) = -v(m) - convo;

end

end

II. THE MLSA FILTER

To synthesise speech from mel-cepstral coefficients, the
exponential transfer function ()D z has to be realised, where

 () exp ()D z F z and
1

() () m

m

F z c m z






  . In [2], Masuko
provided an alternative filter structure for ()F z which
eliminates the delay-free loop:

Figure 1: filter structure for F(z)

T

where

2

2

(0) (0)1 () () ()

0 1 ()

()

() ()0 0 1

Mb c

b

b M c M

  





      
    

     
    
     

    

 (2)

The task was to realise the above filter structure in Matlab.

By observation, for an input []x n , and simplifying 21 ,  

the output []y n for the filter F(z) (by Matlab convention, i.e. a

vector v begins with v[1] and not v[0]) is

[2]

[2]

[3]

[2] [1]* [1]

[3] [2]*{ * [2] * [1]}

[3]*{ * [1] * [2]}

[] * [1] * [2]

* [2] * [3] * [2]

* [(1)] * [3

temp

temp

temp

y b x

y b x x

b x temp

y n x n x n

x n x n temp

x n k x n



 

 

 

  

 



 

 

   

    

    

[]

] * []

[1] * []

temp k

temp n l

x temp k





 

 

Note that y[1] is not realisable from the given structure.

Hence, we simply use y[1] = c[1]*x[1] .

We also observe that one can first calculate each temporary

values temp[k] for each y[n] recursively:

[] x[n-(k-1)] + *x[n-k] - * [1],temp k temp k  

(3)

3,4,5,..., 1k n 

Finally, sum them up to obtain y[n], for each n:

 

0

[2]

[3]
[] 0 [1] []

[]

temp

temp
y n b b n

temp n



 
 
 
 

  
 
 
 
   (4)

Hence the following Matlab function for the filter F(z):

function [y] = mlsa_filter(x, alpha, c)

% Input:

% x --- input x[n] = [x1 x2 ... x(M+1)]

% alpha --- pole location, such that |alpha|<1

% c --- mel-cepstral coefficients c = [c1 c2 ...

c(M+1)]

% Output:

% y --- filtered coeffcients y[n] = f[n]*x[n];

f[n] = MLSA filter

 M = length(x) - 1;

 y = zeros(M+1,1);

 b = zeros(M+1,1);

 temp = zeros(M+1,1);

 beta = 1-alpha*alpha;

 b(M+1)=c(M+1);

 for m = -M:-1

 b(-m) = c(-m)-alpha*b(-m+1);

 end

 %{

 for m = 1:M % There could be mistake in the

paper. Here, b = A'c:

 b(m) = c(m) + alpha*c(m+1);

 end

 %}

 y(1) = c(1)*x(1);

 y(2) = beta*x(1);

 for n = 3:M+1

 temp(2) = x(n-1) + alpha*x(n-2);

 for k = 3:n-1

 temp(k) = x(n-(k-1)) + alpha*x(n-k) -

alpha*temp(k-1);

 end

 temp(n) = x(1) - alpha*temp(n-1);

 y(n) = beta*temp.'*b;

 end

end

Having obtained ()F z ,  () exp ()D z F z can be found.
However, since ()D z is not a rational function, it can be
approximated by Padé approximation:

 

4

4,

1

4

4,

1

1 ()
()

exp(()) ()
()

1 ()

l

l

l

l
l

l

l

A F z
Y z

F z R z
X z

A F z







  

 




 (5)

where the coefficients
,L lA have been optimised for 4L  and

5 in [2]. The following MLSA filter was presented in [2] to

approximate ()D z from ()F z :

Figure 2: MLSA filter structure for D(z)

To realise the above filter in algorithm, we can simply expand

the Padé approximation

 

4

4,

1

4

4,

1

1 ()
()

exp(())
()

1 ()

l

l

l

l
l

l

l

A F z
Y z

F z
X z

A F z







 

 





 

()

4 4

4, 4,

1 1

() () () () () ()

Y z

l
l l

l l

l l

Y z X z A F z X z A F z Y z
 

     

(6)

Therefore, the MLSA filter involves cascading the filters

()F z L times, each weighted by the corresponding coefficient

,L lA , then filter again the above through ()F z L times, finally

summing everything with alternating minus sign.

A Matlab function of the MLSA filter is as follows:
function [R] = pade_approx(L, x, c, alpha)

% Obtain R(z)~ exp(F(z)) by Padé approximation

% Input:

% L --- order of Padé approximation. In the

paper, optimised

% coefficients were calculated for L = 4

and 5; Here, L = 4 is used.

% x --- input x[n] = [x1 x2 ... x(M+1)]

% alpha --- pole location, such that |alpha|<1

% c --- mel-cepstral coefficients c = [c1 c2 ...

c(M+1)]

% Output:

% R --- R(z) ~ exp(F(z))

 M = length(x)-1;

 R = x;

 F = zeros(M+1,L); % store cascaded filters [F1

F2 ... FL] as columns

 A = [4.999273e-1 1.067005e-1 1.170221e-2

5.656279e-4].';

 F(:,1) = mlsa_filter(x,alpha,c); % Cascade the

filters L times

 for i = 2:4

 F(:,i) = mlsa_filter(F(:,i-1),alpha,c);

 end

 for i = 1:4

 F(:,i) = A(i)*F(:,i); % Multiply by

weighting coefficients A(i)

 R = R + F(:,i); % the FIR part: D = x + F1 +

F2 + F3 + F4

 end

 F(:,1) = mlsa_filter(R,alpha,c); % Cascade the

filters L times again, for D[n]

 for i = 2:4

 F(:,i) = mlsa_filter(F(:,i-1),alpha,c);

 end

R = R + A(1)*F(:,1) - A(2)*F(:,2) + A(3)*F(:,3) -

A(4)*F(:,4);

end

In the following simulations, 50 filter tabs were used. The

input x[n] and mel-cepstral coefficients c[n] were randomly

generated using sinusoidal functions.

Graph 1: Simulation of F(z) using the above algorithm (blue) versus

direct implementation using cepstral coefficients, c (green) :

Graph 2: Simulation of D(z) using the MLSA filter (blue) versus

direct implementation using exp(c) (green) :

The MLSA filter appears to approximate the exponential

transfer function D(z) reasonably. However, to truly assess the

performance the implemented algorithms, real speech data

could have been used, and further speech synthesis processes

could have been carried out using the filter, which were

unfortunately not realisable within the short internship period.

Nonetheless, I am grateful for the opportunity given by the

University of Edinburgh and Professor Alku to learn and

explore, as the skills and ideas acquired are invaluable for my

future research or endeavours.

REFERENCES

[1] Keiichi Tokuda, Takao Kobayashi, and Satoshi Imai, “Recursive
calculation of mel-cepstrum from LP coefficients,” Technical Report of
Nagayo Institute of Technology, April 1994.

[2] Takashi Masuko, “HMM-Based Speech Synthesis and Its Applications,”
2002.

