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he main tasks of the internship with Professor Paavo Alku 
were as follows: I. Background reading on speech 
synthesis techniques, with a focus on hidden Markov 

model (HMM) – based approach. II. Implementation of a 
recursive algorithm to obtain truncated mel-cepstral 
coefficients from linear prediction (LP) coefficients [1]. III. 
Implementation of the mel log spectrum approximation 
(MLSA) filter [2]. 
 
In this report, a condensed presentation of my interpretation 
and translation of the given MLSA filter block diagrams in [2] 
into Matlab algorithms as well as simulation results of the 
implantation will be given.  

 

I.  RECURSIVE ALGORITHM FOR CEPSTRAL COEFFICIENTS  

The mel-cepstral coefficients ( )c m can be calculated from the 

LP transfer function by 

  

1

1

log ( ) ( )
1 ( )

m

m m

m

K
c m z F z

a m z





 



 
 

  
 

 

 (1) 

 
where ( )a m are the LP coefficients. From this, a recursive 
algorithm was derived [1]. Here, a Matlab function based on 
the pseudocode in [1] is realised: 
 
function [c] = mel_cepstrum_LP(a,K,N,alpha) 

% A recursive algorithm to estimate truncated 

mel_cepstral coefficients 

% c = [c1 c2 ... cN].' from linear prediction 

coefficients a = [a1 a2 ... aM] 

% from K.Tokuda,T.Kobayashi and S.Imai,"Recursive 

calculation of mel-cepstrum from LP 

coefficients,"Nagayo Institute of Technology, 1 

April 1994. 

  

% Input: 

% a --- linear prediction coefficients a = [a1 a2 

... aM] 

% K --- all-pole filter coefficient such that 

%       log [ K / ( 1+sum(a(m) z^-m))] = sum(c(m) 

z^-m) 

% N --- desired(truncated)length of 'c'  

% alpha --- pole location, such that |alpha| < 1 

  

% Output: 

% c --- estimated mel-cepstrum coefficients c = [c1 

c2 ... cN].' 
  

M = length(a); 

c = zeros(N,1); convo = 0; 

% Let v = a~ in literature: 

v = zeros(1,N); v(1) = a(1); 

for i = -M:-1 

    v_old = v; 

    v(1) = a(-i)+ alpha*v_old(1); 

    v(2) = (1-alpha*alpha)*v_old(1) + 

alpha*v_old(2); 

    for m = 3:N 

        v(m) = v_old(m-1) + alpha*(v_old(m) - v(m-

1)); 

    end     

end 

  

K_tilde = K/v(1); 

v = v/v(1); 

c(1) = log(K_tilde); 

for m = 2:N 

    for k = 2:m-1 

        temp = (k/m)*c(k)*v(m-k); 

        convo = convo + temp; 

    end 

    c(m) = -v(m) - convo; 

end 

end 

 

II. THE MLSA FILTER 

To synthesise speech from mel-cepstral coefficients, the 
exponential transfer function ( )D z has to be realised, where 

 ( ) exp ( )D z F z and 
1

( ) ( ) m

m

F z c m z






  . In [2], Masuko 
provided an alternative filter structure for ( )F z which 
eliminates the delay-free loop:  
 

 
Figure 1: filter structure for F(z) 
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The task was to realise the above filter structure in Matlab. 
 

By observation, for an input [ ]x n , and simplifying 21 ,  

the output [ ]y n  for the filter F(z) (by Matlab convention, i.e. a 

vector v begins with v[1] and not v[0] ) is  
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Note that y[1] is not realisable from the given structure. 

Hence, we simply use y[1] = c[1]*x[1] . 

 

We also observe that one can first calculate each temporary 

values temp[k] for each y[n] recursively: 

 

[ ] x[n-(k-1)] + *x[n-k] - * [ 1],temp k temp k  
                

(3) 

3,4,5,..., 1k n   
 

Finally, sum them up to obtain y[n], for each n: 
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Hence the following Matlab function for the filter F(z): 

 
function [y] = mlsa_filter(x, alpha, c) 

% Input: 

% x     --- input x[n] = [x1 x2 ... x(M+1)] 

% alpha --- pole location, such that |alpha|<1 

% c     --- mel-cepstral coefficients c = [c1 c2 ... 

c(M+1)] 

   

% Output: 

% y     --- filtered coeffcients y[n] = f[n]*x[n]; 

f[n] = MLSA filter 

    M = length(x) - 1; 

    y = zeros(M+1,1); 

    b = zeros(M+1,1); 

    temp = zeros(M+1,1); 

    beta = 1-alpha*alpha; 

     

    b(M+1)=c(M+1); 

     

    for m = -M:-1 

        b(-m) = c(-m)-alpha*b(-m+1); 

    end 

     

    %{  

    for m = 1:M % There could be mistake in the 

paper. Here, b = A'c: 

        b(m) = c(m) + alpha*c(m+1); 

    end 

    %} 

     

    y(1) = c(1)*x(1); 

    y(2) = beta*x(1); 

    for n = 3:M+1 

        temp(2) = x(n-1) + alpha*x(n-2); 

        for k = 3:n-1 

            temp(k) = x(n-(k-1)) + alpha*x(n-k) - 

alpha*temp(k-1); 

        end 

        temp(n) = x(1) - alpha*temp(n-1); 

     

        y(n) = beta*temp.'*b; 

    end 

end 

 
 
Having obtained ( )F z ,  ( ) exp ( )D z F z can be found. 
However, since ( )D z is not a rational function, it can be 
approximated by Padé approximation: 
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where the coefficients 
,L lA have been optimised for 4L  and 

5 in [2]. The following MLSA filter was presented in [2] to 

approximate ( )D z from ( )F z  : 

   

 

Figure 2: MLSA filter structure for D(z) 

 

To realise the above filter in algorithm, we can simply expand 

the Padé approximation
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Therefore, the MLSA filter involves cascading the filters 

( )F z L times, each weighted by the corresponding coefficient

,L lA , then filter again the above through ( )F z  L times, finally 

summing everything with alternating minus sign.  

 

A Matlab function of the MLSA filter is as follows: 
function [R] = pade_approx(L, x, c, alpha) 

% Obtain R(z)~ exp(F(z)) by Padé approximation 

  

% Input: 

% L     --- order of Padé approximation. In the 

paper, optimised 

%           coefficients were calculated for L = 4 

and 5; Here, L = 4 is used.  

% x     --- input x[n] = [x1 x2 ... x(M+1)] 

% alpha --- pole location, such that |alpha|<1 

% c     --- mel-cepstral coefficients c = [c1 c2 ... 

c(M+1)] 

  

% Output: 

% R     --- R(z) ~ exp(F(z)) 

    M = length(x)-1; 

    R = x; 

    F = zeros(M+1,L); % store cascaded filters [F1 

F2 ... FL] as columns 

    A = [4.999273e-1 1.067005e-1 1.170221e-2 

5.656279e-4].'; 

  

    F(:,1) = mlsa_filter(x,alpha,c); % Cascade the 

filters L times 

    for i = 2:4 

        F(:,i) = mlsa_filter(F(:,i-1),alpha,c); 

    end 
  

    for i = 1:4  

        F(:,i) = A(i)*F(:,i); % Multiply by 

weighting coefficients A(i) 

        R = R + F(:,i); % the FIR part: D = x + F1 + 

F2 + F3 + F4 

    end 

  

    F(:,1) = mlsa_filter(R,alpha,c); % Cascade the 

filters L times again, for D[n] 

    for i = 2:4 

        F(:,i) = mlsa_filter(F(:,i-1),alpha,c); 

    end 

  

R = R + A(1)*F(:,1) - A(2)*F(:,2) + A(3)*F(:,3) - 

A(4)*F(:,4); 

  

end 

 

In the following simulations, 50 filter tabs were used. The 

input x[n] and mel-cepstral coefficients c[n] were randomly 

generated using sinusoidal functions. 

 

Graph 1: Simulation of F(z) using the above algorithm (blue) versus 

direct implementation using cepstral coefficients, c (green) : 

 

 
 

Graph 2: Simulation of D(z) using the MLSA filter (blue) versus 

direct implementation using exp(c) (green) : 

 



The MLSA filter appears to approximate the exponential 

transfer function D(z) reasonably. However, to truly assess the 

performance the implemented algorithms, real speech data 

could have been used, and further speech synthesis processes 

could have been carried out using the filter, which were 

unfortunately not realisable within the short internship period. 

 

Nonetheless, I am grateful for the opportunity given by the 

University of Edinburgh and Professor Alku to learn and 

explore, as the skills and ideas acquired are invaluable for my 

future research or endeavours.        
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