
Unit selection - target cost

• discussion points
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Class plan

• Recap of what you should know at this point
• Q&A (you ask, I answer) on video content for module 3 (and module 2 if you wish)
• Discussion (I ask, you answer) about IFF and ASF target cost functions

• Readings 

• Paper discussion: Hunt & Black

• Reading Q&A: Taylor Chapter 16 

• Additional optional points (time permitting) for discussion 

• A look forward to neural approaches and how they relate to unit selection
• many design choices are the same (because we are still doing TTS)
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Recap

• using the slides from the videos
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Discussion about IFF and ASF target cost functions

• What linguistic features would you use in an IFF target cost?

• What acoustic features would you use in an ASF target cost?
• What predictive model might be good for predicting target acoustic features for an ASF?

• what timescale would you make predictions on?
• how would you compare a target’s predicted features to a candidate’s features?

• How would you combine IFF and ASF?
• why would you want to do that?
• any potential pitfalls?
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Readings

• Hunt & Black paper 

• structured reading and discussion

• Taylor Chapter 16
• unstructured Q&A
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Hunt & Black

• What size is the unit?
• What style of target cost is used?

• What are the features used? How many?
• Re-draw Figure 2 so that it looks like this
• Relate Figure 1 to your new version of Figure 2
• “The important distinction is that Markov models are probabilistic, whereas the current work 

uses cost functions” - is this really important?
• How many types of pruning are applied, and what are they?
• Where in the paper is the “zero join cost trick” ?
• What evaluation was conducted?

Can you make the search faster ?
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Readings

• Hunt & Black paper
• structured reading and discussion

• Taylor Chapter 16 

• unstructured Q&A
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How do cost functions look forwards and backwards?

• we know that various connected speech processes operate in both directions
• anticipatory (depends on next sound)     vs. 
• perseverative (depends on previous sound)
• e.g., assimilation in the word “handbag”

• so, the selection of units needs to take this into account

• is this achieved in unit selection synthesis?
• if so, how?
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How do cost functions look forwards and backwards?

• target cost 

• we include both left and right context in the linguistic features
• weight left context more highly (vowels depend more on previous consonant)

• join cost 

• induces a dependency in both directions: unit choice depends on both previous and 
succeeding unit choices

• remember that the search does not make decisions in a left-to-right fashion
• the final decision is delayed until the search is completed (then we backtrace)
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Prosody generation in unit selection

• Recall Taylor’s two choices for the target function
• independent feature formulation (IFF)

• just compare linguistic features between target and candidates
• the key question is: what linguistic features ?

• acoustic-space formulation (ASF)
• perform partial synthesis (e.g., F0 value prediction) 
• this provides us with acoustic features for the target
• then compare acoustic features between target and candidates
• the key questions are:

• how to predict the acoustic features for the target?
• how to compare them with the candidates?

Module 3 - unit selection target cost functions
Class



Prosody generation in unit selection: IFF approach

• the key question is: what linguistic features should the target cost compare?

• well - they can be anything we can reliably predict from the text

• should that include ToBI accents & boundary tones, for example?
• how would we predict these?

• choose your classifier : ……………………………………………………….
• list available predictors: …………………….……………………………….
• obtain training data: ………………………………………………………….

• how accurate would those predictions be?
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Prosody generation in unit selection: ASF approach

• how to predict the acoustic features for the target?
• assume we will use ToBI as the symbolic representation of prosody
• step 1: predict ToBI symbols from text

• a classification task, as in the IFF approach
• step 2: render ToBI symbols as an F0 contour

• a regression task - will need training on data

• how to compare the acoustic features between target and candidate?
• Euclidean distance between F0 contours?
• is that perceptually relevant?
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A look forward to neural approaches

• finding the connections to unit selection
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Module 8 - Deep Neural Networks (DNNs)

[0 0 1 0 0 1 0 1 1 0 … 0.2  0.0]
[0 0 1 0 0 1 0 1 1 0 … 0.2  0.1]
…[0 0 1 0 0 1 0 1 1 0 … 0.2  1.0]
[0 0 1 0 0 1 0 1 1 0 … 0.4  0.0]
[0 0 1 0 0 1 0 1 1 0 … 0.4  0.5]
[0 0 1 0 0 1 0 1 1 0 … 0.4  1.0]
…[0 0 1 0 0 1 0 1 1 0 … 1.0  1.0]
[0 0 0 1 1 1 0 1 0 0 … 0.2  0.0]
[0 0 0 1 1 1 0 1 0 0 … 0.2  0.2]
[0 0 0 1 1 1 0 1 0 0 … 0.2  0.4]
…
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Module 8 - speech synthesis using Neural Networks 
Video 2 - Doing Text-to-Speech



Module 9 - sequence-to-sequence models

Encoder VocoderDecoder
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FASTPITCH: PARALLEL TEXT-TO-SPEECH WITH PITCH PREDICTION

Adrian Łańcucki

NVIDIA Corporation

ABSTRACT

We present FastPitch, a fully-parallel text-to-speech model
based on FastSpeech, conditioned on fundamental frequency
contours. The model predicts pitch contours during inference.
By altering these predictions, the generated speech can be
more expressive, better match the semantic of the utterance,
and in the end more engaging to the listener. Uniformly in-
creasing or decreasing pitch with FastPitch generates speech
that resembles the voluntary modulation of voice. Condi-
tioning on frequency contours improves the overall quality of
synthesized speech, making it comparable to state-of-the-art.
It does not introduce an overhead, and FastPitch retains the
favorable, fully-parallel Transformer architecture, with over
900⇥ real-time factor for mel-spectrogram synthesis of a typ-
ical utterance.

Index Terms— text-to-speech, speech synthesis, funda-
mental frequency

1. INTRODUCTION

Recent advances in neural text-to-speech (TTS) enabled real-
time synthesis of naturally sounding, human-like speech. Par-
allel models are able to synthesize mel-spectrograms orders
of magnitude faster than autoregressive ones, either by rely-
ing on external alignments [1], or aligning themselves [2].
TTS models can be conditioned on qualities of speech such
as linguistic features and fundamental frequency [3]. The lat-
ter has been repeatedly shown to improve the quality of neu-
ral, but also concatenative models [4, 5]. Conditioning on F0

is a common approach to adding singing capabilities [6]. or
adapting to other speakers [5].

In this paper we propose FastPitch, a feed-forward model
based on FastSpeech that improves the quality of synthe-
sized speech. By conditioning on fundamental frequency
estimated for every input symbol, which we refer to simply as
a pitch contour, it matches the state-of-the-art autoregressive
TTS models. We show that explicit modeling of such pitch
contours addresses the quality shortcomings of the plain
feed-forward Transformer architecture. These most likely
arise from collapsing different pronunciations of the same
phonetic units in the absence of enough linguistic informa-
tion in the textual input alone. Conditioning on fundamental
frequency also improves convergence, and eliminates the

need for knowledge distillation of mel-spectrogram targets
used in FastSpeech. We would like to note that a concurrently
developed FastSpeech 2 [7] describes a similar approach.

Combined with WaveGlow [8], FastPitch is able to syn-
thesize mel-spectrograms over 60⇥ faster than real-time,
without resorting to kernel-level optimizations [9]. Because
the model learns to predict and use pitch in a low resolution
of one value for every input symbol, it makes it easy to adjust
pitch interactively, enabling practical applications in pitch
editing. Constant offsetting of F0 with FastPitch produces
naturally sounding low- and high-pitched variations of voice
that preserve the perceived speaker identity. We conclude that
the model learns to mimic the action of vocal chords, which
happens during the voluntary modulation of voice.

2. MODEL DESCRIPTION

The architecture of FastPitch is shown in Figure 1. It is based
on FastSpeech and composed mainly of two feed-forward
Transformer (FFTr) stacks [1]. The first one operates in the
resolution of input tokens, the second one in the resolution
of the output frames. Let x = (x1, . . . , xn) be the sequence
of input lexical units, and y = (y1, . . . , yt) be the sequence
of target mel-scale spectrogram frames. The first FFTr stack
produces the hidden representation h = FFTr(x). The hid-
den representation h is used to make predictions about the
duration and average pitch of every character with a 1-D CNN

Embedding

FFT�Block

Pitch
Predictor

Duration
Predictor

FFT�Block

Repeat

FC

Conv�ğD

FC

Conv�ğD

Conv�ğD

MSE�Loss

MSE�Loss

N�}

N�}Conv�ğD

FC

Conv�ğD

MSE�Loss

Fig. 1. Architecture of FastPitch follows FastSpeech [1]. A
single pitch value is predicted for every temporal location.
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