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Figure 2.2: Example of applying temporal smoothing to LSF parameteris using a slid-

ing Hanning window.

temporal resolution of HMM modelling. The width of the window was varied, to im-

pose varying amounts of smoothing. Figure 2.2 shows an example of this process.

2.5.1.2 Variance scaling

Variance adjustment was implemented as a simple scaling of the standard deviation

by a fixed factor. For each parameter (i.e., each LSF) in turn, the mean value over

the utterance was found and subtracted before multiplying the parameter by a scalar

value, and finally adding the mean back in. By altering the scalar value, the standard

deviation is correspondingly adjusted, to simulate both reduced variance (which is

commonly observed in HMM synthesis) and increased variance (e.g., as may happen

if a Gaussian p.d.f. is poorly estimated during training, or when GV fails to re-instate

the appropriate amount of variance). This approach of variance scaling is similar to

the postfiltering method investigated by Silén and Helander (2012). Figure 2.3 shows

an example of this process.
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Introduction to the course (2024-25 version)

• learning outcomes
• delivery
• timetable
• course outline
• introduction to the coursework
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Learning outcomes

• Understand the speech synthesis process, and be familiar with the processing steps 
required to convert text to speech.

• Be familiar with the different speech synthesis methods currently used by speech 
synthesis systems and understand the advantages and disadvantages of each.

• Have a detailed understanding of the principles of unit selection speech synthesis, and 
the issues involved with choosing suitable candidate units to match a given target 
sequence.
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Learning outcomes (continued)

• Understand the design issues associated with recording data suitable for building a unit 
selection voice.

• Practical experience of building a synthetic voice yourself.
• Be familiar with the different speech coding techniques that can be used for speech 

synthesis, and understand how these can be used to aid the joining of individual speech 
segments and how using different signal processing techniques to manipulate speech 
synthesis output affects the speech quality.

• Be in a position to discuss current issues in speech synthesis and see where speech 
synthesis research is heading in the future. 
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Delivery

• The website speech.zone contains almost everything you will need
• video material, slides for the videos, reading lists, forums, calendar, 

coursework instructions,, slides for classes 

• you must have an account on this site, so that you can post on the forums - make 
sure you can log in, and email Simon.King@ed.ac.uk if you have any trouble

• You still need to use Learn for submitting your coursework
• We will also use Learn to send class announcements
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• Please give both of us feedback (email, forum posts, verbally, class reps, PPLS teaching 
offices, notes slipped under office doors,…) about course structure and delivery mode, 
throughout the course.

• Simon also wants feedback on speech.zone
• is it clearly organised?
• is the website reliable and fast enough?
• is it obvious what relates to this course, and what does not?
• does everything work correctly on your device?

Delivery
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Delivery

• Lectures will cover the most popular current speech synthesis methods
• unit selection
• statistical parametric speech synthesis (SPSS) using HMMs or Neural Networks
• the current state of the art: sequence-to-sequence models

• Coursework - a single major assignment
• build and evaluate a unit selection speech synthesiser, using your own recordings

• Readings - lists provided on speech.zone
• Background assumed

• most of you will have taken Speech Processing - if you have not taken this course, then 
please speak to the lecturer as soon as possible (if Simon gives you permission to enrol, 
you’ll need to catch up on Speech Processing content, including some videos and readings)
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Delivery

• The material on speech.zone is divided into modules

• the video content provides only the bare bones

• this is especially true of the more advanced material towards the end of the course
• you need to flesh out the details by taking full advantage of

• readings
• active participation in classes
• labs (including discussion with other students, the tutors, and the lecturer)
• forums (please attempt to answer each other’s posts - I will correct any errors and 

provide definitive answers)
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Jump to your next video: 

Requires you to rate videos, 
which marks them as 
completed.



Subtitles 
are being rolled out 
gradually across the 
modules.



Transcripts 

Open the video in the 
pop-out window. 
After starting playback, 
click on the transcript to 
jump to that point in the 
video.



Speed controls 

Chrome is recommended 
for best quality audio.

Please give feedback: are 
the speed settings right?

(You can also install a 
browser plugin to provide 
variable speed control for 
all videos on all websites.)



Flipcard quizzes 

Question on one side. 

Answer on the other.

Click anywhere on the 
card to flip it over.

If you like them, tell me!



Multiple-choice quizzes 

If you like them, tell me!



speech.zone tips

• check ‘Remember me’ to stay logged 
in for a year, in the current browser 
(otherwise, it’s 2 days)

• click anywhere to open videos 
without leaving this page

• or, open in a new window to get 
extra features
• transcripts
• see other people’s ratings



What you have to do (*)

• Before each class 

• complete the module specified in the course calendar, including
• the videos + all Essential readings

• post your questions on the forum

• In each class 

• actively participate in discussion of the course content
• ask questions

(*) if you don’t like this, then this course probably will not suit your learning style
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Timetable

• Class 

• Tuesday 14:10 – 16:00
• Lab (you need to attend one session each week, but come to both if you fall behind)

• group 1 : Wednesday 11:10 - 13:00             group 2 : Thursday 11:10 - 13:00
• additional booked lab time (talking & discussion encouraged!) : Friday 10:00 - 11:50

• Coursework 

• deadline is in the course calendar on speech.zone
• Exam (UG only)

• during the April/May exam period ; date to be announced later
• examinable content = videos + Essential readings + class content for Module 8 onwards
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Lecturers

• Modules 1 to 5 

• Korin Richmond

• Module 6 onwards 

• Simon King
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Marking policy

• Same marking policy as Speech Processing

• https://www.speech.zone/courses/speech-processing/marking-policy 

• Please read the Common Marking Scheme

60-69% = a good understanding of the video content and Essential readings
70-79% = as above, plus most Recommended readings
80%+ = as above, plus independent study, including further readings of your choice
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Coursework: build your own unit selection voice

• Supervised lab sessions start this week
• attendance is a required
• you will only do well on the assignment if you attend the lab every week

• Each lab session will be led by that week’s lecturer, with a tutor

• There is an introduction to the coursework within this lecture, after a course outline
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Course outline

• Introduction 

• taster, brief history lesson, understanding the problem, list of current issues
• Unit selection 

• the method, and how to construct the speech database it relies upon
• Signal processing

• vocoding, estimating F0 from speech signals
• Statistical parametric speech synthesis 

• the method, and its advantages over unit selection ; from HMMs to Deep Neural Networks
• The latest developments (the “state of the art”) 

• from Deep Neural Networks to sequence-to-sequence models
• open issues
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Text-to-speech key challenges

• We can identify four main challenges for any builder of a TTS system.
1. Semiotic classification of text
2. Decoding natural-language text 
3. Creating natural, human-sounding speech
4. Creating intelligible speech

• We can also identify two current and future main challenges
1. Generating affective and augmentative prosody
2. Speaking in a way that takes the listener’s situation and needs into account

(Taylor 2009, Section 3.6, page 51)
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 Semiotic classification of text

• This is what we called “text normalisation” in Speech Processing

• Largely a solved problem (or at least solvable with current methods, given enough effort)
• Commercial systems do pretty good job of this
• Festival is reasonably good

• improvements would be straightforward, but take a lot of effort
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Decoding natural-language text

• In Speech Processing, we covered aspects of this, including:
• homographs

• disambiguate using POS tags
• will fail for homographs with the same POS but different senses

• shallow (“syntactic”) structure
• phrase break prediction

• We can say that parts of this problem are solved
• POS tagging, at least for well-resourced languages

• but that it’s not entirely clear how much ‘decoding’ is needed for speech synthesis
• which prevents people solving the remaining problems
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Creating natural, human-sounding speech

• Much to discuss here, from
• low-level signal quality

• concatenating waveforms vs. using models & classical vocoders vs. neural vocoders
• segmental quality

• pronunciation, stress, connected speech processes
• augmentative prosody (text-related)

• very much an open and important problem - even hard to define the scope!
• affective prosody (not necessarily text-related)

• some methods for generating ‘affective’ or ‘emotional’ speech, but few for predicting it 
(from what?)

Module 1 - introduction
Class



Creating intelligible speech

• Closer to a solved problem than naturalness
• interestingly, the most natural-sounding systems are not always the most intelligible

• Can achieve human levels of intelligibility
• straightforward with good statistical parametric systems (example 1.6.1)

• Unit selection systems
• generally less intelligible than natural speech (example 1.6.2)
• but this is in lab conditions with semantically-unpredictable sentences

• In real applications, with ‘normal’ sentences, intelligibility is often at ceiling levels anyway, so 
differences between systems cannot be measured, and may not matter
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Understanding the problem

• Input is text 

• what properties of text do we need to know about?
• Output is speech 

• what properties of speech do we need to know about?
• How hard is the conversion from text to speech? 

• Do we need to understand the text?
• If so, how would we do that?
• If not, what do we need to extract from the text?

Module 1 - introduction
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What properties of text do we need to know about?

“it is not necessary to go all the way and uncover the meaning from the written signal; 

we have to perform just the job of text decoding, not also that of text understanding

……
by and large, the identity and order of the words to be spoken is all we require to synthesise speech;

no higher-order analysis or understanding is necessary.”
(Taylor 2009, Section 3.1.2, page 29)

but Taylor adds two caveats:
• word sense disambiguation (e.g., “polish”, “lead”, “bass”)
• prosody (a huge caveat !!)
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What properties of speech do we need to know about?

• To start us thinking about the issues involved in creating synthetic speech, let’s think first 
about what speech is “made of ”, because
• in speech synthesis, we need to say new things (i.e., utterances not in our recorded 

database)
• in speech recognition, we need to generalise from the examples in the training data to 

the speech we have to recognise

• It is convenient to think about speech as a linear sequence of units
• enables a concatenative approach to speech synthesis
• in speech recognition, allows us to string together models of small units (e.g. phonemes) 

to make models of larger units (e.g. words)
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Speech production

• Observed signal is result of several interacting processes
• The context in which a speech sound is produced affects that sound

• articulatory constraints: where the articulators are coming from / going to
• phonological effects
• prosodic environment

Module 1 - introduction
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Units of speech

• The speech signal we observe (the waveform) is the product of interacting processes 
operating at different time scales
• at any moment in time, the signal is affected not just by the current phoneme, but many 

other aspects of the context in which it occurs
• the context is complex - it’s not just the preceding/following sounds

• How can we reconcile this conflict, when we want to simultaneously:
• model speech as a simple string of units
• take into account all the long-range effects of context, before, during and after the 

current moment in time
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Context is the key

• Context-dependent units offer a solution
• engineer the system in terms of a simple linear string of units
• then account for context by having a different version of each unit for every different 

context
• But, how do we know what all the different contexts are?
• If we enumerate all possible contexts, they will be practically infinite

• there are an infinite number of different sentences in a language
• context potentially spans the whole sentence (or further)

• However, what is important is the effect that the context has on the current speech 
sound - so next we can think about reducing the number of effectively different contexts
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Current issues

• Deployed commercial systems 

• heavily reliant on high-quality speech, professionally recorded in a studio
• multiple languages (but typically fewer than 50)
• speaking styles from a fixed set (e.g., newscaster, narrator)
• adaptation and control using markup, speech exemplars, Human-in-the-Loop

• Recent and emerging techniques 

• extensive use of ‘found data’ (necessitated by models that require a lot of data)
• more powerful forms of control over speaking style
• rapid expansion to more languages
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Assistive communication devices
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Voices easy. Languages harder!

Adding more voices 
here is easy

Adding more 
languages here is 

hard

really hard 
here

and here
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Synthetic speech created from audiobooks

Audio credits:Speech and Hearing Research Center, Peking University
1 paragraph exampleModule 1 - introduction

Class



Current issues

• What is being actively researched 

• neural deep learning approaches - mostly sequence-to-sequence models
• better and faster neural vocoders

• semi-, self-, and un-supervised learning, to reduce reliance on expensive labelled data
• prosody, including its relationship to the meaning of the text (what Taylor calls 

“Generating affective and augmentative prosody”)
• listener and situation-appropriate synthesis (what Taylor calls “Speaking in a way that 

takes the listener’s situation and needs into account.”)
• for impaired listeners
• for speech-to-speech translation, including dubbing
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A tour of the remaining modules
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Module 2 - unit selection
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Module 2 - unit selection
Video 4 - Target cost and join cost



Module 3 - unit selection target cost functions

ax

sil sildh ax k ae t s ae t

Phonetic context
Stress
Syllable position
Word position
Phrase position

ax k aa silsil

Module 3 - unit selection target cost functions
Video 1 - Independent Feature Formulation



Module 4 - the database

So I came here. sil_s s_ow ow_ay ay_k k_ey ey_m m_hh hh_ih ih_r r_sil

Now we have finally heard her. sil_n n_aw aw_w w_iy iy_hh hh_ae ae_v v_f f_ay ay_n n_ax ax_l l_iy iy_hh hh_er er_d d_hh hh_er er_sil

Those chefs know who they 
are.

sil_dh dh_ow ow_z z_sh sh_eh eh_f f_s s_n n_ow ow_hh 
hh_uw uw_dh dh_ey ey_aa aa_r r_sil

…etc
aa_aa 
aa_ae 
aa_ah 
aa_ao 
aa_aw 
aa_ay 
aa_b 
aa_ch 
aa_d 
aa_dh 
aa_eh 
aa_er 
aa_ey

aa_f 
aa_g 
aa_hh 
aa_ih 
aa_iy 
aa_jh 
aa_k 
aa_l 
aa_m 
aa_n 
aa_ng 
aa_ow 
aa_oy

zh_f 
zh_g 
zh_hh 
zh_ih 
zh_iy 
zh_jh 
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zh_l 
zh_m 
zh_n 
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zh_ow 
zh_oy

zh_p 
zh_r 
zh_s 
zh_sh 
zh_t 
zh_th 
zh_uh 
zh_uw 
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zh_y 
zh_z 
zh_zh

ey_f 
ey_g 
ey_hh 
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ey_jh 
ey_k 
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ey_n 
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ey_ow 
ey_oy
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ay_f 
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ay_hh 
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Video 2 - Script design



Module 5 - evaluation

Module 5 - evaluation
Video 2 - Subjective evaluation



Figure 2 from David Talkin "A Robust Algorithm for Pitch Tracking (RAPT)" in Speech Coding and Synthesis, W. B. Kleijn and 
K. K. Palatal (eds), pages 497-518 Elsevier Science B.V., 1995
Module 6 - speech signal analysis & modelling

Video 4 - F0 estimation (part 2)

Module 6 - speech signal analysis & modelling
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Module 7 - Statistical Parametric Speech Synthesis (SPSS)

Module 7 - statistical parametric speech synthesis
Video 4 - Wrap up



Module 7 bonus material (non-examinable) - hybrid speech synthesis

Module 9 - hybrid speech synthesis
Video 2 - Trajectory tiling



Module 8 - Deep Neural Networks (DNNs)

[0 0 1 0 0 1 0 1 1 0 … 0.2  0.0]
[0 0 1 0 0 1 0 1 1 0 … 0.2  0.1]
…[0 0 1 0 0 1 0 1 1 0 … 0.2  1.0]
[0 0 1 0 0 1 0 1 1 0 … 0.4  0.0]
[0 0 1 0 0 1 0 1 1 0 … 0.4  0.5]
[0 0 1 0 0 1 0 1 1 0 … 0.4  1.0]
…[0 0 1 0 0 1 0 1 1 0 … 1.0  1.0]
[0 0 0 1 1 1 0 1 0 0 … 0.2  0.0]
[0 0 0 1 1 1 0 1 0 0 … 0.2  0.2]
[0 0 0 1 1 1 0 1 0 0 … 0.2  0.4]
…
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Module 8 - speech synthesis using Neural Networks 
Video 2 - Doing Text-to-Speech



Module 9 - sequence-to-sequence models
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this is the original Keynote figure - everything is editable (if you un-group) - no good for scaling



The state of the art (2 further lectures after Module 9)

We will write these lectures 
 “just in time” !
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Context is everything : unit selection
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Context is everything : HMMs (+ regression trees)

vowel to right ?

nasal to left ?

/uw/ to right ?

yn
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tied state



Context is everything : first attempts using Deep Neural Networks

output sequence

input sequence

Module 9 - sequence-to-sequence models
Class



Context is everything : 
encoder-decoder (e.g., FastPitch)

FASTPITCH: PARALLEL TEXT-TO-SPEECH WITH PITCH PREDICTION

Adrian Łańcucki

NVIDIA Corporation

ABSTRACT

We present FastPitch, a fully-parallel text-to-speech model
based on FastSpeech, conditioned on fundamental frequency
contours. The model predicts pitch contours during inference.
By altering these predictions, the generated speech can be
more expressive, better match the semantic of the utterance,
and in the end more engaging to the listener. Uniformly in-
creasing or decreasing pitch with FastPitch generates speech
that resembles the voluntary modulation of voice. Condi-
tioning on frequency contours improves the overall quality of
synthesized speech, making it comparable to state-of-the-art.
It does not introduce an overhead, and FastPitch retains the
favorable, fully-parallel Transformer architecture, with over
900⇥ real-time factor for mel-spectrogram synthesis of a typ-
ical utterance.

Index Terms— text-to-speech, speech synthesis, funda-
mental frequency

1. INTRODUCTION

Recent advances in neural text-to-speech (TTS) enabled real-
time synthesis of naturally sounding, human-like speech. Par-
allel models are able to synthesize mel-spectrograms orders
of magnitude faster than autoregressive ones, either by rely-
ing on external alignments [1], or aligning themselves [2].
TTS models can be conditioned on qualities of speech such
as linguistic features and fundamental frequency [3]. The lat-
ter has been repeatedly shown to improve the quality of neu-
ral, but also concatenative models [4, 5]. Conditioning on F0

is a common approach to adding singing capabilities [6]. or
adapting to other speakers [5].

In this paper we propose FastPitch, a feed-forward model
based on FastSpeech that improves the quality of synthe-
sized speech. By conditioning on fundamental frequency
estimated for every input symbol, which we refer to simply as
a pitch contour, it matches the state-of-the-art autoregressive
TTS models. We show that explicit modeling of such pitch
contours addresses the quality shortcomings of the plain
feed-forward Transformer architecture. These most likely
arise from collapsing different pronunciations of the same
phonetic units in the absence of enough linguistic informa-
tion in the textual input alone. Conditioning on fundamental
frequency also improves convergence, and eliminates the

need for knowledge distillation of mel-spectrogram targets
used in FastSpeech. We would like to note that a concurrently
developed FastSpeech 2 [7] describes a similar approach.

Combined with WaveGlow [8], FastPitch is able to syn-
thesize mel-spectrograms over 60⇥ faster than real-time,
without resorting to kernel-level optimizations [9]. Because
the model learns to predict and use pitch in a low resolution
of one value for every input symbol, it makes it easy to adjust
pitch interactively, enabling practical applications in pitch
editing. Constant offsetting of F0 with FastPitch produces
naturally sounding low- and high-pitched variations of voice
that preserve the perceived speaker identity. We conclude that
the model learns to mimic the action of vocal chords, which
happens during the voluntary modulation of voice.

2. MODEL DESCRIPTION

The architecture of FastPitch is shown in Figure 1. It is based
on FastSpeech and composed mainly of two feed-forward
Transformer (FFTr) stacks [1]. The first one operates in the
resolution of input tokens, the second one in the resolution
of the output frames. Let x = (x1, . . . , xn) be the sequence
of input lexical units, and y = (y1, . . . , yt) be the sequence
of target mel-scale spectrogram frames. The first FFTr stack
produces the hidden representation h = FFTr(x). The hid-
den representation h is used to make predictions about the
duration and average pitch of every character with a 1-D CNN

Embedding

FFT�Block

Pitch
Predictor

Duration
Predictor

FFT�Block

Repeat

FC

Conv�ğD

FC

Conv�ğD

Conv�ğD

MSE�Loss

MSE�Loss

N�}

N�}Conv�ğD

FC

Conv�ğD

MSE�Loss

Fig. 1. Architecture of FastPitch follows FastSpeech [1]. A
single pitch value is predicted for every temporal location.
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Context is everything : (large) language model approaches

https://www.microsoft.com/en-us/research/project/vall-e-x



Representation of written form, spoken form, and “everything in-between”

sil^dh-ax+k=ae, "phrase initial", "unstressed syllable", ...

sil dh ax k ae t s ae t sil

((the cat) sat)

DET NN VB

phrase finalphrase initial
pitch accent

"the cat sat"

input feature vectorModule 7 - statistical parametric speech synthesis
Video 1 - Text-to-Speech as a regression problem



Representation of written form, spoken form, and “everything in-between”

BERT

E[CLS] E1  E[SEP]... EN E1’ ... EM’

C T1 T[SEP]... TN T1’ ... TM’

[CLS] Tok 1  [SEP]... Tok N Tok 1 ... TokM

Masked Sentence A Masked Sentence B

Pre-training

NSP Mask LM Mask LM

Unlabeled Sentence A and B Pair 

Figure 1: Overall pre-training and fine-tuning procedures for BERT. Apart from output layers, the same architec-
tures are used in both pre-training and fine-tuning. The same pre-trained model parameters are used to initialize
models for different down-stream tasks. During fine-tuning, all parameters are fine-tuned. [CLS] is a special
symbol added in front of every input example, and [SEP] is a special separator token (e.g. separating ques-
tions/answers).

ing and auto-encoder objectives have been used
for pre-training such models (Howard and Ruder,
2018; Radford et al., 2018; Dai and Le, 2015).

2.3 Transfer Learning from Supervised Data

There has also been work showing effective trans-
fer from supervised tasks with large datasets, such
as natural language inference (Conneau et al.,
2017) and machine translation (McCann et al.,
2017). Computer vision research has also demon-
strated the importance of transfer learning from
large pre-trained models, where an effective recipe
is to fine-tune models pre-trained with Ima-
geNet (Deng et al., 2009; Yosinski et al., 2014).

3 BERT

We introduce BERT and its detailed implementa-
tion in this section. There are two steps in our
framework: pre-training and fine-tuning. Dur-
ing pre-training, the model is trained on unlabeled
data over different pre-training tasks. For fine-
tuning, the BERT model is first initialized with
the pre-trained parameters, and all of the param-
eters are fine-tuned using labeled data from the
downstream tasks. Each downstream task has sep-
arate fine-tuned models, even though they are ini-
tialized with the same pre-trained parameters. The
question-answering example in Figure 1 will serve
as a running example for this section.

A distinctive feature of BERT is its unified ar-
chitecture across different tasks. There is mini-

mal difference between the pre-trained architec-
ture and the final downstream architecture.

Model Architecture BERT’s model architec-
ture is a multi-layer bidirectional Transformer en-
coder based on the original implementation de-
scribed in Vaswani et al. (2017) and released in
the tensor2tensor library.1 Because the use
of Transformers has become common and our im-
plementation is almost identical to the original,
we will omit an exhaustive background descrip-
tion of the model architecture and refer readers to
Vaswani et al. (2017) as well as excellent guides
such as “The Annotated Transformer.”2

In this work, we denote the number of layers
(i.e., Transformer blocks) as L, the hidden size as
H , and the number of self-attention heads as A.3

We primarily report results on two model sizes:
BERTBASE (L=12, H=768, A=12, Total Param-
eters=110M) and BERTLARGE (L=24, H=1024,
A=16, Total Parameters=340M).

BERTBASE was chosen to have the same model
size as OpenAI GPT for comparison purposes.
Critically, however, the BERT Transformer uses
bidirectional self-attention, while the GPT Trans-
former uses constrained self-attention where every
token can only attend to context to its left.4

1https://github.com/tensorflow/tensor2tensor
2http://nlp.seas.harvard.edu/2018/04/03/attention.html
3In all cases we set the feed-forward/filter size to be 4H ,

i.e., 3072 for the H = 768 and 4096 for the H = 1024.
4We note that in the literature the bidirectional Trans-
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inputs, such as in Computer Vision (CV) applications, repre-
sentations are often learned through instance classification, in
which each image and its augmentations are treated as a single
output class to be pulled together [14], [15] or contrasted
against other negative samples [22].

Speech signals differ from text and images in that they
are continuous-valued sequences. Self-supervised learning for
the speech recognition domain faces unique challenges from
those in CV and NLP. Firstly, the presence of multiple sounds
in each input utterance breaks the instance classification as-
sumption used in many CV pre-training approaches. Secondly,
during pre-training, there is no prior lexicon of discrete sound
units available, as in NLP applications in which words or word
pieces are used, hindering the use of predictive losses. Lastly,
the boundaries between sound units are not known, which
complicates masked prediction pre-training.

In this paper, we introduce Hidden unit BERT (HuBERT)
that benefits from an offline clustering step to generate noisy
labels for a BERT-like per-training. Concretely, a BERT model
consumes masked continuous speech features to predict pre-
determined cluster assignments. The predictive loss is only
applied over the masked regions, forcing the model to learn
good high-level representations of unmasked inputs to infer
the targets of masked ones correctly. Intuitively, the HuBERT
model is forced to learn both acoustic and language models
from continuous inputs. First, the model needs to model
unmasked inputs into meaningful continuous latent representa-
tions, which maps to the classical acoustic modeling problem.
Second, to reduce the prediction error, the model needs to
capture the long-range temporal relations between learned
representations. One crucial insight motivating this work is
the importance of consistency of the targets, not just their
correctness, which enables the model to focus on modeling
the sequential structure of input data. Our approach draws
inspiration from the DeepCluster method for self-supervised
visual learning [23]; however, HuBERT benefits from the
masked prediction loss over speech sequences to represent
their sequential structure.

When the HuBERT model is pre-trained on either the
standard Librispeech 960h [24] or the Libri-Light 60k hours
[25], it either matches or improves upon the state-of-the-
art wav2vec 2.0 [6] performance on all fine-tuning subsets
of 10mins, 1h, 10h, 100h, and 960h. We present systematic
results on three model sizes pre-trained with HuBERT: BASE
(90M parameters), LARGE (300M), and X-LARGE (1B). The
X-LARGE model shows up to 19% and 13% relative WER
improvement from LARGE models on dev-other and test-other
evaluation subsets when pre-trained on the Libri-Light 60k
hours.

II. METHOD

A. Learning the Hidden Units for HuBERT

An acoustic model trained on text and speech pairs provides
pseudo-phonetic labels for each frame via forced alignment in
semi-supervised learning. On the contrary, the self-supervised
representation learning setup has access to speech-only data.
Nevertheless, simple discrete latent variable models such as

k-means and Gaussian mixture models (GMMs) infer hidden
units that exhibit non-trivial correlation with the underlying
acoustic units [26] (see also Table V). More advanced sys-
tems can achieve better acoustic unit discovery performance
using better graphical models [27], [28] or parameterizes the
distributions with more powerful neural network models [29]–
[33].

Fig. 1: The HuBERT approach predicts hidden cluster assign-
ments of the masked frames (y2, y3, y4 in the figure) generated
by one or more iterations of k-means clustering.

Inspired by this, we propose to use acoustic unit discovery
models to provide frame-level targets. Let X denote a speech
utterance X = [x1, · · · , xT ] of T frames. Discovered hidden
units are denoted with h(X) = Z = [z1, · · · , zT ], where
zt 2 [C] is a C-class categorical variable and h is a clustering
model, e.g. k-means.

B. Representation Learning via Masked Prediction

Let M ⇢ [T ] denote the set of indices to be masked for a
length-T sequence X , and X̃ = r(X,M) denote a corrupted
version of X where xt is replaced with a mask embedding x̃

if t 2 M . A masked prediction model f takes as input X̃ and
predicts a distribution over the target indeces at each timestep
pf (· | X̃, t). There are two decisions to be made for masked
prediction: how to mask and where to apply the prediction

loss.
Regarding the first decision, we adopt the same strategies

used in SpanBERT [34] and wav2vec 2.0 [6] for mask genera-
tion, where p% of the timesteps are randomly selected as start
indices, and spans of l steps are masked. To address the second
decision, we denote the cross-entropy loss computed over
masked and unmasked timesteps as Lm and Lu, respectively.
Lm is defined as:

Lm(f ;X,M,Z) =
X

t2M

log pf (zt | X̃, t), (1)

and Lu is of the same form except that it sums over t 62
M . The final loss is computed as a weighted sum of the two

Hsu et al "HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of 
Hidden Units," in IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 29, 
pp. 3451-3460, 2021, doi: 10.1109/TASLP.2021.3122291.
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Abstract

Correct pronunciation is essential for text-to-speech (TTS) sys-
tems in production. Most production systems rely on pronounc-
ing dictionaries to perform grapheme-to-phoneme conversion.
Unlike end-to-end TTS, this enables pronunciation correction
by manually altering the phoneme sequence, but the necessary
dictionaries are labour-intensive to create and only exist in a
few high-resourced languages. This work demonstrates that ac-
curate TTS pronunciation control can be achieved without a
dictionary. Moreover, we show that such control can be per-
formed without requiring any model retraining or fine-tuning,
merely by supplying a single correctly-pronounced reading of
a word in a different voice and accent at synthesis time. Ex-
perimental results show that our proposed system successfully
enables one-off correction of mispronunciations in grapheme-
based TTS with maintained synthesis quality. This opens the
door to production-level TTS in languages and applications
where pronunciation dictionaries are unavailable.
Index Terms: speech synthesis, pronunciation control

1. Introduction

The application of neural sequence-to-sequence modelling
to text-to-speech (TTS) has enabled an end-to-end training
paradigm. End-to-end TTS directly maps graphemes to speech
acoustics without the need for auxiliary features such as
phonemes or stress markers [1, 2, 3]. Subsequently end-to-end
TTS is a straightforward way to build TTS voices, and has the
potential to scale to all of the world’s languages.

However, one major downside of end-to-end TTS is its ten-
dency to make pronunciation errors. This limits its real world
applicability. Such errors occur because natural languages typ-
ically do not exhibit one-to-one mappings between graphemes
and speech sounds [4, 5, 6], which makes the implicit pronunci-
ation prediction task inside end-to-end TTS models error-prone
[7, 8, 9]. Consequently, production-quality TTS systems are
not trained in an end-to-end manner. Instead, they use a com-
plex linguistic front-end to process graphemes into features that
map to audio in a more consistent manner. The most crucial of
these are phonemes, which are generated either by dictionary
lookup or a grapheme-to-phoneme prediction model. However
such front-end resources require significant linguistic and engi-
neering expertise to develop.

Subsequently, in order to realise the full potential of end-to-
end TTS, its tendency to make pronunciation errors must first be
solved. One possible solution is to increase the variety of word
pronunciations encountered during training. However, due to
the Zipfian distribution of words in natural language, typical
TTS corpora have limited word type coverage in comparison
to pronunciation dictionaries (e.g., 14,750 words in LJ Speech

vs 135,000 in CMUdict [8]). Therefore end-to-end TTS mod-
els learn implicit pronunciation models that are highly unpre-
dictable when compared to the explicit pronunciation resources
of fully fledged TTS pipelines [8]. Although one could theo-
retically improve end-to-end TTS’s pronunciations by retrain-
ing on vast amounts of text-audio data, this would complicate
model deployment and inflate data collection costs to an in-
surmountable level. Furthermore, and perhaps more crucially,
this data-centric approach would not guarantee any practical im-
provement as it does not solve the unpredictability intrinsic to
the mapping between graphemes and speech sounds. As such,
simply training with more data is not a viable solution for TTS
voice builders.

An alternative and more feasible solution may instead be a
model-centric approach where one trains end-to-end TTS with
a source of pronunciation information that is simpler to obtain
than phonemes. In this work, we pursue this approach and di-
rectly use speech during training and at synthesis time to both
model and control pronunciations. We introduce Speech Audio
Corrector (SAC), a novel grapheme-input TTS model which,
unlike prior end-to-end models, can utilise a correction query,
consisting of just speech, to accurately make one-off corrections
of word mispronunciations at synthesis time without requiring
any model retraining or fine-tuning.

Due to the added complexity of modelling speech from
scratch, SAC uses word aligned speech codes instead of speech
waveforms or acoustics to represent pronunciations. Speech
codes are discretised acoustic representations extracted from
self-supervised learning models trained on large amounts of
speech data. Speech codes are a good input representation for
speech synthesis as they have been shown to correlate well with
phonemes [10, 11, 12] and yet desirably are relatively free of
speaker information [13]. Furthermore, speech codes are sim-
ple to obtain as self-supervised learning models can be trained
on abundant found speech data such as audiobooks or podcasts.

The main contributions of this paper are as follows: We
demonstrate that SAC can correct a word’s pronunciation using
speech obtained from a non-target speaker regardless of their
accent, and find that matching the speech correction’s accent
to the target voice is preferred to using a mismatching accent.
We also find that adding SAC’s corrective functionality does not
heavily impact standard grapheme-input TTS pronunciations.

2. Related work

2.1. Generation from self-supervised acoustic representa-

tions

Self-supervised learning (SSL) representations of speech from
models such as HuBERT [12], wav2vec2.0 [11], and VQ-
VAE [10] have been used for a wide variety of downstream
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