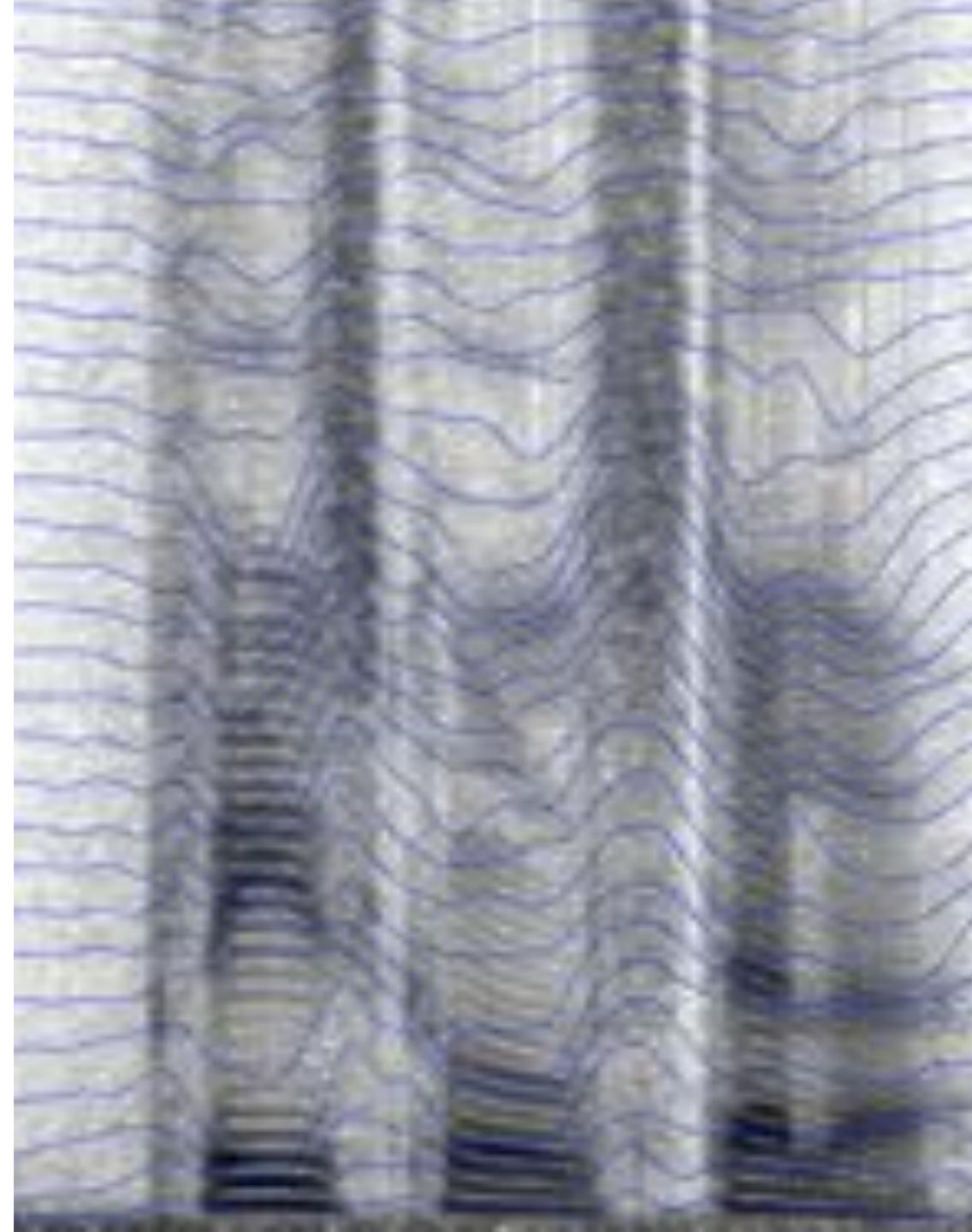
Speech Synthesis

Simon King University of Edinburgh



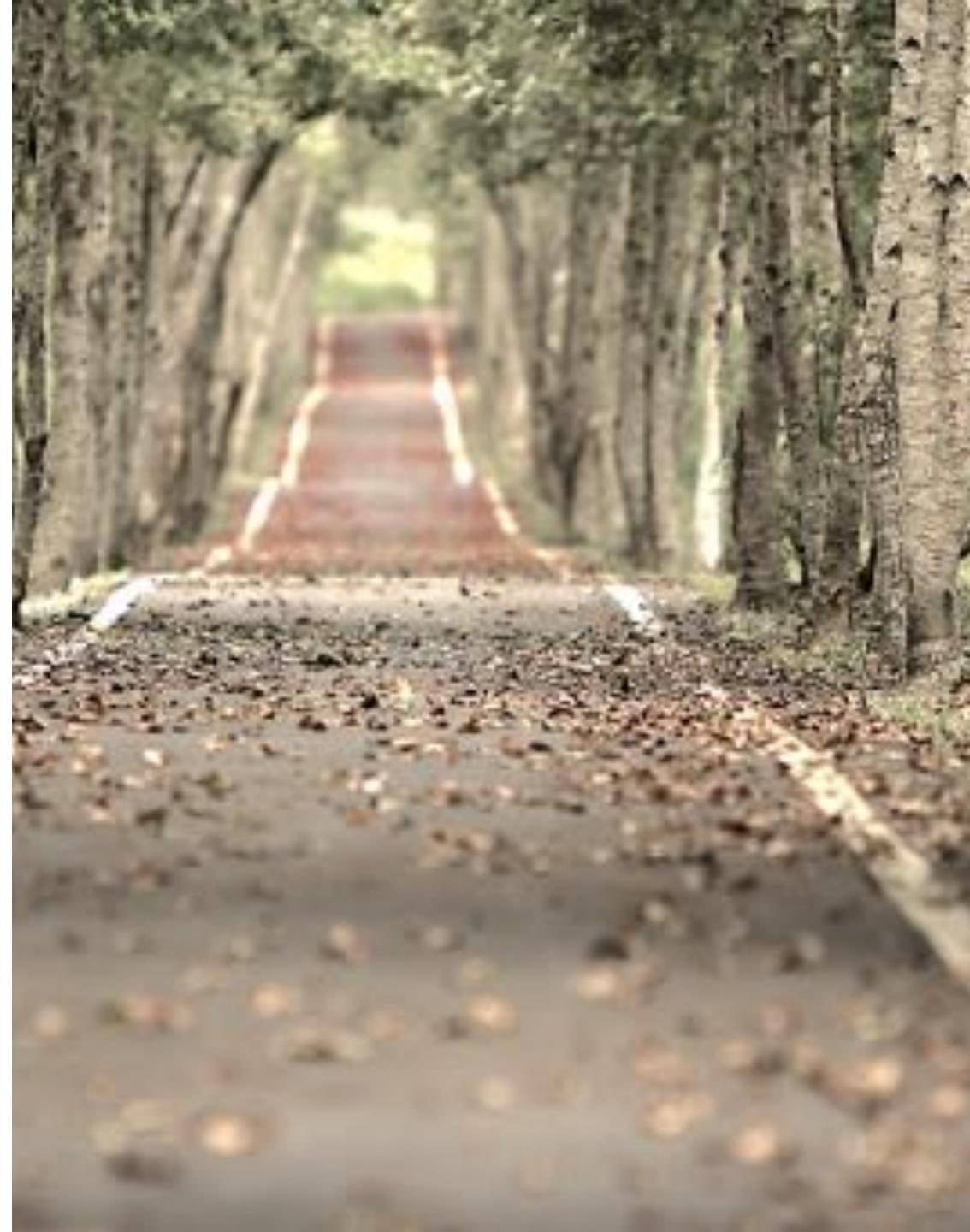
Statistical parametric speech synthesis

- text-to-speech as a sequence-to-sequence regression task
- our first model: regression tree + Hidden Markov Model

ce regression task n Markov Model

What you should already know

- <u>Unit selection synthesis</u>
 - how an IFF target cost function uses the linguistic specification, by **querying** each feature individually
 - join cost ensures continuity of acoustic features
- <u>Speech signal modelling</u>
 - generalising the source-filter model
 - preparing speech features, ready for statistical modelling



Orientation

- Unit selection
 - selection of waveform units based on
 - target cost
 - join cost
- <u>Speech signal modelling</u>
 - generalised source+filter model
- <u>Statistical parametric synthesis</u>
 - predict **speech parameters** from **linguistic specification**

Let's just consider the **IFF** type of target cost, which is based only on the **linguistic specification**

There are several ways to do this, but we need to be able to

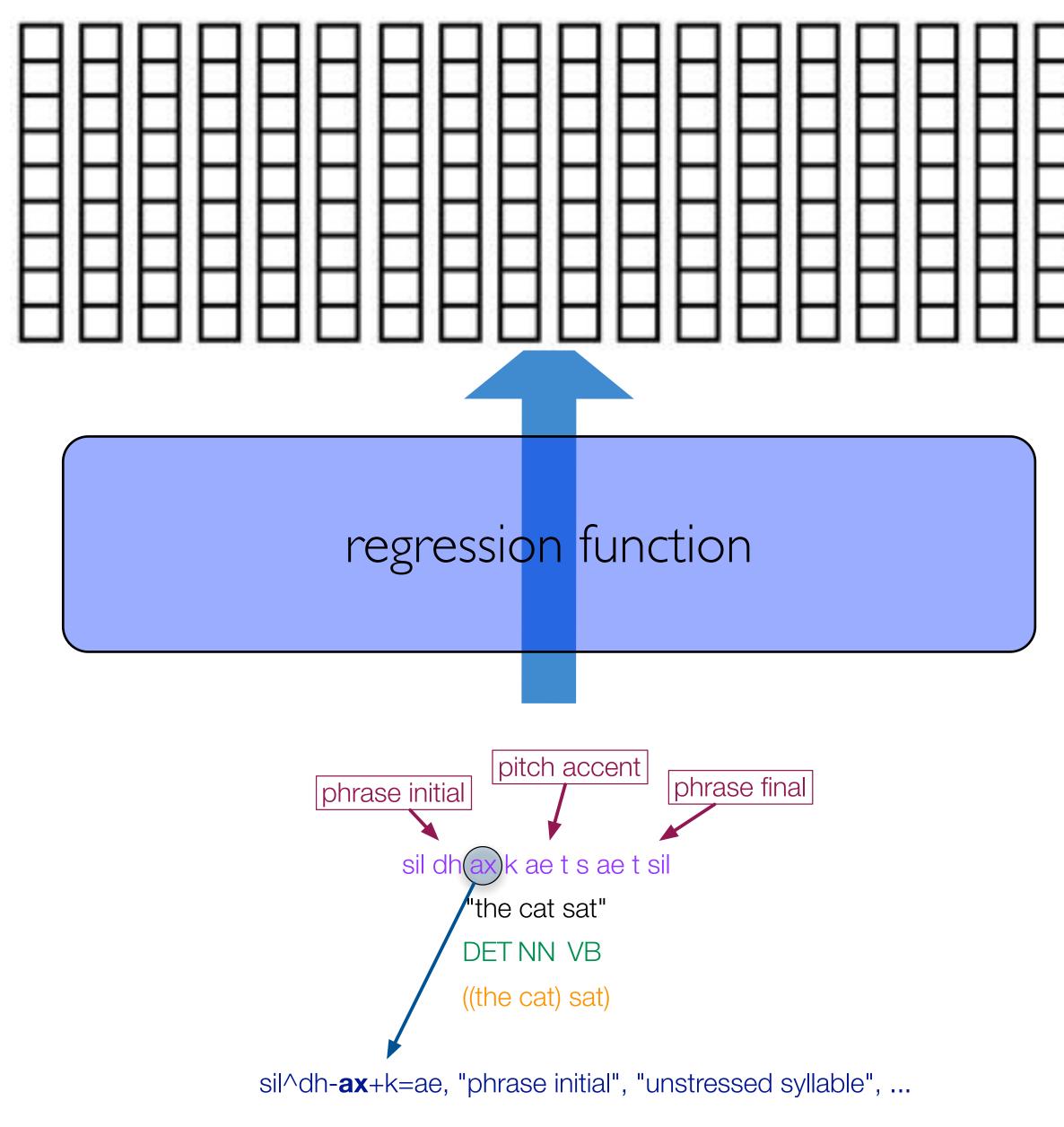
• separate excitation & spectral envelope

• **reconstruct** the waveform



Orientation

- <u>Statistical parametric synthesis</u>
 - predict **speech parameters** from **linguistic specification**

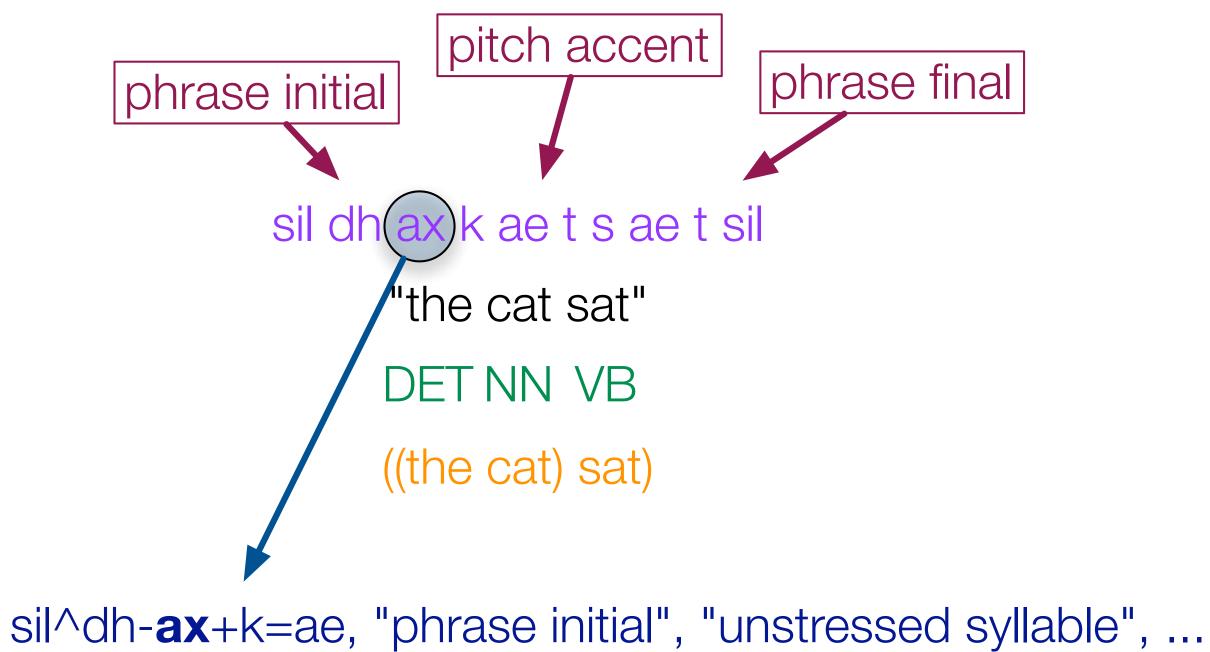


Statistical parametric speech synthesis

- <u>text-to-speech as a sequence-to-sequence regression task</u>
- our first model: regression tree + Hidden Markov Model

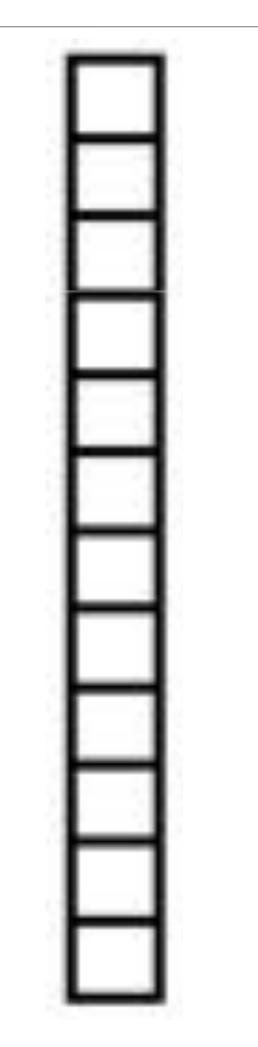
<u>ce regression task</u> n Markov Model

What are the input features ?



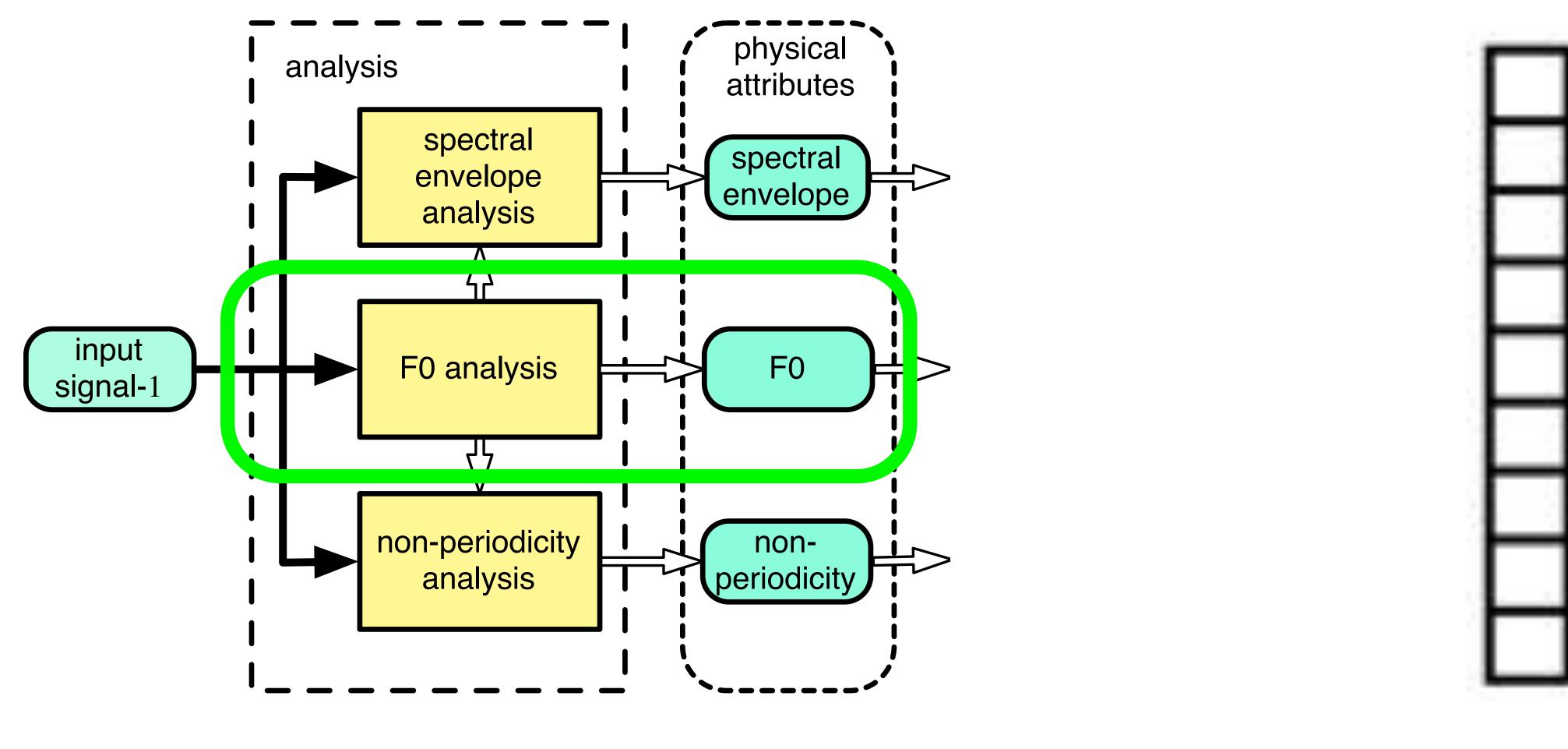
Just the linguistic features !

phrase final



input feature vector

What are the output features (i.e., speech parameters) ?

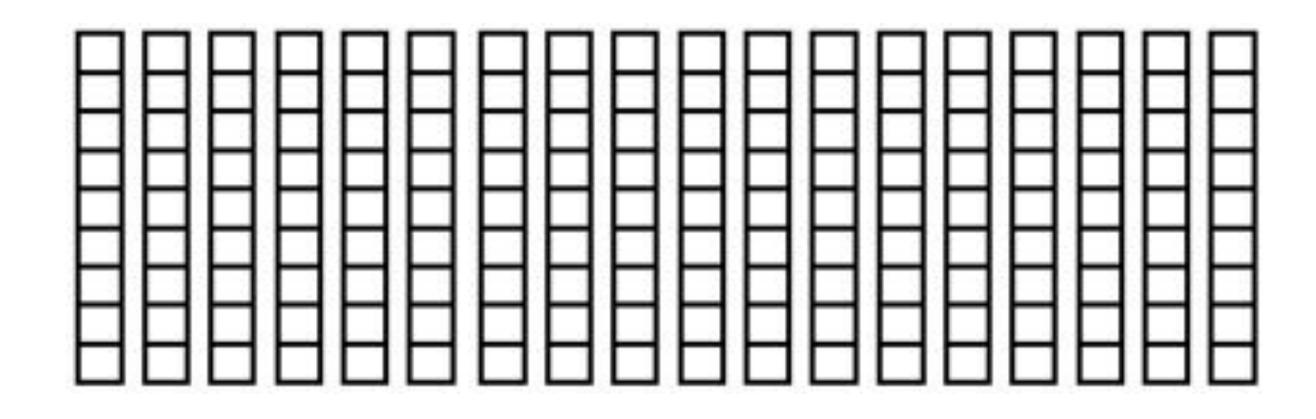


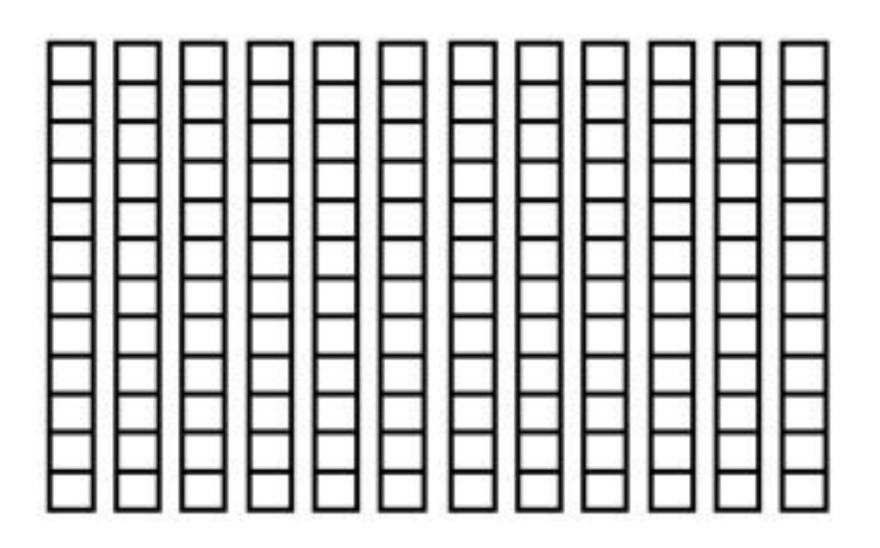
speech parameters

output feature vector

The sequence-to-sequence regression problem

output sequence





Statistical parametric speech synthesis

- text-to-speech as a sequence-to-sequence regression task
- <u>our first model: regression tree + Hidden Markov Model</u>

ce regression task <u>n Markov Model</u>

Our first model: regression tree + Hidden Markov Model

- Two complementary explanations
 - regression
 - context-dependent models
- Duration modelling
- Generation from the model

Two complementary explanations

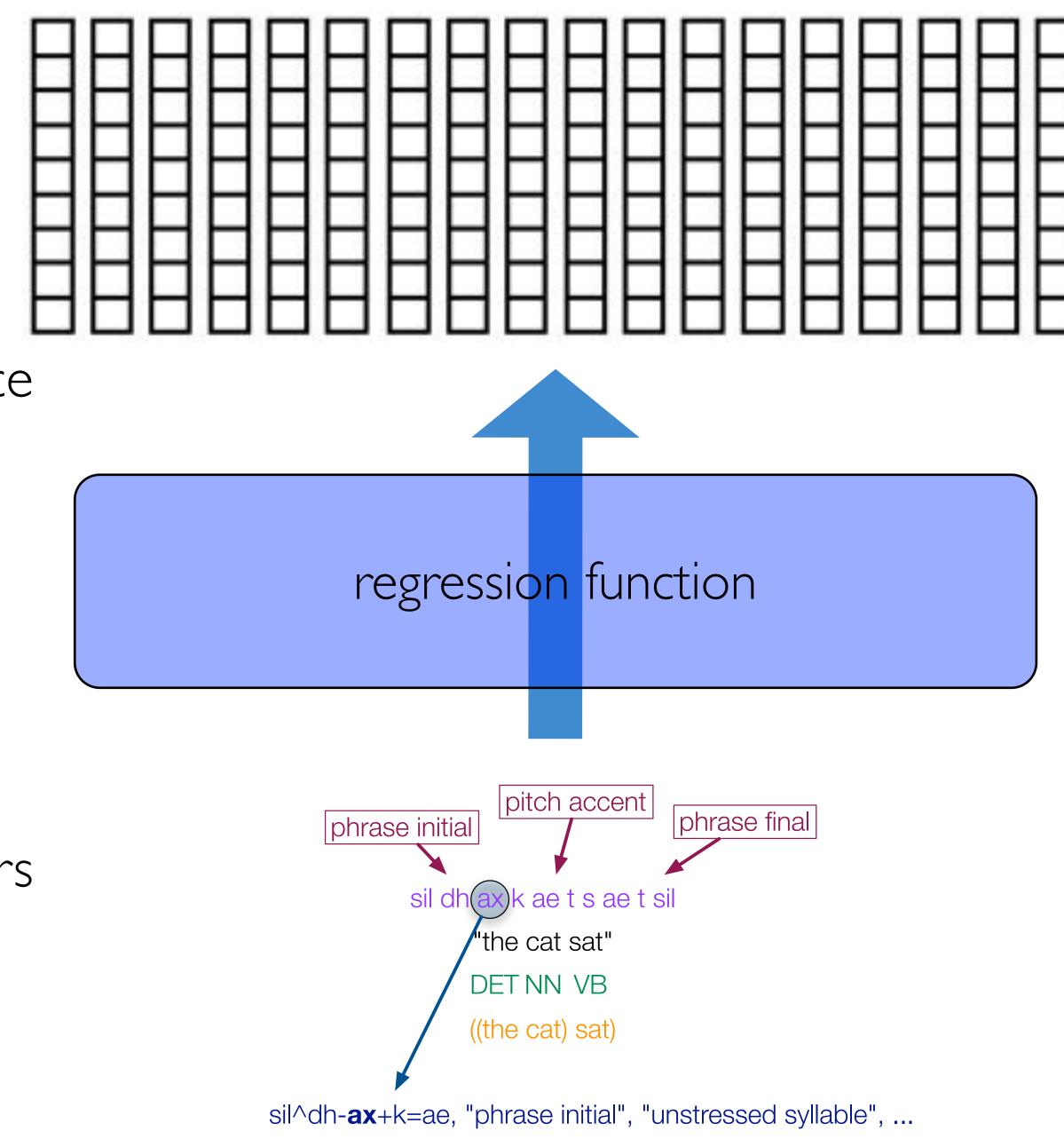
• Describing synthesis as a regression task • **prediction** of continuous speech parameters from linguistic features

- Practical implementation using context-dependent models
 - create lots of models: oops! for many, there is no training data
 - fix this by **sharing** parameters with existing models ("tying")

context-dependent modelling

Two tasks to accomplish

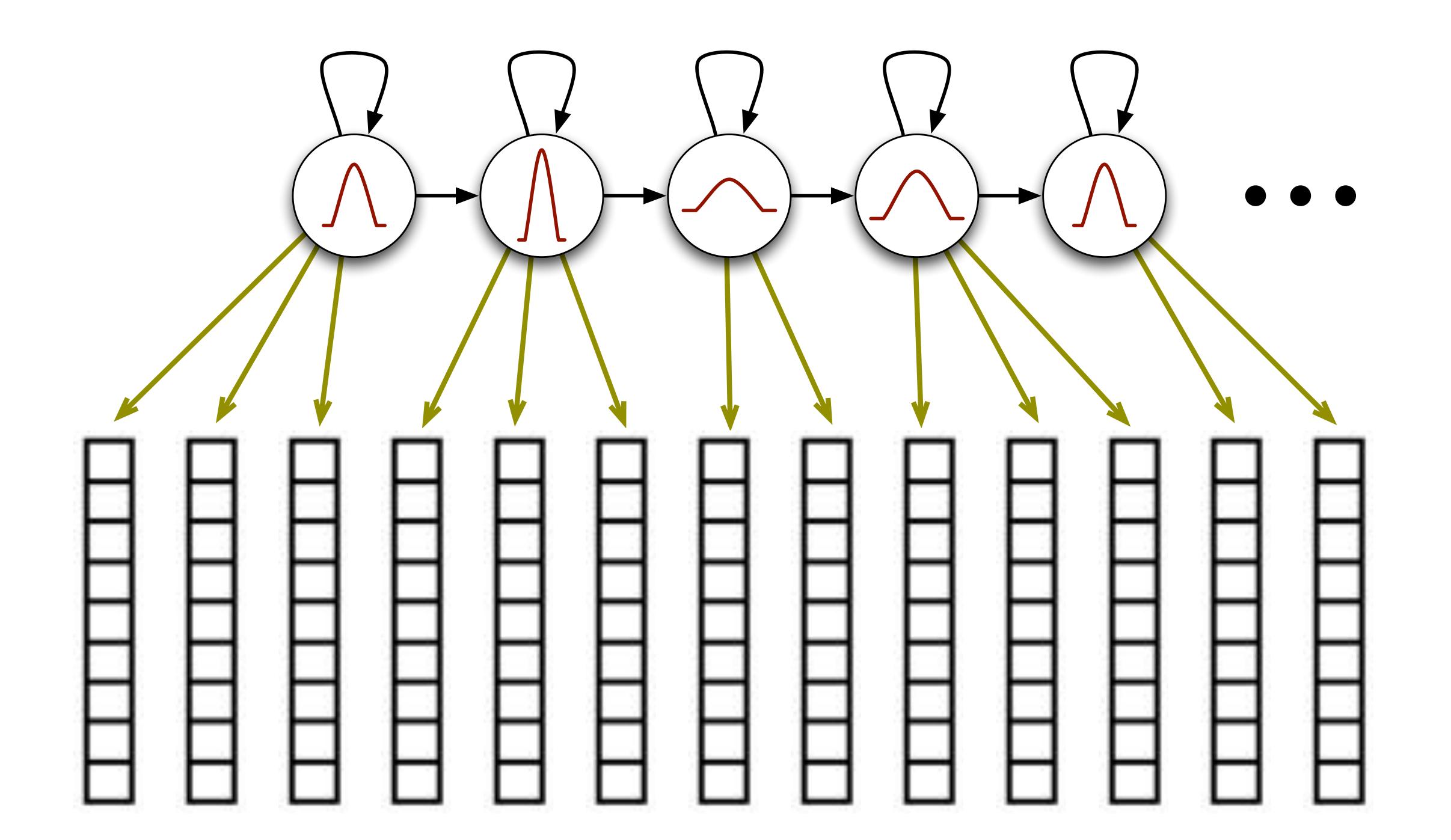
- <u>Sequencing</u>
 - progress through the phonetic sequence
 - decide durations
 - create a sequence of frames
- Prediction (regression)
 - Given the local linguistic specification, predict one frame of speech parameters



Choose suitable machinery for each task

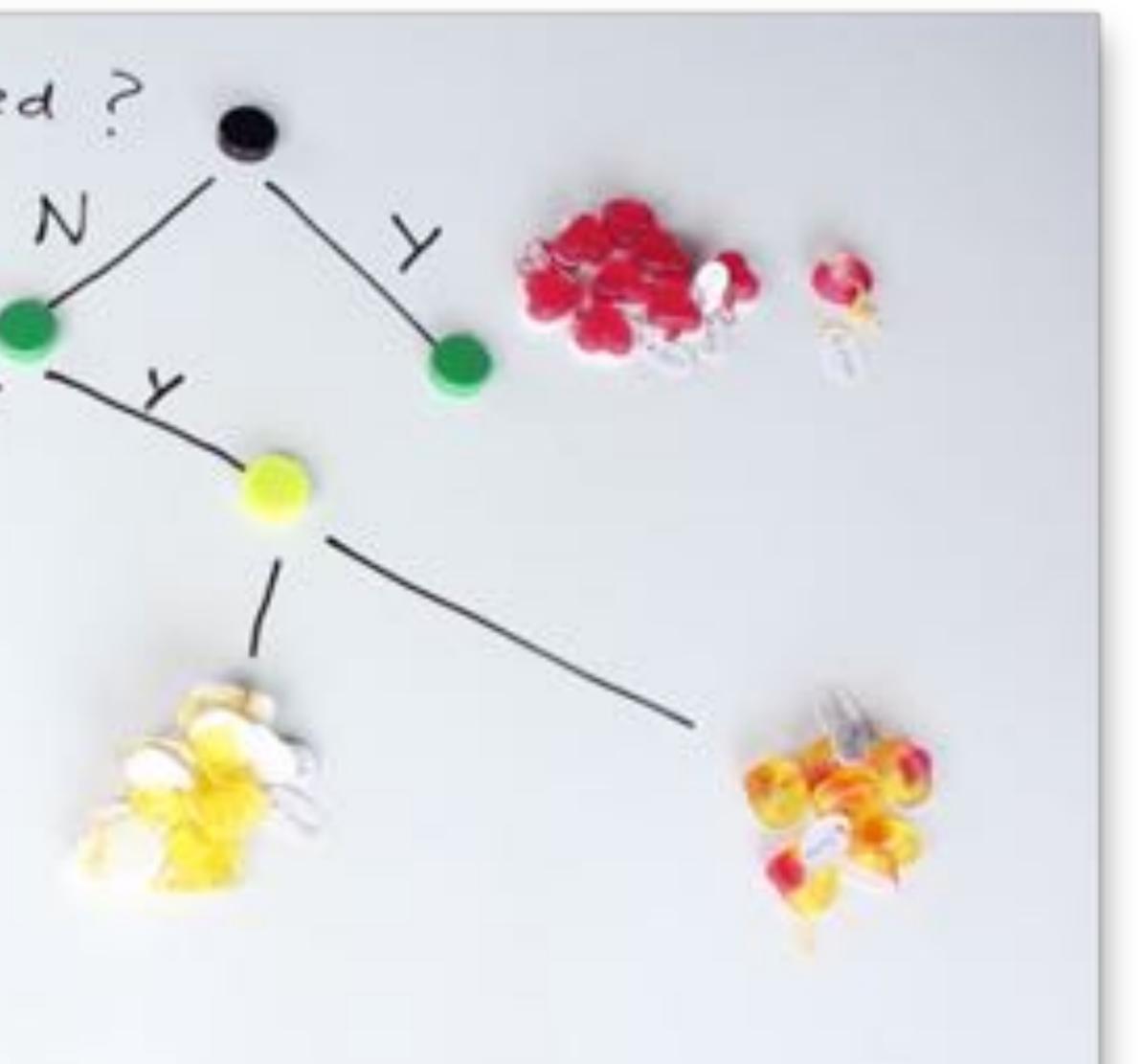
- <u>Sequencing</u>
 - Hidden Markov Model
 - Why? It's the simplest model we know, that can generate sequences!
- <u>Regression</u>

 - **Regression tree** (i.e., a CART with continuously-valued predictee) • Why? Again, the simplest model we know, that can learn an arbitrary function
- the mapping from linguistic specification to speech spectrum is surely non-linear

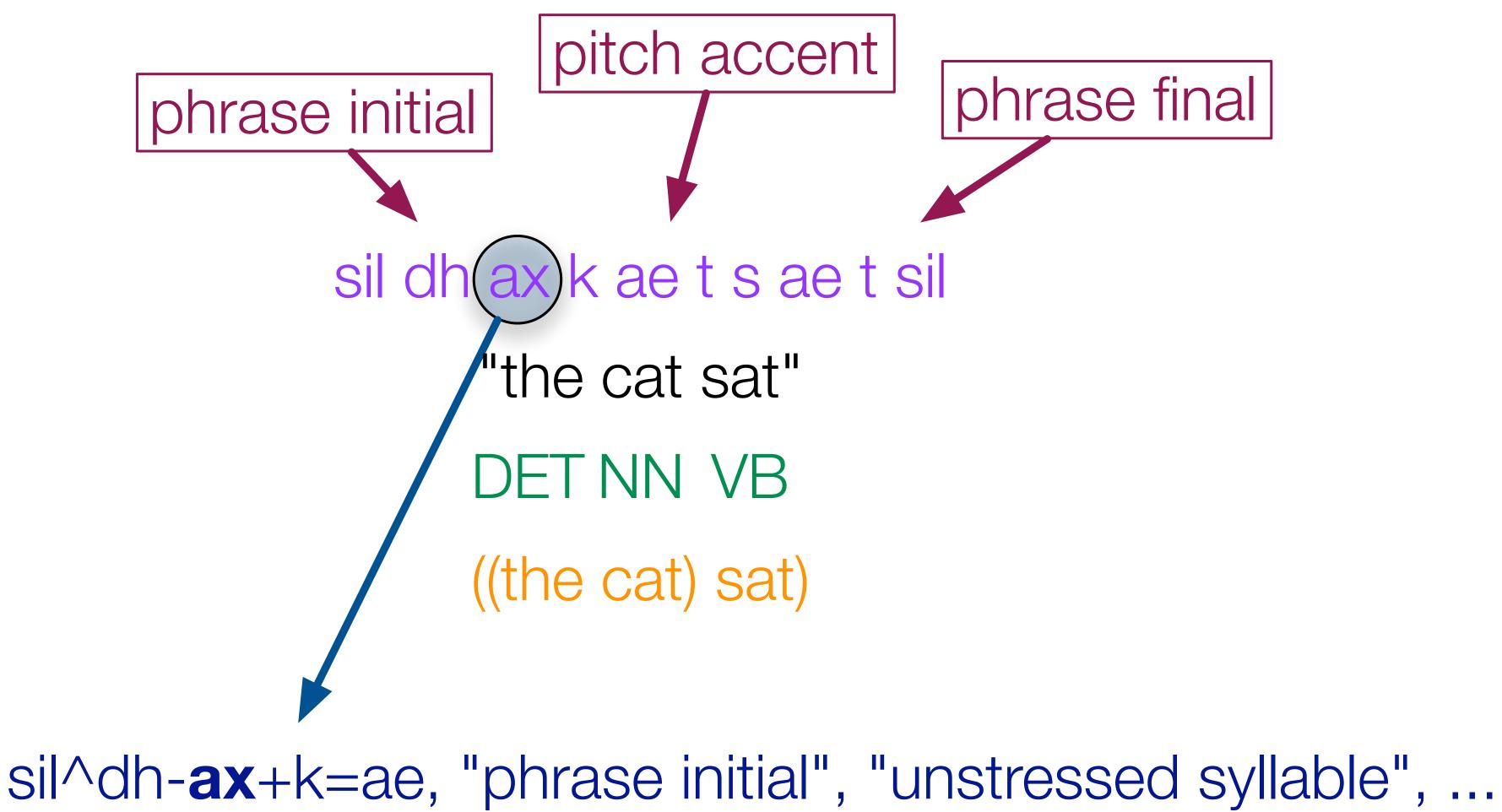


Reminder: CART

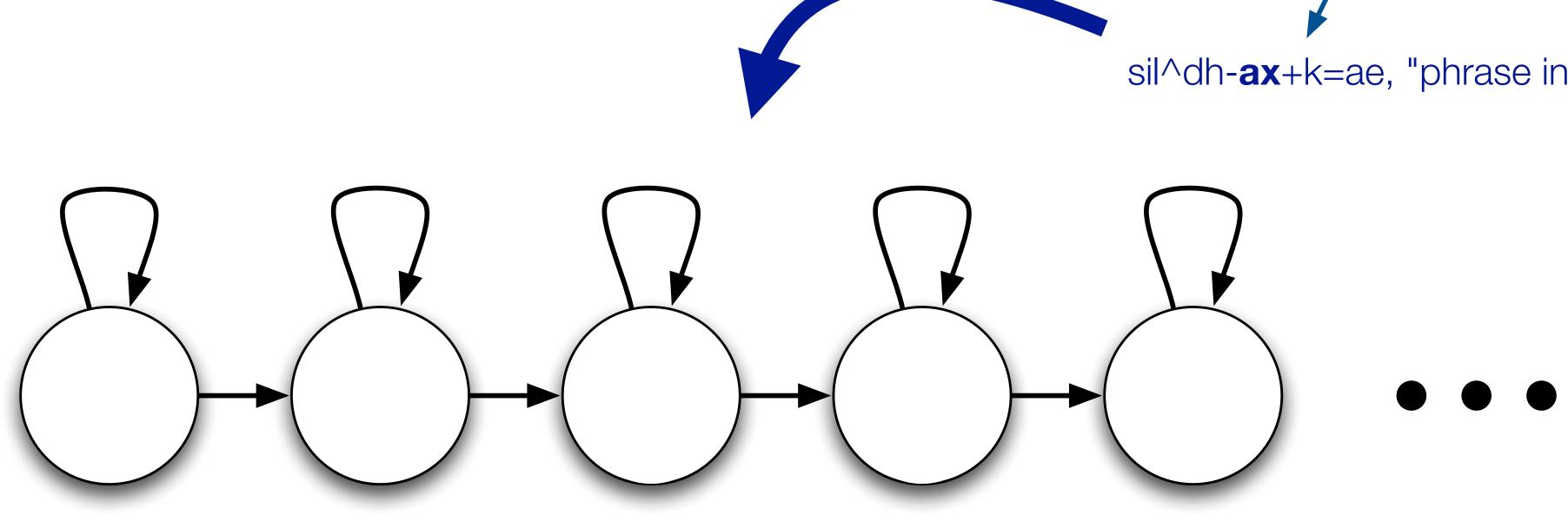
mainly red ? mainly yellow?

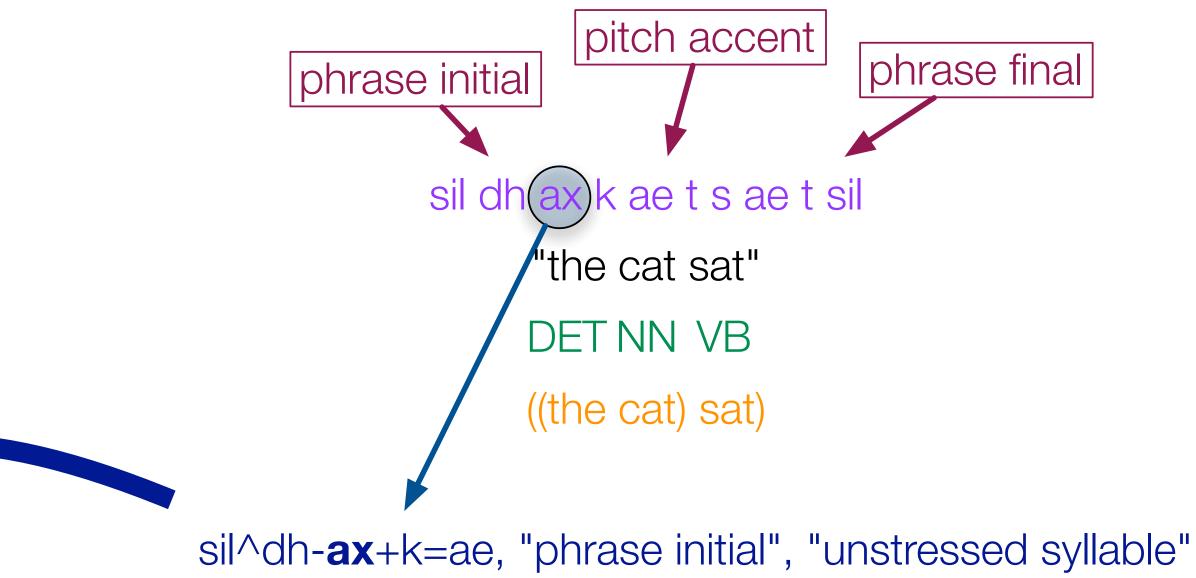


HMM for sequencing + **regression tree** for prediction

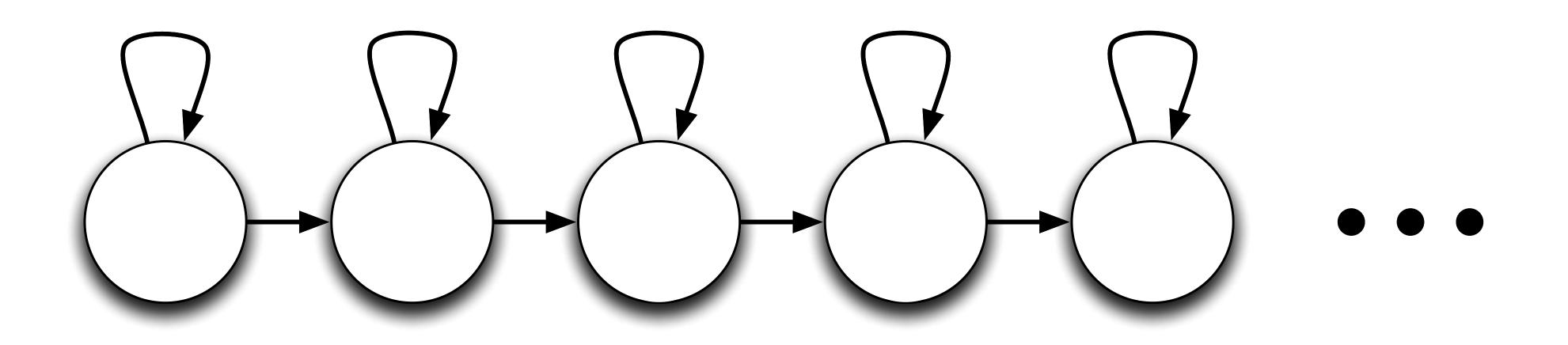


HMM for sequencing + **regression tree** for prediction





HMM for sequencing + **regression tree** for prediction



sil^dh-**ax**+k=ae, "phrase initial", "unstressed syllable", ...

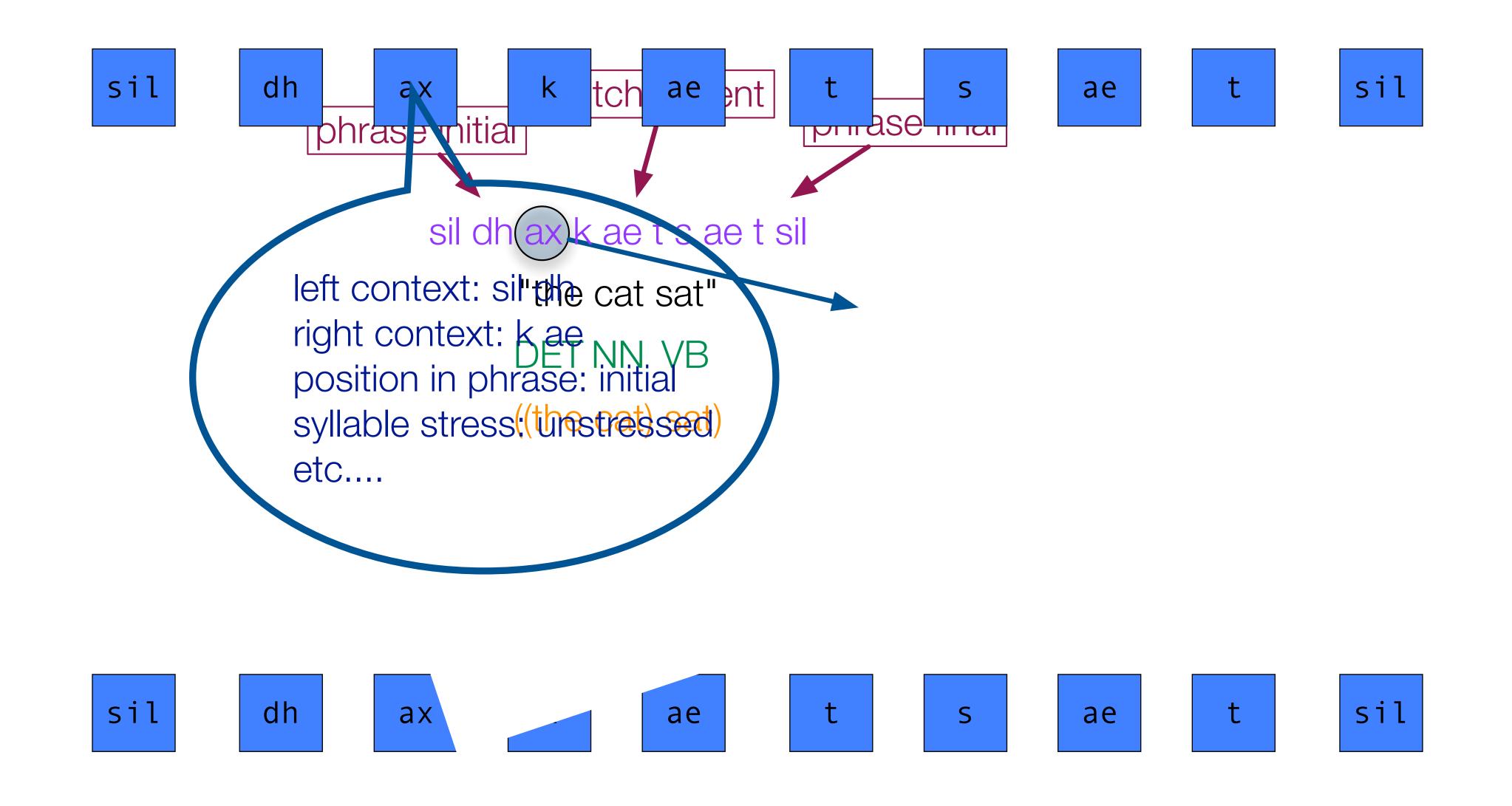
Two complementary explanations

• Describing synthesis as a regression task • prediction of continuous speech parameters from linguistic features

- Practical implementation using context-dependent models
 - create lots of models: oops! for many, there is no training data
 - fix this by **sharing** parameters with existing models ("tying")

context-dependent modelling

Reminder: constructing the target unit sequence (for unit selection)



From linguistic specification to sequence of models

"Author of the ..."

sil~sil-sil+ao=th@x_x/A:0_0 sil~sil-ao+th=er@1_2/A:0_0 sil~ao-th+er=ah@2_1/A:0_0_0 ao~th-er+ah=v@1_1/A:1_1_2/B th~er-ah+v=dh@1_2/A:0_0_1/B er~ah-v+dh=ax@2_1/A:0_0_1/B ah~v-dh+ax=d@1_2/A:1_0_2/B v~dh-ax+d=ey@2_1/A:1_0_2/B

$0_0/B:x-x-x@x-x&x-x#x-x$$
_0/B:1-1-2@1-2&1-7#1-4\$
0/B:1-1-2@1-2&1-7#1-4\$
B:0-0-1@2-1&2-6#1-4\$
B:1-0-2@1-1&3-5#1-3\$
B:1-0-2@1-1&3-5#1-3\$
:0-0-2@1-1&4-4#2-3\$
:0-0-2@1-1&4-4#2-3\$

Context-dependent modelling

- training data
- token in the training data is the only token of its type
- Two key problems to solve
 - train models for types that we have **too few** examples of (e.g., I)
 - create models for types that we have **no examples** of
- Joint solution: parameter sharing amongst groups of similar models

• We cannot be sure to have examples of every unit type in every possible context in the

• In reality, the context is so rich (it spans the whole sentence), that almost every single

Training models for types that we have too few examples of

- We could train a model on just a single example (= single token)
- But it will be very poorly estimated
 - unlikely to perform well
- Pooling training data across groups of types will increase amount of data available • How to decide which groups of models should share data?
- - i.e., which groups of models will end up with the same parameters

Some contexts exert similar effects

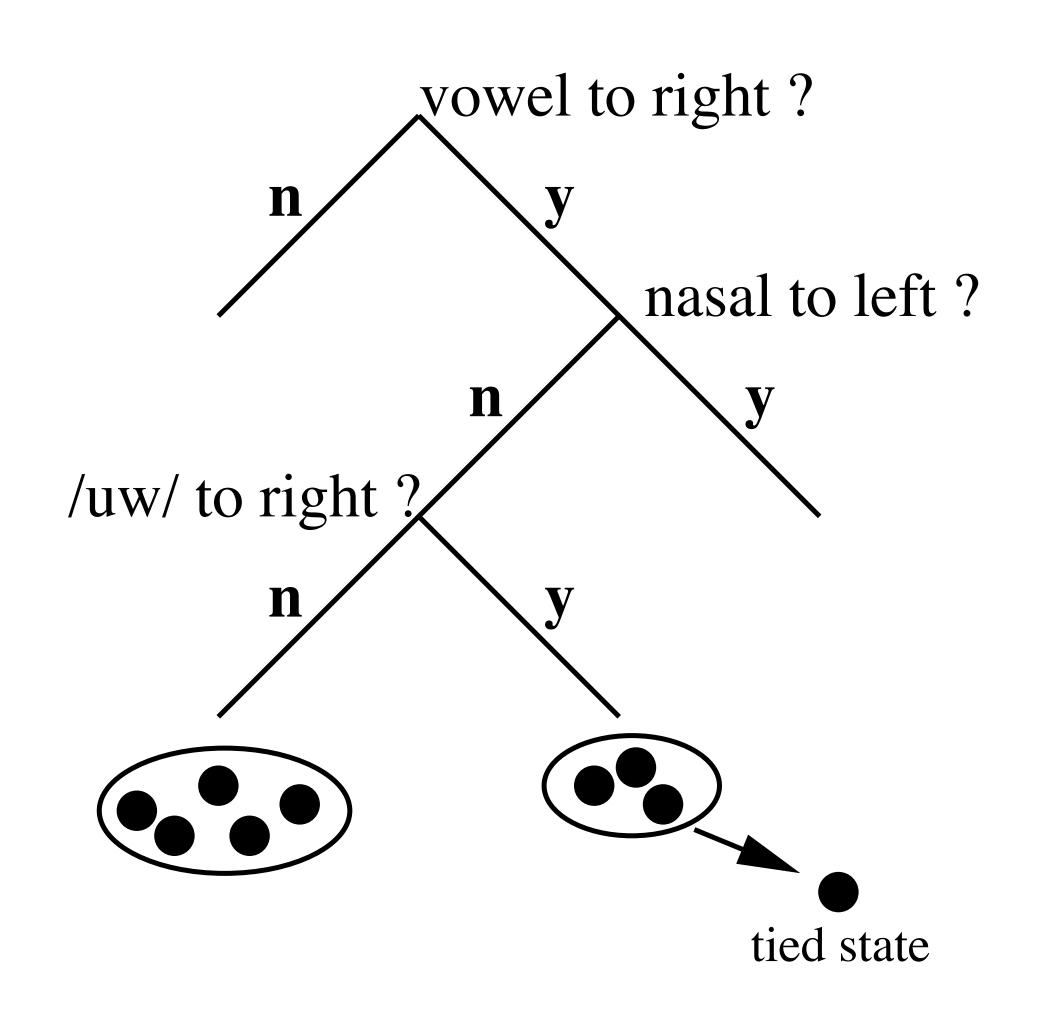
- Key insight
 - we can group contexts according to the effect that they have on the centre phoneme
 - for example
 - the [ae] in the contexts p-ae+t and b-ae+t may be very similar
 - how to group these contexts?
 - how to represent them so we can form useful groupings?
 - use the phonetic features of the surrounding context
 - place, manner, voicing,

Grouping contexts according to phonetic features

- context effects work
 - "all bilabial stops have a similar effect on the following vowel"
 - "all nasals have a similar effect on the preceding vowel"
 - ... etc
- Of course, it's better to learn this from the data, for 2 reasons
 - find those groupings that actually make a difference to the acoustics
 - adjust the granularity of the groups according to how much data we have
- But we still want to make use of our **phonetic knowledge**

• Could try to write rules to express our knowledge of how co-articulation and other

Combining phonetic knowledge with data-driven learning



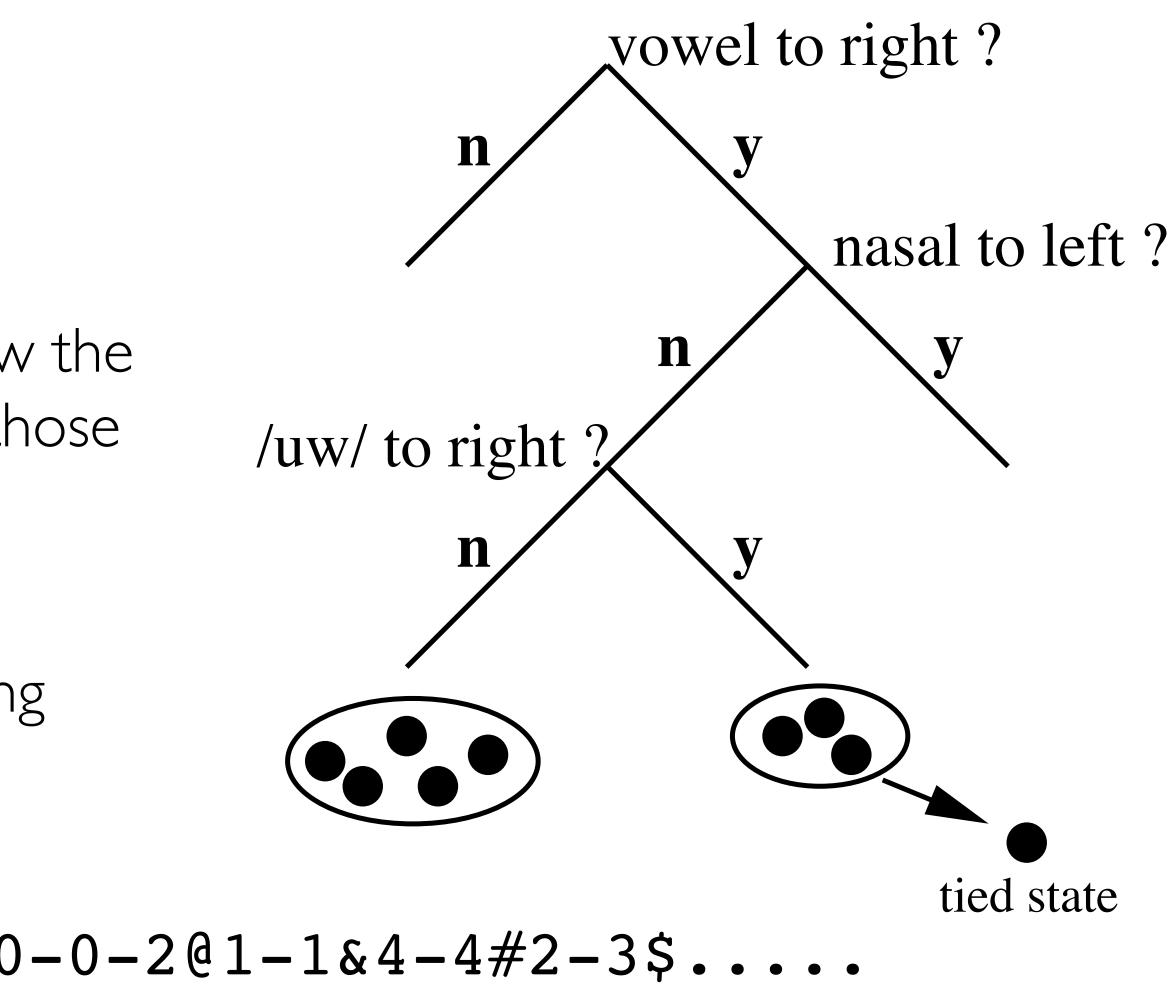
How to choose the best split

- Ideal measure
 - a) train a single model on data pooled across the unsplit set of contexts
 - b) train two models: one on each split of the data
 - compare the likelihood increase from a) to b)
- This is not feasible in practice too computationally-expensive
 - cannot retrain models for every possible split, at every node in the tree
- Instead, use an **approximation** to the likelihood increase
 - this can be computed without actually retraining any models
 - only requires access to the state occupancy statistics and Gaussian parameters

What about models for unseen contexts?

- To find out which model to use for a particular context
 - just follow the tree from root to leaf, answering the questions
- Crucially, to do this we only need to know the **name** of the model, in order to answer those questions
- So it works for models which have training data, and also for models that don't

ah~v-dh+ax=d@1_2/A:1_0_2/B:0-0-2@1-1&4-4#2-3\$....



Summary: linguistic processing, training, synthesis

- Linguistic processing
 - from text to linguistic features using the **front end** (same as in unit selection)
 - attach linguistic features to phonemes: "flatten" the linguistic structures
 - we then create one context-depender linguistic features

e **front end** (same as in unit selection) **"flatten"** the linguistic structures

• we then create one context-dependent HMM for every unique combination of

Summary: linguistic processing, training, synthesis

- Training the HMMs
 - need labelled speech data, just as for ASR (supervised learning)
 - need models for all combinations of linguistic features, including those unseen in the training data
 - this is achieved by parameterising the models using a regression tree

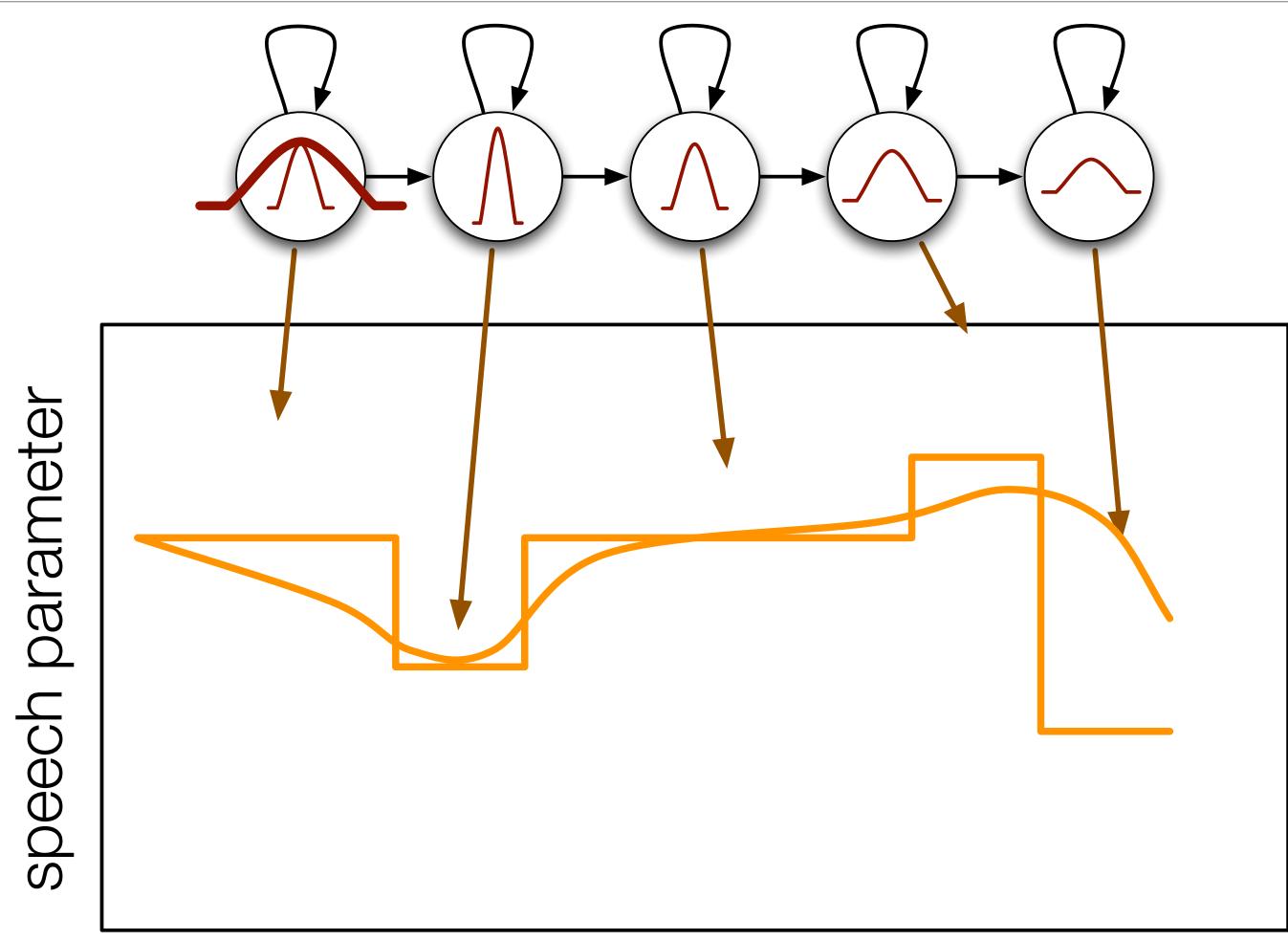
Summary: linguistic processing, training, synthesis

- Synthesising from the HMMs
 - use the front end to predict required **sequence** of context-dependent models • the regression tree provides the **parameters** for these models
 - use those models to **generate** speech parameters
 - use a **vocoder** to convert those to a waveform

Generating from the regression tree + Hidden Markov Model

- This should be straightforward, because the HMM is a generative model
- Follow the Maximum Likelihood principle
 - generate the **most likely** output
 - that will simply be the sequence of state **means**
- What about duration?
 - we need a model to predict this
 - let's just use another regression tree, predicting duration per state
 - <u>predictors</u>: linguistic context + state-position-within-phone
 - <u>predictee</u>: duration of the current state, in frames

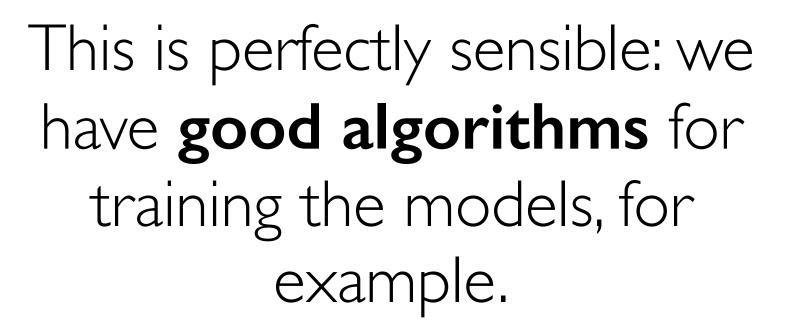
Trajectory generation



time

Orientation

- Our **first attempt** at statistical parametric speech synthesis
 - we used models that we are familiar with and understand well
- Regression trees are weak models
- Although Gaussians are convenient
 - e.g., so we can borrow many useful techniques from ASR



The key weakness of the method. We must replace the regression tree with something more powerful.

e.g., model adaptation

What next?

- Better regression model
- a Neural Network
- input & output features essentially the same as regression tree + HMM
- Quality will still be limited by the **vocoder**
- Later, we will also address that problem
 - hybrid synthesis
 - direct waveform generation

