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Figure 2.2: Example of applying temporal smoothing to LSF parameteris using a slid-

ing Hanning window.

temporal resolution of HMM modelling. The width of the window was varied, to im-

pose varying amounts of smoothing. Figure 2.2 shows an example of this process.

2.5.1.2 Variance scaling

Variance adjustment was implemented as a simple scaling of the standard deviation

by a fixed factor. For each parameter (i.e., each LSF) in turn, the mean value over

the utterance was found and subtracted before multiplying the parameter by a scalar

value, and finally adding the mean back in. By altering the scalar value, the standard

deviation is correspondingly adjusted, to simulate both reduced variance (which is

commonly observed in HMM synthesis) and increased variance (e.g., as may happen

if a Gaussian p.d.f. is poorly estimated during training, or when GV fails to re-instate

the appropriate amount of variance). This approach of variance scaling is similar to

the postfiltering method investigated by Silén and Helander (2012). Figure 2.3 shows

an example of this process.
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Hybrid speech synthesis

• Partial synthesis
• Case study: Trajectory Tiling



Orientation

• SPSS (with HMMs or DNNs)
• flexible, robust to labelling errors

• Unit selection
• potentially excellent naturalness

• target cost and join cost

• Hybrid synthesis
• robust statistical model
• waveform concatenation

but naturalness is limited by vocoder
(amongst other things)

but strongly affected by labelling errors

hard work to optimise on new data

potential to combine the best
properties of SPSS and unit selection



What you should already know

• Signal processing
• ways to parameterise speech signals
• for classification (e.g., MFCCs)
• for vocoding

• Unit selection
• sparsity in linguistic and/or acoustic space
• understanding of IFF, ASF target cost
• SPSS
• sequence-to-sequence regression
• HMMs & DNNs



Hybrid speech synthesis

• Partial synthesis
• Case study: Trajectory Tiling



Hybrid speech synthesis, as SPSS with a replacement for the vocoder

models
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Hybrid speech synthesis, as unit selection with an ASF target cost function
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Analogy: computer generated images

credit for the following 4 images:  Speech Graphics



raw measurement data 
from human subject



parametric model



model + shading



model + rendering



Hybrid speech synthesis

• Partial synthesis
• Case study: Trajectory Tiling
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A Unified Trajectory Tiling Approach to
High Quality Speech Rendering

Yao Qian, Senior Member, IEEE, Frank K. Soong, Fellow, IEEE, and Zhi-Jie Yan, Member, IEEE

Abstract—It is technically challenging to make a machine talk
as naturally as a human so as to facilitate “frictionless” interac-
tions between machine and human. We propose a trajectory tiling-
based approach to high-quality speech rendering, where speech pa-
rameter trajectories, extracted from natural, processed, or synthe-
sized speech, are used to guide the search for the best sequence of
waveform “tiles” stored in a pre-recorded speech database.We test
the proposed unified algorithm in both Text-To-Speech (TTS) syn-
thesis and cross-lingual voice transformation applications. Exper-
imental results show that the proposed trajectory tiling approach
can render speechwhich is both natural and highly intelligible. The
perceived high quality of rendered speech is also confirmed in both
objective and subjective evaluations.

Index Terms—Cross-lingual, speech synthesis, trajectory tiling,
voice transformation.

I. INTRODUCTION

S PEECH is one of the most natural and intuitive ways for

a human to interact with a computer or another human.

However, it is technically challenging for a machine to gen-

erate speech which can make the human-machine interaction

“frictionless.” Here speech rendering is meant to be more

general than a conventionally defined Text-To-Speech (TTS)
system. The input to such a speech rendering system can be

a piece of unrestricted text (like in TTS), speech synthesis

markup language (SSML), speech captured in an ambient

setup, e.g., by a distant microphone or in a noisy environ-

ment. The corresponding speech technologies consist of TTS,

voice transformation from one speaker to another speaker, or

translating speech from one language to another language but

keeping the voice characteristics of the original input (e.g.

EMIME project) [1], or speech enhancement for improving

the clarity/intelligibility of input noisy or reverberant speech

for human-human communication. In TTS, a hybrid approach

which combines the parametric model based HMM and wave-

form concatenation-based unit selection has significantly
improved the synthesized voice quality of synthesized speech

in the past few years [2]–[9]. While HMMs can yield rather
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smooth and highly intelligible synthesized speech, it has still

been perceived as a voice with some traditional vocoder flavor
[10]. On the other hand, the waveform concatenation-based

unit selection TTS can yield fairly natural sounding speech but

occasionally it may still produce some undesirable concate-

nation glitches. The hybrid approaches, which use HMM to

guide the unit selection process to minimize the spectral, pitch

and duration mismatch and concatenation distortion, tend to

preserve the advantages of both approaches [7]. A probabilistic

criterion of likelihood [2], Kullback-Leibler divergence (KLD)

between target and candidate phone-based HMMs [3], [44]

and the generated parameter trajectories from HMMs [4]–[6]

are used to select the potential waveform unit candidates. The

units for concatenation can be label-free, 5 ms speech frames

HMM state, half-phone, phone, diphone and other non-uniform

units. An in-depth review is given by Zen, et al. [7]. The unit
selection oriented approach can also improve the quality of

HMM-based synthesis by employing stable regions of natural

units [8] or using the optimal rich context model sequences

[9] to alleviate the sound muffling effects caused by overly
smoothed HMM parameters due to the “averaging” process in

HMM training [11].

To perform cross-lingual voice transformation, a straight-for-

ward approach is to firstly establish a phonetic mapping be-
tween source and target languages according to the Interna-

tional Phonetic Alphabets (IPAs) or acoustic mapping with a

statistical measure like KLD, then to establish voice transforma-

tion as the conventional, intra-lingual speaker adaptation via the

techniques like maximum a posterior (MAP), maximum like-

lihood linear regression (MLLR), constrained maximum like-

lihood linear regression (CMLLR), speaker adaptive training

(SAT) and constrained structural maximum a posteriori linear

regression (CSMAPLR) [12]. To transform voice between two

fairly different languages where their corresponding phoneme

set do not overlap well, shorter units of sub-phones or HMM

states are preferred, and a mapping between the states of two

HMMs of the source and target languages can be established

[13]–[18].

In this paper, we propose a trajectory tiling based approach

to high quality speech rendering, which uses natural, pro-

cessed, or synthesized trajectories to guide the search of the

“best” sequence of concatenated waveform segments. The

approach, when applied to TTS, has been shown to render

natural sounding speech without sacrificing the high intelligi-
bility, which has been shown to be well preserved in intrinsic

HMM-based TTS [4]. We also extended the trajectory tiling

approach to cross-lingual voice transformation [19] for ren-

dering target speaker’s training data in a language that he

1558-7916/$31.00 © 2012 IEEE



Trajectory tiling

• Core idea
• generate speech parameters using a statistical model

• spectral envelope
• F0
• energy (gain)

• find a sequence of waveform fragments that matches these parameters
• concatenate that sequence



Figure 1 from Y. Qian, F. K. Soong and Z. J. Yan “A Unified Trajectory Tiling Approach to High Quality Speech Rendering” 
IEEE Trans. Audio, Speech, and Language Proc. 21 (2), pp. 280-290, 2013. DOI:10.1109/TASL.2012.2221460



• Extract from the waveforms
• spectral envelope
• energy
• F0

• target cost = distance between the above 
features, summed over all frames of a unit

• join cost = ?

Measuring the distance between
waveform fragments and the trajectories from the HMM

Figure 1 from Y. Qian, F. K. Soong and Z. J. Yan “A Unified Trajectory Tiling Approach to High Quality Speech Rendering” 
IEEE Trans. Audio, Speech, and Language Proc. 21 (2), pp. 280-290, 2013. DOI:10.1109/TASL.2012.2221460



Measuring the distance between
waveform fragments and the trajectories from the HMM



What are Line Spectral Pairs (LSPs) ? 
Sometimes called Line Spectral Frequencies (LSFs)
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Measuring the distance between
waveform fragments and the trajectories from the HMM

guiding parameter trajectories 
(from HMM)

waveform

parameters extracted from the waveform



LSPs extracted from waveform vs. generated by HMM   notice the mismatch!
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Figure 2.2: Example of applying temporal smoothing to LSF parameteris using a slid-

ing Hanning window.

temporal resolution of HMM modelling. The width of the window was varied, to im-

pose varying amounts of smoothing. Figure 2.2 shows an example of this process.

2.5.1.2 Variance scaling

Variance adjustment was implemented as a simple scaling of the standard deviation

by a fixed factor. For each parameter (i.e., each LSF) in turn, the mean value over

the utterance was found and subtracted before multiplying the parameter by a scalar

value, and finally adding the mean back in. By altering the scalar value, the standard

deviation is correspondingly adjusted, to simulate both reduced variance (which is

commonly observed in HMM synthesis) and increased variance (e.g., as may happen

if a Gaussian p.d.f. is poorly estimated during training, or when GV fails to re-instate

the appropriate amount of variance). This approach of variance scaling is similar to

the postfiltering method investigated by Silén and Helander (2012). Figure 2.3 shows

an example of this process.
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ing Hanning window.

temporal resolution of HMM modelling. The width of the window was varied, to im-

pose varying amounts of smoothing. Figure 2.2 shows an example of this process.
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Variance adjustment was implemented as a simple scaling of the standard deviation

by a fixed factor. For each parameter (i.e., each LSF) in turn, the mean value over

the utterance was found and subtracted before multiplying the parameter by a scalar

value, and finally adding the mean back in. By altering the scalar value, the standard

deviation is correspondingly adjusted, to simulate both reduced variance (which is

commonly observed in HMM synthesis) and increased variance (e.g., as may happen

if a Gaussian p.d.f. is poorly estimated during training, or when GV fails to re-instate

the appropriate amount of variance). This approach of variance scaling is similar to

the postfiltering method investigated by Silén and Helander (2012). Figure 2.3 shows

an example of this process.
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Figure 5: MLPG generated LSP by system F (phones, state units, DNN) in red compared with natural LSPs in blue.
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[7] Kåre Jean Jensen and Søren Riis, “Self-organizing letter
code-book for text-to-phoneme neural network model,” in
INTERSPEECH, 2000, pp. 318–321.

[8] Ronan Collobert, Jason Weston, Léon Bottou, Michael
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• instead of extracting these features from the waveforms
• line spectral pairs (LSPs)
• gain (of the LPC filter)
• F0

• regenerate them using HMMs
• train models 
• synthesise speech parameter trajectories for the training data from the models

Reduce mismatch between
natural parameter trajectories and those generated by HMMs
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Join cost: Normalised Cross Correlation

Figure 4 from Y. Qian, F. K. Soong and Z. J. Yan “A Unified Trajectory Tiling Approach to High Quality Speech Rendering” 
IEEE Trans. Audio, Speech, and Language Proc. 21 (2), pp. 280-290, 2013. DOI:10.1109/TASL.2012.2221460



Training the ‘guide’ HMM system

Figure 2 from Y. Qian, F. K. Soong and Z. J. Yan “A Unified Trajectory Tiling Approach to High Quality Speech Rendering” 
IEEE Trans. Audio, Speech, and Language Proc. 21 (2), pp. 280-290, 2013. DOI:10.1109/TASL.2012.2221460



Trajectory tiling

• Core idea
• generate speech parameters using a 

statistical model
• spectral envelope
• F0
• energy (gain)

• find a sequence of waveform 
fragments that matches these 
parameters

• concatenate that sequence

• Additional details
• use LSFs for spectral envelope

• to calculate the target cost, represent 
waveform fragments with parameters 
generated by HMMs (trained on the 
same data)

• use a join cost that both
• measures mismatch
• finds good concatenation points


