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beech signal analysis and modelling

analysis: generalising source + filter to excitation + spectral envelope

modelling: representing speech parameters in a form suitable for statistical modelling




Orilentation

* hirst part: speech signal analysis

* epochs
* O

» spectral envelope

» Second part: speech signal modelling

» speech parameters
» representations surtable for modelling

» converting back to a wavetorm



VWhat you should already know

» speech signals

e FO & harmonics

» vocal tract frequency response
(formants)

e source-filter mode]

* source: pulse train or noise
e filter: a set of resonances

» e.g, linear predictive (LP)

* Fourler analysis

* magnitude & phase spectra



Speech signal analysis

what we need to analyse
epoch detection (‘pitch marking’)
FO estimation (‘prtch tracking’)
spectral envelope estimation




Generalising the source-filter model concept

» Often, we don't really need the ‘true’ source and filter
* We just need to work with the speech signal, so that we can

* MeEAasure

» Individual properties: e.g., FO for use In the join cost

* modily

* phonetic identity

. prosody } independently

* manipulate

» waveforms: e.g,, to smoothly concatenate candidates from the database
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Epoch detection vs FO estimation

» [wo different things, for different purposes

» Epoch detection (also known as pitch marking, Glottal Closure Instant (GCI) detection)

* prtch-synchronous signal processing
» [D-PSOLA

» or simply just overlap-add joining of units

» a few vocoders operate prtch synchronously

» FO estimation (also known as pitch determination, pitch tracking, FO tracking, ...)

» a component of the join cost In all unit selection systems
» used In the target cost, for systems that predict FO targets (ASF)

* a parameter for most (probably all) vocoders
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Speech signal analysis

what we need to analyse
epoch detection (‘prtch marking’)
FO estimation (‘prtch tracking’)
spectral envelope estimation




VWhat we neec

DOCh C

etection for: PSOLA



Taylor - figure 12.22
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A simple algorithm for epoch detection

¢ Goal

» find a single, consistent location within each pitch period of the speech waveform

¢ Plan

» make the problem simpler by removing all frequencies other than FO
» find the main peak In each perioad
* but, peak picking turns out to be hard

* SO, convert problem to detecting zero crossings, which Is easy
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A simple algorithm for epoch detection

» Summary of method:
* preprocess
* remove unwanted frequencies with a low-pass filter
» peak picking
» differentiate
* smooth, to remove spurious low-amplitude variations
» find zero crossings (from positive to negative)
* postprocess

» correct for time offset - e.g, to align prtchmark with largest peak in each period



Speech signal analysis

what we need to analyse
epoch detection (‘prtch marking’)
-0 estimation (‘prtch tracking’)
spectral envelope estimation




Orilentation

* epoch detection

DItk

marking, Glottal Closure /' for use within signal processing algorithms

Nnsta

Nt (GCI) detection

e FO estimation

bitch determination, pitch tracking, > o parameterising speech signals
-0 tracking, ...

So, can we obtain an estimate of FO from the epochs?



Obtaining an estimate of FO from the ¢
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Cross-correlation (also known as “modified autocorrelation™)

t+W

ri(7) = Z LTt
j=t+1

r¢(7) autocorrelation function of lag 7
t time index
W Integration window size
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The autocorrelation methoc

» We search for a peak in the (modified) autocorrelation function.

» There will be a large peak at a lag of O, another at the pitch period and then every exact
multiple of the pitch period

* Pick the highest non-zero-lag peak over some search range

» the corresponding lag = the pitch period (measured in samples)

» Not always as easy at that sounds:
» real signals are not perfectly periodic

» formants will lead to some waveform self-similarity at lags other than exact multiples of
the prtch period




°roblems with autocorrelation: peak picking i1s hard

* We need to choose the search range carefully.
» |f the upper limit 1s too high, we may choose a peak at too great
» overestimate the pitch period = underestimate FO by a factor

* If lower Iimit is too low we may choose the zero-lag peak

» lypically, pitch estimation algorithms are based on autocorrelatio

a lag

(e.g., prtch halving)

N Or Cross-correlat

then add various pre- and post-processing mechanisms to c
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Autocorrelation I1s not enough: pre-processing

* low-pass filtering the speech waveform
» often combined with downsampling the waveform (reduces computational cost)

» removes vocal tract information (e.g., formants) and unvoiced sounds
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Auto-correlation 1s not enough: pre-processing

» spectral flattening

» this Is a general term for removing the vocal tract information (which is the cause of the
spectral envelope shape In the first place)

* Inverse filtering Is one way to do this

» [aylor suggests that inverse filtering introduces artefacts that actually make FO estimation
harder

* | presume he means phase distortions - these make the residual less like an impulse train

» Nevertheless, some pitch tracking algorithms do use inverse filtering to flatten the
spectrum
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sampling rate = 8kHz
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Figure 2 from David Talkin "A Robust Algorithm for Pitch Tracking (RAPT)" in Speech Coding and Synthesis, W.
B. Kleijn and K. K. Palatal (eds), pages 497-518 Elsevier Science B.V., 1995




Auto-correlation Is not enough: post-processing

* dynamic programming
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Figure from YAAPT webpage http://ws2.binghamton.edu/zahorian/yaapt.htm




’re-processing + autocorrelation + post-processing

» [his is the typical architecture of many FO estimation algorithms

* [here tend to be a lot of parameters to tune

The tuneable parameters in RAPT - in David Talkin "A Robust Algorithm for Pitch Tracking (RAPT)" in Speech
Coding and synthesis, W. B. Kleijn and K. K. Palatal (eds), pages 497-518, Elsevier Science B.V., 1995




Alternatives to autocorrelation

* cepstral domain methods
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Michael Noll, “Cepstrum Pitch Determination”J. Acoust. Soc. Am. 41, 293, 1967



Alternatives to autocorrelation

» comb filtering

* an adaptive filter that eliminates the harmonics (at multiples of FO)

» the response of the filter s adaptively varied so that it removes the maximum amount
of energy from the signal (I.e., the output is as small as possible)
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Alternatives to autocorrelation

» probabilistic methods

» still uses pre-processing followed by autocorrelation

» train a classifier using supervised learning - needs ground truth training data

» still needs some post-processing (dynam
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Fvaluation

* What is ground truth!? laryngograph.com

» hand-labelled (or hand-corrected) FO contours

» Laryngograph (also known as an "Electroglottograph™ or
-GG) recordings

Laryngographs
microl rocessor

» various public databases available

» e.g, http://www.cstred.ac.uk/research/projects/fda/

* What type of errors/’
» voicing status errors (in all speech)

* O error (In voiced speech)
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What about different voice qualities, such as creaky?

Speech waveform (creaky)

» FO estimation algorithms

LN
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o
- usually assume perfect =
geriodicity < o BRI L S o
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» therefore will perform poorly DEGG (creaky)
on creaky voice S0 || B
» epoch detection algorithms :% OWMMM

- | o 5 I | I I I I
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» overall, we expect it will be harder 2 05
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to vocode some voice qualities < i
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John Kane, Christer Gobl “Evaluation of glottal closure instant detection in a range of
voice qualities” in Speech Communication 55(2), 2013, pages 295-314




Speech signal analysis

what we need to analyse
epoch detection (‘pitch marking’)
FO estimation (‘prtch tracking’)
spectral envelope estimation
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Interference from the source

« Kawahara et al state:

» "When the length of a time window for spectral analysis is comparable to the fundamental
period of the signal repetition, the resultant power spectrum shows periodic variation in the
time domain.”

¢ and

» "When the length of a time window spans several repetitions, the resultant power
spectrum shows periodic variation in the frequency domain.”

ideki Kawahara, lkuyo Masuda-Katsuse and Alain de Cheveigne “Restructuring speech representations using
a pitch-adaptive time—frequency smoothing and an instantaneous-frequency-based FO extraction: Possible

role of a repetitive structure in sounds” In Speech Communication,Volume 27/, Issues 3—4, April 1999, Pages
18/-207/.DOI: 10.1016/50167-6393(98)00085-5
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“When the length of a
time window spans
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resultant power spectrum
shows periodic variation in
the frequency domain.”




The STRAIGHT vocoder

» Analysis phase (the most important part of STRAIGHT)

» FO adaptive window to minimise the interference with spectral envelope

» standard FFT analysis

* Interpolation in frequency to extract smooth spectral envelope from harmonic
amplitudes

» estimation of ratio between periodic and aperiodic energy at each frequency (which
we'll cover In a little later)

» Synthesis phase (generating a waveform)

» coming later, when we consider modelling speech signals
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STRAIGHT spectral envelope + Mel cepstral analysis

120 FFT power spectrum
100 L FFT + mel-cepstral analysis
‘ STRAIGHT + mel-cepstral analysis
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beech signal modelling

speech parameters
representations suitable for modelling

ﬁ

converting back to a waveform




Orilentation

* S0 far: speech signal analysis

* epochs

.+ FO

» spectral envelope function

regressi

=
» Coming up: speech signal modelling —
phrase initial P phrase final
* speech parameters N /| 7
Sl dhk actsaetslil
* representations suitable for modelling the cat sat”
DET NN VB

» converting back to a wavetorm

silndh-ax+k=ae, "phrase initial", "unstressed syllable”, ...



Orilentation

* S0 far: speech signal analysis

* epochs
* O

» spectral envelope

+  smooth spectral envelope
» Coming up: speech signal modelling - fundamental frequency (FO)
* speech parameters w * aperiodic energy

» representations surtable for modelling

» converting back to a wavetorm
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Representations of the speech parameters that are suitable for modelling

» Vocoder Is essentially a source-filter model

» except we use an excitation signal + spectral envelope, not the “true’” sourcetfilter

» excitation signal

» a periodic signal (e.g., a pulse train) at a frequency of FO
» switched on and off by a voiced/unvoiced (V/UV) decision

» spectral envelope

* we need a representation that I1s amenable to statistical modelling

* aperiodiC energy

» spectrally-shaped noise



Representations of the speech parameters that are suitable for modelling

» We want parameters that are
» fixed in number (per frame) and as low dimensional as possible
» at a fixed frame rate
* 2 good separation of prosodic and segmental identity aspects of speech
» 5o that we can model (and/or modify) erther of them independently
» well behaved and stable, when we perturb them (e.g.,, by averaging, or modelling error)
» consecutive frames within a single speech sound

» frames pooled from several similar sounds

» and for statistical modelling, we may addrtionally like to have

» statistically uncorrelated parameters (to avoid having to model covariance)



What does STRAIGHT actually

* ... and s 1t surtable for modelling?

* smooth spectral envelope

.+ FQ

* non-periodicity

* In other words, aperiodic energy

DIOC

¢ physical

spectral
envelope
analysis
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non-periodicity
analysis

non-
periodicity

FO analysis —>

Figure: Hideki Kawahara



What does STRAIGHT actually produce!

ST specinogean

* smooth spectral envelope

* high resolution (same as FFT)

* highly-correlated parameters €0

* probably not surtable for 0 o
statistical modelling ‘

» at least, not with diagonal-
covariance Gausslans 0

A0
O
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Figure: Hideki Kawahara



Improving the re
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hectral envelo
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» warp frequency scale

e decorrelate

* reduce dimensionality

Figure: Hideki Kawahara
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Representing the spectral envelope as the Mel-cepstrum

» Not guite the same as the MFCCs we use in ASR, but basically the same motivation

 warp the frequency scale

* Instead of lossy discrete filterbank, use a continuous function (all-pass filter)

e decorrelate

» convert from spectrum to cepstrum

* reduce dimensionality

* truncate the cepstrum

* In ASR, we kept the first |2 coefficients

* In synthesis, we'll use a lot more, perhaps the first 40-60 coefficients



What does STRAIGHT actually

* aperiodic energy

» effectively the ratio between
periodic and aperiodic
energy, at each frequency

* high resolution (same as FF1T)

* highly-correlated parameters
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Improving the re

* aperiodic energy

* reduce dimensionality
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STRAIGHT analysis and synthesis
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VWhat next!?

* We have decomposed speech Into
» O, plus aV/UV decision

* smooth spectral e

pd

nvelope,

rameterised as -

the Mel-cepstrum

* band aperiodicity parameters

¢ \We've seen how to reconstruct the
waveform

« Now we can insert a statistical

model between the analysis and
synthesis parts
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VWhat next!
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