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Figure 2.2: Example of applying temporal smoothing to LSF parameteris using a slid-

ing Hanning window.

temporal resolution of HMM modelling. The width of the window was varied, to im-

pose varying amounts of smoothing. Figure 2.2 shows an example of this process.

2.5.1.2 Variance scaling

Variance adjustment was implemented as a simple scaling of the standard deviation

by a fixed factor. For each parameter (i.e., each LSF) in turn, the mean value over

the utterance was found and subtracted before multiplying the parameter by a scalar

value, and finally adding the mean back in. By altering the scalar value, the standard

deviation is correspondingly adjusted, to simulate both reduced variance (which is

commonly observed in HMM synthesis) and increased variance (e.g., as may happen

if a Gaussian p.d.f. is poorly estimated during training, or when GV fails to re-instate

the appropriate amount of variance). This approach of variance scaling is similar to

the postfiltering method investigated by Silén and Helander (2012). Figure 2.3 shows

an example of this process.

Speech Synthesis

Simon King
University of Edinburgh



Speech signal analysis and modelling

• analysis: generalising  source + filter   to  excitation + spectral envelope

• modelling: representing speech parameters in a form suitable for statistical modelling



Orientation

• First part: speech signal analysis

• epochs
• F0
• spectral envelope

• Second part: speech signal modelling

• speech parameters
• representations suitable for modelling
• converting back to a waveform



What you should already know

• speech signals
• F0 & harmonics
• vocal tract frequency response 

(formants)
• source-filter model

• source: pulse train or noise
• filter : a set of resonances

• e.g., linear predictive (LP)
• Fourier analysis

• magnitude & phase spectra



Speech signal analysis

• what we need to analyse
• epoch detection (‘pitch marking’)
• F0 estimation (‘pitch tracking’)
• spectral envelope estimation



Generalising the source-filter model concept

• Often, we don’t really need the ‘true’ source and filter
• We just need to work with the speech signal, so that we can

• measure
• individual properties: e.g., F0 for use in the join cost

• modify
• phonetic identity
• prosody

• manipulate
• waveforms: e.g., to smoothly concatenate candidates from the database

} independently
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Epoch detection vs F0 estimation

• Two different things, for different purposes
• Epoch detection (also known as pitch marking, Glottal Closure Instant (GCI) detection)

• pitch-synchronous signal processing
• TD-PSOLA
• or simply just overlap-add joining of units
• a few vocoders operate pitch synchronously

• F0 estimation (also known as pitch determination, pitch tracking, F0 tracking, …)
• a component of the join cost in all unit selection systems
• used in the target cost, for systems that predict F0 targets (ASF)
• a parameter for most (probably all) vocoders



Epoch detection vs F0 estimation
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Speech signal analysis

• what we need to analyse
• epoch detection (‘pitch marking’)
• F0 estimation (‘pitch tracking’)
• spectral envelope estimation



What we need epoch detection for : PSOLA
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Figure 12.22 Fine-grained comparison of (from top to bottom) waveform, laryngograph signal,
integrated residual and residual. The vertical lines show the instants of glottal closure and
glottal opening. Here we can see that, while the general periodicity of the form of the Lx and
residual glottal flow are similar, the functions are not simply related in shape. Note that, when
the glottis is open, the Lx signal is at a minimum because the current flow is at a minimum. The
integrated residual signal approximates the glottal volume velocity. Ideally the closed phase in
this signal should be flatter, but the many modelling errors combine to give this part of the
waveform a gradual upward slope. A small sharpening in the gradient of this can be seen at the
instant of glottal opening.

which corresponds to the IGC. Furthermore, it is known that phase distortion can make
time-domain marking of waveforms virtually impossible for either machine or human.

These difficulties led many to a radical alternative, which was to measure the glottal
behaviour by means other than from the speech waveform. A common technique was
to use a device known as an electroglottograph or a laryngograph. This consists of
two metal discs, which are placed on each side of the protruding part of the larynx
(the “Adam’s apple”). A very-high-frequency alternating current is passed through the
system, such that the current passes from one disc, through the larynx, to the other
disc, and from this the electrical impedance and flow of current across the larynx can
be measured. If the glottis is open, the impedance is high and the current is low; if
the glottis is shut the impedance is low and the current is high. Laryngograph signals
(known as Lx signals) do not, however, generate the glottal-flow signal itself because the
electrical impedance and flow are not simply related. The Lx signal is, however, quite

Downloaded from Cambridge Books Online by IP 129.215.17.190 on Sun Feb 22 13:46:13 GMT 2015.
http://dx.doi.org/10.1017/CBO9780511816338.014

Cambridge Books Online © Cambridge University Press, 2015
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A simple algorithm for epoch detection

• Goal
• find a single, consistent location within each pitch period of the speech waveform

• Plan
• make the problem simpler by removing all frequencies other than F0
• find the main peak in each period

• but, peak picking turns out to be hard
• so, convert problem to detecting zero crossings, which is easy



A simple algorithm for epoch detection
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A simple algorithm for epoch detection



A simple algorithm for epoch detection



A simple algorithm for epoch detection



A simple algorithm for epoch detection

• Summary of method:
• preprocess 

• remove unwanted frequencies with a low-pass filter
• peak picking 

• differentiate
• smooth, to remove spurious low-amplitude variations
• find zero crossings (from positive to negative)

• postprocess 

• correct for time offset - e.g., to align pitchmark with largest peak in each period



Speech signal analysis

• what we need to analyse
• epoch detection (‘pitch marking’)
• F0 estimation (‘pitch tracking’)
• spectral envelope estimation



Orientation

for use within signal processing algorithms
• epoch detection
• pitch marking, Glottal Closure 

Instant (GCI) detection

• F0 estimation
• pitch determination, pitch tracking, 

F0 tracking, …

So, can we obtain an estimate of F0 from the epochs?

for parameterising speech signals



Obtaining an estimate of F0 from the detected epochs



Epoch detection vs F0 estimation

time

am
pl

itu
de





Cross-correlation (also known as “modified autocorrelation”)
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The autocorrelation method

• We search for a peak in the (modified) autocorrelation function.
• There will be a large peak at a lag of 0, another at the pitch period and then every exact 

multiple of the pitch period
• Pick the highest non-zero-lag peak over some search range 

• the corresponding lag = the pitch period (measured in samples)

• Not always as easy at that sounds:
• real signals are not perfectly periodic

• formants will lead to some waveform self-similarity at lags other than exact multiples of 
the pitch period



Problems with autocorrelation: peak picking is hard

• We need to choose the search range carefully.
• If the upper limit is too high, we may choose a peak at too great a lag

• overestimate the pitch period = underestimate F0 by a factor (e.g., pitch halving)
• If lower limit is too low we may choose the zero-lag peak

• Typically, pitch estimation algorithms are based on autocorrelation or cross-correlation, 
then add various pre- and post-processing mechanisms to deal with these problems



Autocorrelation is not enough: pre-processing

• low-pass filtering the speech waveform
• often combined with downsampling the waveform (reduces computational cost)
• removes vocal tract information (e.g., formants) and unvoiced sounds
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Auto-correlation is not enough: pre-processing

• spectral flattening 

• this is a general term for removing the vocal tract information (which is the cause of the 
spectral envelope shape in the first place)

• inverse filtering is one way to do this
• Taylor suggests that inverse filtering introduces artefacts that actually make F0 estimation 

harder

• I presume he means phase distortions - these make the residual less like an impulse train

• Nevertheless, some pitch tracking algorithms do use inverse filtering to flatten the 
spectrum
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sampling rate = 8kHz

Figure 2 from David Talkin "A Robust Algorithm for Pitch Tracking (RAPT)" in Speech Coding and Synthesis, W. 
B. Kleijn and K. K. Palatal (eds), pages 497-518 Elsevier Science B.V., 1995



Auto-correlation is not enough: post-processing

• dynamic programming

Figure from YAAPT webpage  http://ws2.binghamton.edu/zahorian/yaapt.htm



Pre-processing + autocorrelation + post-processing

• This is the typical architecture of many F0 estimation algorithms
• There tend to be a lot of parameters to tune

The tuneable parameters in RAPT - in David Talkin "A Robust Algorithm for Pitch Tracking (RAPT)" in Speech 
Coding and Synthesis, W. B. Kleijn and K. K. Palatal (eds), pages 497-518, Elsevier Science B.V., 1995



Alternatives to autocorrelation

• cepstral domain methods A.M. NOLL 
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Fz6. 3. Logarithm power spec- 
trum (top) of a voiced speech 
segment showing a spectral peri- 
odicity resulting from the pitch 
periodicity of the speech. The 
power spectrum of the logarithm 
spectrum, or cepstrum (bottom), 
therefore has a sharp peak corre- 
sponding to this spectral 
periodicity. 
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FIG. 4. Basic operations required for obtaining the 
short-time cepstrum of a speech signal. The ham- 
ming time window of length Tw sec moves in jumps 
of Tj sec. 
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Alternatives to autocorrelation

• comb filtering 

• an adaptive filter that eliminates the harmonics (at multiples of F0)
• the response of the filter is adaptively varied so that it removes the maximum amount 

of energy from the signal (i.e., the output is as small as possible)

Y.K. Jang, J.F. Chicharo and B. Ribbum “Pitch 
Detection And Estimation Using Adaptive IIR 
Comb Filtering”, in Proc SST 1992, pages 
54-59,  Brisbane, Australia, 1992 



• probabilistic methods 

• still uses pre-processing followed by autocorrelation
• train a classifier using supervised learning - needs ground truth training data
• still needs some post-processing (dynamic programming)

Figure 1: Diagram of the proposed Subband Autocorrelation Classification (SAcC) pitch tracking system.

result can be interpreted as the likelihood of the observations
Ot at time t given a period hypothesis ⌧ , i.e., P (Ot|⌧)

The Viterbi path through an HMM is used to smooth the
pitch track, and to differentiate no-pitch and one-pitch states.
The HMM finds the period sequence that maximizes the likeli-
hood of the autocorrelation observations Ot by optimizing the
sum across time of

P (Ot|⌧t, ⌧t�1) = P (Ot|⌧t)P (⌧t|⌧t�1) (3)

where ⌧t and ⌧t�1 are the pitches at frames t and t� 1, and the
transition probabilities P (⌧t|⌧t�1) are optimized empirically.
⌧t = 0 is a special case meaning no-pitch, whose probability is
set to a fixed percentile of the real pitch probabilities.

Although our implementation of [2] differs from the origi-
nal, it has performance essentially equivalent to the c-code re-
leased by the original authors for single-pitch conditions.

3. The SAcC Pitch Tracker

The diagram of the proposed Subband Autocorrelation Classsi-
fication (SAcC) pitch tracking system is shown in Fig. 1. The
key change from the Wu algorithm is that the pitch period poste-
rior is calculated by a single classifier working on the autocorre-
lations from all subbands, rather than explicit peak picking and
cross-band integration. The modified stages are now described
in more detail:

3.1. Subband PCA Dimensionality Reduction

Each subband autocorrelation Al(t, ·) is 400 points long; com-
bining these across the s = 48 subbands would give an ex-
tremely large feature space. In fact, the normalized autocor-
relation of each band-pass filtered signal xl[n] is highly con-
strained, leading to large redundancy. To simplify the classifi-
cation problem, we reduce the dimensionality within each sub-
band by applying Principal Component Analysis (PCA).

The principal components corresponding to the k largest
eigenvalues were used to produce the subband k-dim PCA fea-
tures Fl(t,m) for each subband where l = 1, · · · , s is the sub-
band index, and m = 1, · · · , k is the principal component in-
dex. We tried values for k in the range 5 to 20. The sorted
eigenvalues of the PCA components decreased very fast, reflect-
ing the redundancy in the autocorrelations.

3.2. MLP Classifier

The classifier for pitch candidates shown in Fig. 1 is a multi-
layer perceptron (MLP) trained using QuickNet1. The number

1
http://www.icsi.berkeley.edu/Speech/qn.html
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Figure 2: The MLP outputs P (⌧ |Ot) (top panel); and Viterbi
tracking output of SAcC (blue diamond) and the ground truth
(red line) on a sample speech corrupted with RBF and pink
noise at 25dB SNR. (bottom panel)

of inputs to the MLP is s ⇥ k. We used a single hidden layer
with h hidden units, where h was varied between 50 and 800.

The MLP had separate outputs for different pitch (period)
values over a range which quantized 60 to 404 Hz using 24 bins
per octave (in a logarithmic scale), a total of 67 bins. Each
ground-truth pitch value in the training data was mapped to the
nearest quantized pitch target. Any pitches outside this range
were mapped to special “too low” and “too high” bins. Finally,
an additional “no-pitch” target output accounted for unvoiced
frames, giving p = 70 output units in total. To increase the
range and volume of training data, each example was resampled
at 8 rates from 0.6 to 1.6 and added to the training pool with a
correspondingly-shifted ground truth pitch label.

The output of the MLP estimates the posterior probability
of a pitch period given the observations, P (⌧ |Ot). Dividing
by the pitch prior P (⌧) gives a value proportional to P (Ot|⌧)
which can then be HMM (Viterbi) smoothed as in (3).

Alternatives to autocorrelation

Byung Suk Lee, Daniel P. W. Ellis “Noise Robust Pitch Tracking by Subband Autocorrelation 
Classification” in Proc. Interspeech 2012, September, Portland, OR, USA



Evaluation 

• What is ground truth?
• hand-labelled (or hand-corrected) F0 contours
• Laryngograph (also known as an “Electroglottograph” or 

EGG) recordings 
• various public databases available
• e.g., http://www.cstr.ed.ac.uk/research/projects/fda/

• What type of errors?
• voicing status errors (in all speech)
• F0 error (in voiced speech)

laryngograph.com

www.fon.hum.uva.nl



frequency is clearly apparent when observing the number
of pulses in the two speech segments (both segments are
20 ms). The modal utterance has a median f0 of just under
200 Hz, while the falsetto utterance has a median f0 of over
400 Hz. Again for the modal utterance clear peaks occur in

the LP-residual which correspond to the negative zero-
crossing in the DEGG signal. For falsetto, the LP-residual
is considerably noisier. For higher f0 levels LPC analysis
can become biased towards the harmonics and the subse-
quent inverse filtering may remove excitation components
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Fig. 2. Speech waveform (top row), derivative EGG signal (middle row) and LP-residual (bottom row) for tense (left column) and harsh (right column)
utterances. Speech segment is a portion of the utterance Where were you while we were away? produced by a male speaker.
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Fig. 3. Speech waveform (top panel), derivative EGG signal (middle panel) and LP-residual (bottom panel) of a portion of the utterance She is thinner
than I am produced by a male speaker in creaky voice.
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What about different voice qualities, such as creaky?

• F0 estimation algorithms
• usually assume perfect 

periodicity
• therefore will perform poorly 

on creaky voice
• epoch detection algorithms

• vary in their ability to handle 
different voice qualities

• overall, we expect it will be harder 
to vocode some voice qualities

John Kane, Christer Gobl “Evaluation of glottal closure instant detection in a range of 
voice qualities” in Speech Communication 55(2), 2013, pages 295–314



Speech signal analysis

• what we need to analyse
• epoch detection (‘pitch marking’)
• F0 estimation (‘pitch tracking’)
• spectral envelope estimation
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Interference from the source

• Kawahara et al state:
• “When the length of a time window for spectral analysis is comparable to the fundamental 

period of the signal repetition, the resultant power spectrum shows periodic variation in the 
time domain.”

• and
• “When the length of a time window spans several repetitions, the resultant power 

spectrum shows periodic variation in the frequency domain.”

Hideki Kawahara, Ikuyo Masuda-Katsuse and Alain de Cheveigné “Restructuring speech representations using 
a pitch-adaptive time–frequency smoothing and an instantaneous-frequency-based F0 extraction: Possible 

role of a repetitive structure in sounds” in Speech Communication, Volume 27, Issues 3–4, April 1999, Pages 
187–207. DOI: 10.1016/S0167-6393(98)00085-5



“When the length of a time 
window for spectral analysis 
is comparable to the 
fundamental period of the 
signal repetition, the 
resultant power spectrum 
shows periodic variation in 
the time domain.”



“When the length of a 
time window spans 
several repetitions, the 
resultant power spectrum 
shows periodic variation in 
the frequency domain.”



The STRAIGHT vocoder

• Analysis phase (the most important part of STRAIGHT)
• F0 adaptive window to minimise the interference with spectral envelope
• standard FFT analysis
• interpolation in frequency to extract smooth spectral envelope from harmonic 

amplitudes
• estimation of ratio between periodic and aperiodic energy at each frequency (which 

we’ll cover in a little later)

• Synthesis phase (generating a waveform)
• coming later, when we consider modelling speech signals



window size: 256 samples
 (16 ms, or approx 2 pitch periods)

window size: 1024 samples
(64 ms)



STRAIGHT spectral envelope + Mel cepstral analysis
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Speech signal modelling

• speech parameters
• representations suitable for modelling
• converting back to a waveform



Speech signal modelling

• speech parameters
• representations suitable for modelling
• converting back to a waveform



Orientation

• So far : speech signal analysis

• epochs
• F0
• spectral envelope

• Coming up: speech signal modelling

• speech parameters
• representations suitable for modelling
• converting back to a waveform

regression function

sil^dh-ax+k=ae, "phrase initial", "unstressed syllable", ...

sil dh ax k ae t s ae t sil

((the cat) sat)

DET NN VB

phrase finalphrase initial
pitch accent

"the cat sat"



Orientation

• So far : speech signal analysis

• epochs
• F0
• spectral envelope

• Coming up: speech signal modelling

• speech parameters
• representations suitable for modelling
• converting back to a waveform

• smooth spectral envelope
• fundamental frequency (F0)
• aperiodic energy



Speech signal modelling

• speech parameters
• representations suitable for modelling
• converting back to a waveform



Representations of the speech parameters that are suitable for modelling

• Vocoder is essentially a source-filter model
• except we use an excitation signal + spectral envelope, not the “true” source+filter

• excitation signal
• a periodic signal (e.g., a pulse train) at a frequency of F0
• switched on and off by a voiced/unvoiced (V/UV) decision

• spectral envelope
• we need a representation that is amenable to statistical modelling

• aperiodic energy
• spectrally-shaped noise



Representations of the speech parameters that are suitable for modelling

• We want parameters that are
• fixed in number (per frame) and as low dimensional as possible
• at a fixed frame rate
• a good separation of prosodic and segmental identity aspects of speech

• so that we can model (and/or modify) either of them independently
• well behaved and stable, when we perturb them (e.g., by averaging, or modelling error)

• consecutive frames within a single speech sound
• frames pooled from several similar sounds

• and for statistical modelling, we may additionally like to have
• statistically uncorrelated parameters (to avoid having to model covariance)



What does STRAIGHT actually produce?

• … and is it suitable for modelling?

• smooth spectral envelope

• F0

• non-periodicity
• in other words, aperiodic energy

STRAIGHT is a VOCODER
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Figure: Hideki Kawahara



TANDEM-STRAIGHT: natural speech

Mo
vie

What does STRAIGHT actually produce?

• smooth spectral envelope

• high resolution (same as FFT)
• highly-correlated parameters
• probably not suitable for 

statistical modelling
• at least, not with diagonal-

covariance Gaussians

Figure: Hideki Kawahara



• warp frequency scale

• decorrelate 

• reduce dimensionality

TANDEM-STRAIGHT: natural speech

Mo
vie

Improving the representation of the spectral envelope

Figure: Hideki Kawahara



Representing the spectral envelope as the Mel-cepstrum

• Not quite the same as the MFCCs we use in ASR, but basically the same motivation

• warp the frequency scale
• instead of lossy discrete filterbank, use a continuous function (all-pass filter)

• decorrelate
• convert from spectrum to cepstrum

• reduce dimensionality
• truncate the cepstrum
• in ASR, we kept the first 12 coefficients
• in synthesis, we’ll use a lot more, perhaps the first 40-60 coefficients



What does STRAIGHT actually produce?

• aperiodic energy
• effectively the ratio between 

periodic and aperiodic 
energy, at each frequency

• high resolution (same as FFT)
• highly-correlated parameters

Figure: Hideki Kawahara
Figure 19: How to estimate aperiodicity index..

Finally the ap values are calibrated based on the calibration table that was prepared based on a series of simulations
using synthetic vowels.

imagesc([0 794],[0 fs/2],10.0.^(ap/20));axis(’xy’)

The following figure is the extracted aperiodicity index using the formula above. The speech is a Japanese vowel
sequence /aiueo/. This index is represented in dB. The value 0 dB indicates that the excitation is totally random
because it represents contribution from energy of random component. When the index is set lower than -60 dB, the
excitation is effectively purely periodic.
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Figure 20: Extracted aperiodicity index using the formula above. The speech is a Japanese vowel sequence /aiueo/.

The following Matlab command line session record shows how to modify the apriodicity index to control excitation
source.
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Improving the representation of the aperiodic energy

• aperiodic energy

• reduce dimensionality
• simply reduce resolution by 

averaging across broad 
frequency bands 

• e.g., between 5 and 25 bands   
(on a Mel scale, of course)

Figure: Hideki Kawahara

Figure 19: How to estimate aperiodicity index..

Finally the ap values are calibrated based on the calibration table that was prepared based on a series of simulations
using synthetic vowels.

imagesc([0 794],[0 fs/2],10.0.^(ap/20));axis(’xy’)

The following figure is the extracted aperiodicity index using the formula above. The speech is a Japanese vowel
sequence /aiueo/. This index is represented in dB. The value 0 dB indicates that the excitation is totally random
because it represents contribution from energy of random component. When the index is set lower than -60 dB, the
excitation is effectively purely periodic.
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Figure 20: Extracted aperiodicity index using the formula above. The speech is a Japanese vowel sequence /aiueo/.

The following Matlab command line session record shows how to modify the apriodicity index to control excitation
source.
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Speech signal modelling

• speech parameters
• representations suitable for modelling
• converting back to a waveform



STRAIGHT is a VOCODER
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• We have decomposed speech into
• F0, plus a V/UV decision
• smooth spectral envelope, 

parameterised as the Mel-cepstrum
• band aperiodicity parameters
• We’ve seen how to reconstruct the 

waveform

• Now we can insert a statistical 
model between the analysis and 
synthesis parts

What next?
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Figures: Hideki Kawahara

Figure 19: How to estimate aperiodicity index..

Finally the ap values are calibrated based on the calibration table that was prepared based on a series of simulations
using synthetic vowels.

imagesc([0 794],[0 fs/2],10.0.^(ap/20));axis(’xy’)

The following figure is the extracted aperiodicity index using the formula above. The speech is a Japanese vowel
sequence /aiueo/. This index is represented in dB. The value 0 dB indicates that the excitation is totally random
because it represents contribution from energy of random component. When the index is set lower than -60 dB, the
excitation is effectively purely periodic.

time (ms)

fre
qu

en
cy

 (H
z)

0 100 200 300 400 500 600 700
0

2000

4000

6000

8000

10000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 20: Extracted aperiodicity index using the formula above. The speech is a Japanese vowel sequence /aiueo/.

The following Matlab command line session record shows how to modify the apriodicity index to control excitation
source.
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Figure 21: STRAIGHT spectrogram for the same sample. The speech is a Japanese vowel sequence /aiueo/.

>> [x,fs,nbs,ops]=wavread(’vaiueo2d.wav’);
>> [f0raw,ap]=exstraightsource(x,fs);
>> n3sgram=exstraightspec(x(:,1),f0raw,fs);
>> syOrg = exstraightsynth(f0raw,n3sgram,ap,fs);
>> syApr = exstraightsynth(f0raw,n3sgram,ap*0,fs);
>> syPpr = exstraightsynth(f0raw,n3sgram,ap*0-60,fs);
>> [syPprD0,prmS] = exstraightsynth(f0raw,n3sgram,ap*0-60,fs);
>> prmS

prmS =

spectralUpdateInterval: 1
groupDelayStandardDeviation: 0.5000
groupDelaySpatialBandWidth: 70

groupDelayRandomizeCornerFrequency: 4000
ratioToFundamentalPeriod: 0.2000

ratioModeIndicator: 0
levelNormalizationIndicator: 1

headRoomToClip: 22
powerCheckSegmentLength: 15

timeAxisMappingTable: 1
fundamentalFrequencyMappingTable: 1

frequencyAxisMappingTable: 1
timeAxisStretchingFactor: 1

DisplayPlots: 0
lowestF0: 50

statusReport: ’ok’

>> prmS.groupDelayStandardDeviation = 0.001;
>> [syPprD0,prmS] = exstraightsynth(f0raw,n3sgram,ap*0-60,fs,prmS);
>> wavwrite(syOrg/32768,fs,16,’synAiueoOrg.wav’);
>> wavwrite(syApr/32768,fs,16,’synAiueoApr.wav’);
>> wavwrite(syPpr/32768,fs,16,’synAiueoPpr.wav’);
>> wavwrite(syPprD0/32768,fs,16,’synAiueoPprD0.wav’);

Examples synthesized using these commands are linked below. (Links are accessible only in the HTML version of
this document.)
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What next? STRAIGHT is a VOCODER
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Figures: Hideki Kawahara
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