The state of the art (2 of 2)

Class slides

- Large speech language models
 - VALL-E slides from last week (recap)
- Tasks beyond Text-To-Speech

• Current & future trends

- Large speech language models
 - VALL-E
- Tasks beyond Text-To-Speech

• Current & future trends

- Large speech language models
- VALL-E

• Tasks beyond Text-To-Speech

• Current & future trends

- Large speech language models
 - VALL-E

• Tasks beyond Text-To-Speech

• Current & future trends

Module state-of-the-art (2 of 2) Class

<u>Generation tasks</u>

- Controllable TTS
 - "zero shot"
 - natural language description
- Speech editing
- Voice Conversion (VC)
- Voice privacy

Classification tasks

- Automatic Speaker Verification (ASV)
- "Anti-spoofing" / deepfake detection
- Source speaker tracing

Generation tasks

- Controllable TTS
 - "zero shot"
 - natural language description
- Speech editing
- Voice Conversion (VC)
- Voice privacy

Voice Conversion

Voice Conversion - easy to train with parallel data, if you have some...

Voice Conversion without parallel data

Early systems: I. create pseudo-parallel data, 2. train the system in the same way as for parallel data.

Cycle approach: I. convert source-to-target; cannot measure loss 2. convert target back to source; now measure the loss.

Voice Conversion without parallel data: cycle-based approach

Cycle-based approach: source-target-source & source-source

DOI: 10.21437/Interspeech.2019-2307

Voice Conversion without parallel data: **ASR+TTS approach**

Phonetic Posteriorgram ⁸⁰ (PPG)

Voice privacy

DOI: 10.21437/SPSC.2024-13

Classification tasks

- Automatic Speaker Verification (ASV)
- "anti-spoofing"
 - deepfake detection
- Source speaker tracing

Automatic Speaker Verification (ASV)

user claims their identity provides a speech sample as evidence

yes: identity verified no: claim rejected

Automatic Speaker Verification (ASV)

speaker classifier

ASV system

speaker embedding

RECAP! What are all those layers for? Learning representations!

a representation of the input

Module 8 - speech synthesis using Neural Networks Video I - What is a Neural Network?

learned intermediate representations a representation of the output

a sequence of **non-linear** projections

Speaker embedding

speaker classifier

l-hot speaker class

Speaker verification using speaker embeddings

Automatic Speaker Verification: error behaviour

false negative rate (accidentally reject the true speaker)

0%

Equal Error Rate: EER (lower is better)

false positive rate (accidentally accept an imposter)

"spoofing" attacks on Automatic Speaker Verification

bad actor creates a synthetic speech sample presents it to the ASV system

ASV system

Countermeasures against "spoofing" attacks on ASV

bad actor creates a synthetic speech sample + presents it to the ASV system

Countermeasure

ASV system

attack detected!

State-of-the-Art countermeasures: trained from data

Self-Supervised Learning (SSL)

"the cat sat on the mat"

model

Self-Supervised Learning (SSL)

Source speaker tracing (here, just verification)

- Large speech language models
 - VALL-E
- Tasks beyond Text-To-Speech

• <u>Current & future trends</u>

- Large speech language models
 - VALL-E
- Tasks beyond Text-To-Speech

• <u>Current & future trends</u>

Module state-of-the-art (2 of 2) Class

• Larger models, larger data

- Pre-training
 - open models used as starting point by other researchers
 - fine-tuning and/or prompting
- Multi-task models
 - speech
 - music
 - "general audio"

er

What next?

• Today's "state-of-the-art" will not last

• But understanding the history of TTS will help us understand what comes next

• Read the literature

