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ABSTRACT

This paper describes Tacotron 2, a neural network architecture for
speech synthesis directly from text. The system is composed of a
recurrent sequence-to-sequence feature prediction network that maps
character embeddings to mel-scale spectrograms, followed by a mod-
ified WaveNet model acting as a vocoder to synthesize time-domain
waveforms from those spectrograms. Our model achieves a mean
opinion score (MOS) of 4.53 comparable to a MOS of 4.58 for profes-
sionally recorded speech. To validate our design choices, we present
ablation studies of key components of our system and evaluate the im-
pact of using mel spectrograms as the conditioning input to WaveNet
instead of linguistic, duration, and Fp features. We further show that
using this compact acoustic intermediate representation allows for a
significant reduction in the size of the WaveNet architecture.

Index Terms— Tacotron 2, WaveNet, text-to-speech

1. INTRODUCTION

Generating natural speech from text (text-to-speech synthesis, TTS)
remains a challenging task despite decades of investigation [1]. Over
time, different techniques have dominated the field. Concatenative
synthesis with unit selection, the process of stitching small units
of pre-recorded waveforms together [2, 3] was the state-of-the-art
for many years. Statistical parametric speech synthesis [4, 5, 6, 7],
which directly generates smooth trajectories of speech features to be
synthesized by a vocoder, followed, solving many of the issues that
concatenative synthesis had with boundary artifacts. However, the
audio produced by these systems often sounds muffled and unnatural
compared to human speech.

WaveNet [8], a generative model of time domain waveforms, pro-
duces audio quality that begins to rival that of real human speech and
is already used in some complete TTS systems [9, 10, 11]. The inputs
to WaveNet (linguistic features, predicted log fundamental frequency
(Fb), and phoneme durations), however, require significant domain
expertise to produce, involving elaborate text-analysis systems as
well as a robust lexicon (pronunciation guide).

Tacotron [12], a sequence-to-sequence architecture [13] for pro-
ducing magnitude spectrograms from a sequence of characters, sim-
plifies the traditional speech synthesis pipeline by replacing the pro-
duction of these linguistic and acoustic features with a single neural
network trained from data alone. To vocode the resulting magnitude
spectrograms, Tacotron uses the Griffin-Lim algorithm [14] for phase
estimation, followed by an inverse short-time Fourier transform. As
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the authors note, this was simply a placeholder for future neural
vocoder approaches, as Griffin-Lim produces characteristic artifacts
and lower audio quality than approaches like WaveNet.

In this paper, we describe a unified, entirely neural approach to
speech synthesis that combines the best of the previous approaches:
a sequence-to-sequence Tacotron-style model [12] that generates mel
spectrograms, followed by a modified WaveNet vocoder [10, 15].
Trained directly on normalized character sequences and correspond-
ing speech waveforms, our model learns to synthesize natural sound-
ing speech that is difficult to distinguish from real human speech.

Deep Voice 3 [11] describes a similar approach. However, unlike
our system, its naturalness has not been shown to rival that of human
speech. Char2Wav [16] describes yet another similar approach to
end-to-end TTS using a neural vocoder. However, they use different
intermediate representations (traditional vocoder features) and their
model architecture differs significantly.

2. MODEL ARCHITECTURE

Our proposed system consists of two components, shown in Figure 1:
(1) a recurrent sequence-to-sequence feature prediction network with
attention which predicts a sequence of mel spectrogram frames from
an input character sequence, and (2) a modified version of WaveNet
which generates time-domain waveform samples conditioned on the
predicted mel spectrogram frames.

2.1. Intermediate Feature Representation

In this work we choose a low-level acoustic representation: mel-
frequency spectrograms, to bridge the two components. Using a
representation that is easily computed from time-domain waveforms
allows us to train the two components separately. This representation
is also smoother than waveform samples and is easier to train using a
squared error loss because it is invariant to phase within each frame.
A mel-frequency spectrogram is related to the linear-frequency
spectrogram, i.e., the short-time Fourier transform (STFT) magnitude.
It is obtained by applying a nonlinear transform to the frequency
axis of the STFT, inspired by measured responses from the human
auditory system, and summarizes the frequency content with fewer
dimensions. Using such an auditory frequency scale has the effect of
emphasizing details in lower frequencies, which are critical to speech
intelligibility, while de-emphasizing high frequency details, which
are dominated by fricatives and other noise bursts and generally do
not need to be modeled with high fidelity. Because of these properties,
features derived from the mel scale have been used as an underlying
representation for speech recognition for many decades [17].
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FASTPITCH: PARALLEL TEXT-TO-SPEECH WITH PITCH PREDICTION

Adrian taricucki
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ABSTRACT

We present FastPitch, a fully-parallel text-to-speech model
based on FastSpeech, conditioned on fundamental frequency
contours. The model predicts pitch contours during inference.
By altering these predictions, the generated speech can be
more expressive, better match the semantic of the utterance,
and in the end more engaging to the listener. Uniformly in-
creasing or decreasing pitch with FastPitch generates speech
that resembles the voluntary modulation of voice. Condi-
tioning on frequency contours improves the overall quality of
synthesized speech, making it comparable to state-of-the-art.
It does not introduce an overhead, and FastPitch retains the
favorable, fully-parallel Transformer architecture, with over
900 x real-time factor for mel-spectrogram synthesis of a typ-
ical utterance.

Index Terms— text-to-speech, speech synthesis, funda-
mental frequency

1. INTRODUCTION

Recent advances in neural text-to-speech (TTS) enabled real-
time synthesis of naturally sounding, human-like speech. Par-
allel models are able to synthesize mel-spectrograms orders
of magnitude faster than autoregressive ones, either by rely-
ing on external alignments [1], or aligning themselves [2].
TTS models can be conditioned on qualities of speech such
as linguistic features and fundamental frequency [3]. The lat-
ter has been repeatedly shown to improve the quality of neu-
ral, but also concatenative models [4, 5]. Conditioning on Fj{
i1s a common approach to adding singing capabilities [6]. or
adapting to other speakers [5].

In this paper we propose FastPitch, a feed-forward model
based on FastSpeech that improves the quality of synthe-
sized speech. By conditioning on fundamental frequency
estimated for every input symbol, which we refer to simply as
a pitch contour, it matches the state-of-the-art autoregressive
TTS models. We show that explicit modeling of such pitch
contours addresses the quality shortcomings of the plain
feed-forward Transformer architecture. These most likely
arise from collapsing different pronunciations of the same
phonetic units in the absence of enough linguistic informa-
tion in the textual input alone. Conditioning on fundamental
frequency also improves convergence, and eliminates the
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need for knowledge distillation of mel-spectrogram targets
used in FastSpeech. We would like to note that a concurrently
developed FastSpeech 2 [7] describes a similar approach.

Combined with WaveGlow [8], FastPitch is able to syn-
thesize mel-spectrograms over 60x faster than real-time,
without resorting to kernel-level optimizations [9]. Because
the model learns to predict and use pitch in a low resolution
of one value for every input symbol, it makes it easy to adjust
pitch interactively, enabling practical applications in pitch
editing. Constant offsetting of Fy with FastPitch produces
naturally sounding low- and high-pitched variations of voice
that preserve the perceived speaker identity. We conclude that
the model learns to mimic the action of vocal chords, which
happens during the voluntary modulation of voice.

2. MODEL DESCRIPTION

The architecture of FastPitch is shown in Figure 1. It is based
on FastSpeech and composed mainly of two feed-forward
Transformer (FFTr) stacks [1]. The first one operates in the
resolution of input tokens, the second one in the resolution
of the output frames. Let x = (z1,...,2,) be the sequence
of input lexical units, and y = (y1,...,y:) be the sequence
of target mel-scale spectrogram frames. The first FFTr stack
produces the hidden representation h = FFTr(x). The hid-
den representation h is used to make predictions about the
duration and average pitch of every character with a 1-D CNN
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Fig. 1. Architecture of FastPitch follows FastSpeech [1]. A
single pitch value is predicted for every temporal location.
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[ Waveform @ 24 kHz




Reduce sequence length

» Fully convolutional encoder

* EncoderBlock

» convolutional layers with

e stride

* dilation

to get from 24 000

Z1to /5

» then stack as many EncoderBlocks as necessary

/

Encoder

Waveform @ 24 kHz

'

Conv1D (k=7, n=C)

'

EncoderBlock (N=2C, S=2)

¥

EncoderBlock (N=4C, S=4)

¥

EncoderBlock (N=8C, S=5)

¥

EncoderBlock (N=16C, S=8)

'

Conv1D (k=3, n=D)

/

FiLM conditioning

'

D-dimensional

embeddings @ 75 Hz

EncoderBlock (N, S)

(

j

ResidualUnit (N/2, dilation=1)

{

ResidualUnit (N/2, dilation=3)

f

ResidualUnit (N/2, dilation=9)

Y

Conv1D (k=2S, n=N, stride=S) ]

4

!




Recap: convolution

receptive field (also known as the kernel size) = 3



||
0O

Increasing the stride ownsampling

“ | : stride = 2






Dilation = wider rece

htive fielc

with fewer

Darameters

T

dilation = 2



Key 1deas In Sounc

Stream (anc

» Reduce sequence length

similar auc

O eNncoC

Cr-C

€COC

cr MocC

* Input Is a waveform, at a typical sample rate of 24 kHz (samples per second)

» encoded representation is at /5 Hz (frames per second)

» progressively reduce from 24 kHz to /5 Hz

* Quantise the learned representation

* SO It becomes a sequence of codes, not vectors

 Residual quantisation

» to avold the need for a very large set of codes

els)



Encoder

[ Waveform @ 24 kHz ]

l

Conv1D (k=7, n=C)

¥

EncoderBlock (N=2C, S=2)

¥

EncoderBlock (N=4C, S=4)

¥

EncoderBlock (N=8C, S=5)

¥

EncoderBlock (N=16C, S=8)

Decoder

D-dimensional
embeddings @ 75 Hz

'

FiLM conditioning

¥

Conv1D (k=7,n=16C)

¥

DecoderBlock (N=8C, S=8)

¥

DecoderBlock (N=4C, S=5)

¥

DecoderBlock (N=2C, S=4)

¥

Conv1D (k=3, n=D)

¥

DecoderBlock (N=C, S=2)

¥

[ FiLM conditioning ]

!

D-dimensional
embeddings @ 75 Hz

¥

Conv1D (k=7, n=1)

l

Waveform @ 24 kHz
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Model learns a representation that Is a sequence of
256-dimensional vectors, at a rate of /5 frames per second
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Jo further compress, each vector will be converted to a code using quantisation



Qu

We've seen uniform quantisation before, when storing waveforms digitally’

antisation

« Convert a continuous value to a
discrete one

e Why?

* C

C

*

ontinuous values can -

ake a

infinrte” number of va

ues (1

ﬁ

N d

omputer, this I1sn't quite true, but
they do require a lot of bits to
store, e.g., 64)

S

iscrete values from a relatively

mall closed set require only a few
bits to store

e.g, using a codebook size of 1024
requires only |0 bits to store/transmit each code



Vector guantisation

« Same as before but now for vectors (!)

 Could quantise each dimension independently,
but that would not take advantage of
correlations

* 50, quantise the whole vector at once

* [he result s a codebook
* 2 Mapping from codes to vectors
e can use this to encode a new vector Into a code

e Or to decode a code back to a vector

note: a code is also known as a “codeword”



Key IC

eas 1IN Sounc

Stream (anc

» Reduce sequence length

similar auc

O eNncoC

Cr-C

€COC

cr MocC

* Input Is a waveform, at a typical sample rate of 24 kHz (samples per second)

» encoded representation is at /5 Hz (frames per second)

» progressively reduce from 24 kHz to /5 Hz

« Quantise the learned representation

* 5O It becomes a sequence of codes, not vectors

* Residual quantisation

» to avold the need for a very large set of codes

els)



Residual vector quantisation

* First perform “coarse” quantisation

e “coarse’ = small codebook

* Now measure the error that was
iNntroduced by guantisation

 |[hen represent that error with
another codebook

» Repeat as many times as you wish, to
reduce final error to desired level
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Model: state-of-the-art

e this is the prototypical
architecture of many
previous systems

e We can re-draw this as a

speech

Vocoder

language model|

Reference
encoder

A

reference
speech

Encoder

0

Iinput
text




Reference
encoder

speech

A

Vocoder

Encoder

A

reference
speech

A

input
text
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A

speech
prompt
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input
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N

Audio codec
decoder
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Personalized
Speech

t
VA LL- E Audio Codec Decoder

\
( \

¢ 4 4+ 4+ 4 4+ 4 4 4
Neural Codec Language Modeling

4 4 4 4 I 4
t _t 1t £ -
Phoneme Conversion Audio Codec Encoder
Text e Acoustic
Prompt ! Prompt

Text for synthesis 3-second enrolled recording



VALL-

Table 1: A comparison between VALL-E and current cascaded TTS systems.

Current Systems VALL-E
Intermediate representation mel spectrogram audio codec code
Objective function continuous signal regression | language model
Training data < 600 hours 60K hours
In-context learning X v




How can we combine text anc

beech INnto a single sequence !

VALL-E
—
*
Neural Codec Languac
Y S T P
A S A
Phoneme Conversion Audio Codec Encoder
[
Text é Acoustic
Prompt ! Prompt

Text for synthesis 3-second enrolled recording



Is

butting a one-hot vector Into the moc

el: embedding



Is

butting a one-hot vector Into the moc

el: embedding



I8

butting a one-hot vector Into the moc

el: embedding



I8

butting a one-hot vector into the model: embedding

/

N SEEEENT




Is

butting a erehRetves

or symbol Into the model: embedding table

B EEN B0



How can we combine two different types of symbol into a single sequence !

Option |:a single embedding table Option 2: separate embedding tables



Language modelling

Personalized
Speech

t
VALL- E Audio Codec Decoder

\
( \

L N N S S S . . |
Neural Codec Language Modeling

T S R S
i S
Phoneme Conversion Audio Codec Encoder
Text E Acoustic
Prompt E Prompt

Text for synthesis 3-second enrolled recording



Language moc

elling
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In-context learning (via prompting)

Personalized
Speech

t
VALI_- E Audio Codec Decoder

\
( \

L N S, S . MU, S S
Neural Codec Language Modeling

4 4 4 4 4 4
t _t f A S
Phoneme Conversion Audio Codec Encoder
Text E Acoustic
Prompt 5{ Prompt

Text for synthesis 3-second enrolled recording



Zero shot

Personalized
Speech

t
VALI_- E Audio Codec Decoder

\
( \

L N N S S S . . |
Neural Codec Language Modeling

S S R S
T S
Phoneme Conversion Audio Codec Encoder
Text e Acoustic
Prompt Ed Prompt

Text for synthesis 3-second enrolled recording



VWhat next!

e Just one more class left...

» Tasks beyond lext- [o-Speech

o Current & future trends




