
The state of the art (1 of 2)

• Class slides

Module state-of-the-art (1 of 2)
Class

What you should already know

• Neural networks perform regression
from input to output by learning
intermediate representations

• Neural networks are made from basic
building blocks: layers

• There are different types of layer, e.g.,
• fully-connected (FC)
• convolutional
• LSTM, ... etc

Module state-of-the-art (1 of 2)
Class

NATURAL TTS SYNTHESIS BY CONDITIONING WAVENET ON MEL SPECTROGRAM
PREDICTIONS

Jonathan Shen
1
, Ruoming Pang

1
, Ron J. Weiss

1
, Mike Schuster

1
, Navdeep Jaitly

1
, Zongheng Yang

⇤2
,

Zhifeng Chen
1
, Yu Zhang

1
, Yuxuan Wang

1
, RJ Skerry-Ryan

1
, Rif A. Saurous

1
, Yannis Agiomyrgiannakis

1
,

and Yonghui Wu
1

1Google, Inc., 2University of California, Berkeley,
{jonathanasdf,rpang,yonghui}@google.com

ABSTRACT

This paper describes Tacotron 2, a neural network architecture for
speech synthesis directly from text. The system is composed of a
recurrent sequence-to-sequence feature prediction network that maps
character embeddings to mel-scale spectrograms, followed by a mod-
ified WaveNet model acting as a vocoder to synthesize time-domain
waveforms from those spectrograms. Our model achieves a mean
opinion score (MOS) of 4.53 comparable to a MOS of 4.58 for profes-
sionally recorded speech. To validate our design choices, we present
ablation studies of key components of our system and evaluate the im-
pact of using mel spectrograms as the conditioning input to WaveNet
instead of linguistic, duration, and F0 features. We further show that
using this compact acoustic intermediate representation allows for a
significant reduction in the size of the WaveNet architecture.

Index Terms— Tacotron 2, WaveNet, text-to-speech

1. INTRODUCTION

Generating natural speech from text (text-to-speech synthesis, TTS)
remains a challenging task despite decades of investigation [1]. Over
time, different techniques have dominated the field. Concatenative
synthesis with unit selection, the process of stitching small units
of pre-recorded waveforms together [2, 3] was the state-of-the-art
for many years. Statistical parametric speech synthesis [4, 5, 6, 7],
which directly generates smooth trajectories of speech features to be
synthesized by a vocoder, followed, solving many of the issues that
concatenative synthesis had with boundary artifacts. However, the
audio produced by these systems often sounds muffled and unnatural
compared to human speech.

WaveNet [8], a generative model of time domain waveforms, pro-
duces audio quality that begins to rival that of real human speech and
is already used in some complete TTS systems [9, 10, 11]. The inputs
to WaveNet (linguistic features, predicted log fundamental frequency
(F0), and phoneme durations), however, require significant domain
expertise to produce, involving elaborate text-analysis systems as
well as a robust lexicon (pronunciation guide).

Tacotron [12], a sequence-to-sequence architecture [13] for pro-
ducing magnitude spectrograms from a sequence of characters, sim-
plifies the traditional speech synthesis pipeline by replacing the pro-
duction of these linguistic and acoustic features with a single neural
network trained from data alone. To vocode the resulting magnitude
spectrograms, Tacotron uses the Griffin-Lim algorithm [14] for phase
estimation, followed by an inverse short-time Fourier transform. As

⇤Work done while at Google.

the authors note, this was simply a placeholder for future neural
vocoder approaches, as Griffin-Lim produces characteristic artifacts
and lower audio quality than approaches like WaveNet.

In this paper, we describe a unified, entirely neural approach to
speech synthesis that combines the best of the previous approaches:
a sequence-to-sequence Tacotron-style model [12] that generates mel
spectrograms, followed by a modified WaveNet vocoder [10, 15].
Trained directly on normalized character sequences and correspond-
ing speech waveforms, our model learns to synthesize natural sound-
ing speech that is difficult to distinguish from real human speech.

Deep Voice 3 [11] describes a similar approach. However, unlike
our system, its naturalness has not been shown to rival that of human
speech. Char2Wav [16] describes yet another similar approach to
end-to-end TTS using a neural vocoder. However, they use different
intermediate representations (traditional vocoder features) and their
model architecture differs significantly.

2. MODEL ARCHITECTURE

Our proposed system consists of two components, shown in Figure 1:
(1) a recurrent sequence-to-sequence feature prediction network with
attention which predicts a sequence of mel spectrogram frames from
an input character sequence, and (2) a modified version of WaveNet
which generates time-domain waveform samples conditioned on the
predicted mel spectrogram frames.

2.1. Intermediate Feature Representation

In this work we choose a low-level acoustic representation: mel-
frequency spectrograms, to bridge the two components. Using a
representation that is easily computed from time-domain waveforms
allows us to train the two components separately. This representation
is also smoother than waveform samples and is easier to train using a
squared error loss because it is invariant to phase within each frame.

A mel-frequency spectrogram is related to the linear-frequency
spectrogram, i.e., the short-time Fourier transform (STFT) magnitude.
It is obtained by applying a nonlinear transform to the frequency
axis of the STFT, inspired by measured responses from the human
auditory system, and summarizes the frequency content with fewer
dimensions. Using such an auditory frequency scale has the effect of
emphasizing details in lower frequencies, which are critical to speech
intelligibility, while de-emphasizing high frequency details, which
are dominated by fricatives and other noise bursts and generally do
not need to be modeled with high fidelity. Because of these properties,
features derived from the mel scale have been used as an underlying
representation for speech recognition for many decades [17].

1
��������������������������������������,(((,&$663�����

Authorized licensed use limited to: University of Edinburgh. Downloaded on April 04,2023 at 07:25:32 UTC from IEEE Xplore. Restrictions apply.

FASTPITCH: PARALLEL TEXT-TO-SPEECH WITH PITCH PREDICTION

Adrian Łańcucki

NVIDIA Corporation

ABSTRACT

We present FastPitch, a fully-parallel text-to-speech model
based on FastSpeech, conditioned on fundamental frequency
contours. The model predicts pitch contours during inference.
By altering these predictions, the generated speech can be
more expressive, better match the semantic of the utterance,
and in the end more engaging to the listener. Uniformly in-
creasing or decreasing pitch with FastPitch generates speech
that resembles the voluntary modulation of voice. Condi-
tioning on frequency contours improves the overall quality of
synthesized speech, making it comparable to state-of-the-art.
It does not introduce an overhead, and FastPitch retains the
favorable, fully-parallel Transformer architecture, with over
900⇥ real-time factor for mel-spectrogram synthesis of a typ-
ical utterance.

Index Terms— text-to-speech, speech synthesis, funda-
mental frequency

1. INTRODUCTION

Recent advances in neural text-to-speech (TTS) enabled real-
time synthesis of naturally sounding, human-like speech. Par-
allel models are able to synthesize mel-spectrograms orders
of magnitude faster than autoregressive ones, either by rely-
ing on external alignments [1], or aligning themselves [2].
TTS models can be conditioned on qualities of speech such
as linguistic features and fundamental frequency [3]. The lat-
ter has been repeatedly shown to improve the quality of neu-
ral, but also concatenative models [4, 5]. Conditioning on F0

is a common approach to adding singing capabilities [6]. or
adapting to other speakers [5].

In this paper we propose FastPitch, a feed-forward model
based on FastSpeech that improves the quality of synthe-
sized speech. By conditioning on fundamental frequency
estimated for every input symbol, which we refer to simply as
a pitch contour, it matches the state-of-the-art autoregressive
TTS models. We show that explicit modeling of such pitch
contours addresses the quality shortcomings of the plain
feed-forward Transformer architecture. These most likely
arise from collapsing different pronunciations of the same
phonetic units in the absence of enough linguistic informa-
tion in the textual input alone. Conditioning on fundamental
frequency also improves convergence, and eliminates the

need for knowledge distillation of mel-spectrogram targets
used in FastSpeech. We would like to note that a concurrently
developed FastSpeech 2 [7] describes a similar approach.

Combined with WaveGlow [8], FastPitch is able to syn-
thesize mel-spectrograms over 60⇥ faster than real-time,
without resorting to kernel-level optimizations [9]. Because
the model learns to predict and use pitch in a low resolution
of one value for every input symbol, it makes it easy to adjust
pitch interactively, enabling practical applications in pitch
editing. Constant offsetting of F0 with FastPitch produces
naturally sounding low- and high-pitched variations of voice
that preserve the perceived speaker identity. We conclude that
the model learns to mimic the action of vocal chords, which
happens during the voluntary modulation of voice.

2. MODEL DESCRIPTION

The architecture of FastPitch is shown in Figure 1. It is based
on FastSpeech and composed mainly of two feed-forward
Transformer (FFTr) stacks [1]. The first one operates in the
resolution of input tokens, the second one in the resolution
of the output frames. Let x = (x1, . . . , xn) be the sequence
of input lexical units, and y = (y1, . . . , yt) be the sequence
of target mel-scale spectrogram frames. The first FFTr stack
produces the hidden representation h = FFTr(x). The hid-
den representation h is used to make predictions about the
duration and average pitch of every character with a 1-D CNN

�cMRPPZdX

��1��bfNa

+ZuNY
+qRPZNufq

�vqEuZfd
+qRPZNufq

��1��bfNa

.RnREu

��

�fd{�ğ�

��

�fd{�ğ�

�fd{�ğ�

 /���frr

 /���frr

!�}

!�}�fd{�ğ�

��

�fd{�ğ�

 /���frr

Fig. 1. Architecture of FastPitch follows FastSpeech [1]. A
single pitch value is predicted for every temporal location.

6588978-1-7281-7605-5/21/$31.00 ©2021 I��� I����� 2021

IC
A

S
S

P
 2

0
2
1
 -

 2
0
2
1
 I

E
E

E
 I

n
te

rn
a
ti

o
n
a
l

C
o
n
fe

re
n
c
e
 o

n
 A

c
o
u
s
ti

c
s
,
S

p
e
e
c
h
 a

n
d
 S

ig
n
a
l

P
ro

c
e
s
s
in

g
 (

IC
A

S
S

P
)

|
9

7
8
-1

-7
2
8
1
-7

6
0
5
-5

/2
0
/$

3
1
.0

0
 ©

2
0
2
1
 I

E
E

E
 |
 D

O
I:

 1
0
.1

1
0
9
/I

C
A

S
S

P
3

9
7
2
8
.2

0
2
1
.9

4
1
3
8

8
9

Authorized licensed use limited to: University of Edinburgh. Downloaded on April 04,2023 at 07:42:28 UTC from IEEE Xplore. Restrictions apply.

Architecture diagrams

'LEVEGXIV�
)QFIHHMRK

0SGEXMSR�
7IRWMXMZI�
%XXIRXMSR

��'SRZ�
0E]IVW

&MHMVIGXMSREP�
0781-RTYX�8I\X

��0E]IV�
4VI�2IX

��0781�
0E]IVW 0MRIEV�

4VSNIGXMSR

0MRIEV�
4VSNIGXMSR

7XST�8SOIR

��'SRZ�0E]IV�
4SWX�2IX

0HO�6SHFWURJUDP

;EZI2IX�
1S0

;EZIJSVQ�
7EQTPIW

����

Authorized licensed use limited to: University of Edinburgh. Downloaded on April 02,2022 at 10:58:24 UTC from IEEE Xplore. Restrictions apply.

FASTPITCH: PARALLEL TEXT-TO-SPEECH WITH PITCH PREDICTION

Adrian Łańcucki

NVIDIA Corporation

ABSTRACT

We present FastPitch, a fully-parallel text-to-speech model
based on FastSpeech, conditioned on fundamental frequency
contours. The model predicts pitch contours during inference.
By altering these predictions, the generated speech can be
more expressive, better match the semantic of the utterance,
and in the end more engaging to the listener. Uniformly in-
creasing or decreasing pitch with FastPitch generates speech
that resembles the voluntary modulation of voice. Condi-
tioning on frequency contours improves the overall quality of
synthesized speech, making it comparable to state-of-the-art.
It does not introduce an overhead, and FastPitch retains the
favorable, fully-parallel Transformer architecture, with over
900⇥ real-time factor for mel-spectrogram synthesis of a typ-
ical utterance.

Index Terms— text-to-speech, speech synthesis, funda-
mental frequency

1. INTRODUCTION

Recent advances in neural text-to-speech (TTS) enabled real-
time synthesis of naturally sounding, human-like speech. Par-
allel models are able to synthesize mel-spectrograms orders
of magnitude faster than autoregressive ones, either by rely-
ing on external alignments [1], or aligning themselves [2].
TTS models can be conditioned on qualities of speech such
as linguistic features and fundamental frequency [3]. The lat-
ter has been repeatedly shown to improve the quality of neu-
ral, but also concatenative models [4, 5]. Conditioning on F0

is a common approach to adding singing capabilities [6]. or
adapting to other speakers [5].

In this paper we propose FastPitch, a feed-forward model
based on FastSpeech that improves the quality of synthe-
sized speech. By conditioning on fundamental frequency
estimated for every input symbol, which we refer to simply as
a pitch contour, it matches the state-of-the-art autoregressive
TTS models. We show that explicit modeling of such pitch
contours addresses the quality shortcomings of the plain
feed-forward Transformer architecture. These most likely
arise from collapsing different pronunciations of the same
phonetic units in the absence of enough linguistic informa-
tion in the textual input alone. Conditioning on fundamental
frequency also improves convergence, and eliminates the

need for knowledge distillation of mel-spectrogram targets
used in FastSpeech. We would like to note that a concurrently
developed FastSpeech 2 [7] describes a similar approach.

Combined with WaveGlow [8], FastPitch is able to syn-
thesize mel-spectrograms over 60⇥ faster than real-time,
without resorting to kernel-level optimizations [9]. Because
the model learns to predict and use pitch in a low resolution
of one value for every input symbol, it makes it easy to adjust
pitch interactively, enabling practical applications in pitch
editing. Constant offsetting of F0 with FastPitch produces
naturally sounding low- and high-pitched variations of voice
that preserve the perceived speaker identity. We conclude that
the model learns to mimic the action of vocal chords, which
happens during the voluntary modulation of voice.

2. MODEL DESCRIPTION

The architecture of FastPitch is shown in Figure 1. It is based
on FastSpeech and composed mainly of two feed-forward
Transformer (FFTr) stacks [1]. The first one operates in the
resolution of input tokens, the second one in the resolution
of the output frames. Let x = (x1, . . . , xn) be the sequence
of input lexical units, and y = (y1, . . . , yt) be the sequence
of target mel-scale spectrogram frames. The first FFTr stack
produces the hidden representation h = FFTr(x). The hid-
den representation h is used to make predictions about the
duration and average pitch of every character with a 1-D CNN

�cMRPPZdX

��1��bfNa

+ZuNY
+qRPZNufq

�vqEuZfd
+qRPZNufq

��1��bfNa

.RnREu

��

�fd{�ğ�

��

�fd{�ğ�

�fd{�ğ�

 /���frr

 /���frr

!�}

!�}�fd{�ğ�

��

�fd{�ğ�

 /���frr

Fig. 1. Architecture of FastPitch follows FastSpeech [1]. A
single pitch value is predicted for every temporal location.

6588978-1-7281-7605-5/21/$31.00 ©2021 I��� I����� 2021

IC
A

S
S

P
 2

0
2
1
 -

 2
0
2
1
 I

E
E

E
 I

n
te

rn
a
ti

o
n
a
l

C
o
n
fe

re
n
c
e
 o

n
 A

c
o
u
s
ti

c
s
,
S

p
e
e
c
h
 a

n
d
 S

ig
n
a
l

P
ro

c
e
s
s
in

g
 (

IC
A

S
S

P
)

|
9
7
8
-1

-7
2
8
1
-7

6
0
5
-5

/2
0
/$

3
1
.0

0
 ©

2
0
2
1
 I

E
E

E
 |
 D

O
I:

 1
0
.1

1
0
9
/I

C
A

S
S

P
3
9
7
2
8
.2

0
2
1
.9

4
1
3
8
8
9

Authorized licensed use limited to: University of Edinburgh. Downloaded on April 02,2022 at 10:58:40 UTC from IEEE Xplore. Restrictions apply.

Module state-of-the-art (1 of 2)
Class

Understanding architecture diagrams

'LEVEGXIV�
)QFIHHMRK

0SGEXMSR�
7IRWMXMZI�
%XXIRXMSR

��'SRZ�
0E]IVW

&MHMVIGXMSREP�
0781-RTYX�8I\X

��0E]IV�
4VI�2IX

��0781�
0E]IVW 0MRIEV�

4VSNIGXMSR

0MRIEV�
4VSNIGXMSR

7XST�8SOIR

��'SRZ�0E]IV�
4SWX�2IX

0HO�6SHFWURJUDP

;EZI2IX�
1S0

;EZIJSVQ�
7EQTPIW

Fig. 1. Block diagram of the Tacotron 2 system architecture.

����

Authorized licensed use limited to: University of Edinburgh. Downloaded on April 02,2022 at 10:58:24 UTC from IEEE Xplore. Restrictions apply.

Module state-of-the-art (1 of 2)
Class

Stacking layers to create more powerful networks

FASTPITCH: PARALLEL TEXT-TO-SPEECH WITH PITCH PREDICTION

Adrian Łańcucki

NVIDIA Corporation

ABSTRACT

We present FastPitch, a fully-parallel text-to-speech model
based on FastSpeech, conditioned on fundamental frequency
contours. The model predicts pitch contours during inference.
By altering these predictions, the generated speech can be
more expressive, better match the semantic of the utterance,
and in the end more engaging to the listener. Uniformly in-
creasing or decreasing pitch with FastPitch generates speech
that resembles the voluntary modulation of voice. Condi-
tioning on frequency contours improves the overall quality of
synthesized speech, making it comparable to state-of-the-art.
It does not introduce an overhead, and FastPitch retains the
favorable, fully-parallel Transformer architecture, with over
900⇥ real-time factor for mel-spectrogram synthesis of a typ-
ical utterance.

Index Terms— text-to-speech, speech synthesis, funda-
mental frequency

1. INTRODUCTION

Recent advances in neural text-to-speech (TTS) enabled real-
time synthesis of naturally sounding, human-like speech. Par-
allel models are able to synthesize mel-spectrograms orders
of magnitude faster than autoregressive ones, either by rely-
ing on external alignments [1], or aligning themselves [2].
TTS models can be conditioned on qualities of speech such
as linguistic features and fundamental frequency [3]. The lat-
ter has been repeatedly shown to improve the quality of neu-
ral, but also concatenative models [4, 5]. Conditioning on F0

is a common approach to adding singing capabilities [6]. or
adapting to other speakers [5].

In this paper we propose FastPitch, a feed-forward model
based on FastSpeech that improves the quality of synthe-
sized speech. By conditioning on fundamental frequency
estimated for every input symbol, which we refer to simply as
a pitch contour, it matches the state-of-the-art autoregressive
TTS models. We show that explicit modeling of such pitch
contours addresses the quality shortcomings of the plain
feed-forward Transformer architecture. These most likely
arise from collapsing different pronunciations of the same
phonetic units in the absence of enough linguistic informa-
tion in the textual input alone. Conditioning on fundamental
frequency also improves convergence, and eliminates the

need for knowledge distillation of mel-spectrogram targets
used in FastSpeech. We would like to note that a concurrently
developed FastSpeech 2 [7] describes a similar approach.

Combined with WaveGlow [8], FastPitch is able to syn-
thesize mel-spectrograms over 60⇥ faster than real-time,
without resorting to kernel-level optimizations [9]. Because
the model learns to predict and use pitch in a low resolution
of one value for every input symbol, it makes it easy to adjust
pitch interactively, enabling practical applications in pitch
editing. Constant offsetting of F0 with FastPitch produces
naturally sounding low- and high-pitched variations of voice
that preserve the perceived speaker identity. We conclude that
the model learns to mimic the action of vocal chords, which
happens during the voluntary modulation of voice.

2. MODEL DESCRIPTION

The architecture of FastPitch is shown in Figure 1. It is based
on FastSpeech and composed mainly of two feed-forward
Transformer (FFTr) stacks [1]. The first one operates in the
resolution of input tokens, the second one in the resolution
of the output frames. Let x = (x1, . . . , xn) be the sequence
of input lexical units, and y = (y1, . . . , yt) be the sequence
of target mel-scale spectrogram frames. The first FFTr stack
produces the hidden representation h = FFTr(x). The hid-
den representation h is used to make predictions about the
duration and average pitch of every character with a 1-D CNN

�cMRPPZdX

��1��bfNa

+ZuNY
+qRPZNufq

�vqEuZfd
+qRPZNufq

��1��bfNa

.RnREu

��

�fd{�ğ�

��

�fd{�ğ�

�fd{�ğ�

 /���frr

 /���frr

!�}

!�}�fd{�ğ�

��

�fd{�ğ�

 /���frr

Fig. 1. Architecture of FastPitch follows FastSpeech [1]. A
single pitch value is predicted for every temporal location.

6588978-1-7281-7605-5/21/$31.00 ©2021 I��� I����� 2021

IC
A

S
S

P
 2

0
2
1
 -

 2
0
2
1
 I

E
E

E
 I

n
te

rn
a
ti

o
n
a
l

C
o
n
fe

re
n
c
e
 o

n
 A

c
o
u
s
ti

c
s
,
S

p
e
e
c
h
 a

n
d
 S

ig
n

a
l

P
ro

c
e
s
s
in

g
 (

IC
A

S
S

P
)

|
9
7
8

-1
-7

2
8

1
-7

6
0
5

-5
/2

0
/$

3
1
.0

0
 ©

2
0

2
1

 I
E

E
E

 |
 D

O
I:

 1
0
.1

1
0

9
/I

C
A

S
S

P
3

9
7

2
8

.2
0

2
1

.9
4

1
3
8

8
9

Authorized licensed use limited to: University of Edinburgh. Downloaded on April 02,2022 at 10:58:40 UTC from IEEE Xplore. Restrictions apply.

Module state-of-the-art (1 of 2)
Class

Orientation

• FastPitch
• case study: model training

• SoundStream
• learning to encode speech

• VALL-E
• a Large Speech Language Model

Module state-of-the-art (1 of 2)
Class

Case study

FastPitch

FASTPITCH: PARALLEL TEXT-TO-SPEECH WITH PITCH PREDICTION

Adrian Łańcucki

NVIDIA Corporation

ABSTRACT

We present FastPitch, a fully-parallel text-to-speech model
based on FastSpeech, conditioned on fundamental frequency
contours. The model predicts pitch contours during inference.
By altering these predictions, the generated speech can be
more expressive, better match the semantic of the utterance,
and in the end more engaging to the listener. Uniformly in-
creasing or decreasing pitch with FastPitch generates speech
that resembles the voluntary modulation of voice. Condi-
tioning on frequency contours improves the overall quality of
synthesized speech, making it comparable to state-of-the-art.
It does not introduce an overhead, and FastPitch retains the
favorable, fully-parallel Transformer architecture, with over
900⇥ real-time factor for mel-spectrogram synthesis of a typ-
ical utterance.

Index Terms— text-to-speech, speech synthesis, funda-
mental frequency

1. INTRODUCTION

Recent advances in neural text-to-speech (TTS) enabled real-
time synthesis of naturally sounding, human-like speech. Par-
allel models are able to synthesize mel-spectrograms orders
of magnitude faster than autoregressive ones, either by rely-
ing on external alignments [1], or aligning themselves [2].
TTS models can be conditioned on qualities of speech such
as linguistic features and fundamental frequency [3]. The lat-
ter has been repeatedly shown to improve the quality of neu-
ral, but also concatenative models [4, 5]. Conditioning on F0

is a common approach to adding singing capabilities [6]. or
adapting to other speakers [5].

In this paper we propose FastPitch, a feed-forward model
based on FastSpeech that improves the quality of synthe-
sized speech. By conditioning on fundamental frequency
estimated for every input symbol, which we refer to simply as
a pitch contour, it matches the state-of-the-art autoregressive
TTS models. We show that explicit modeling of such pitch
contours addresses the quality shortcomings of the plain
feed-forward Transformer architecture. These most likely
arise from collapsing different pronunciations of the same
phonetic units in the absence of enough linguistic informa-
tion in the textual input alone. Conditioning on fundamental
frequency also improves convergence, and eliminates the

need for knowledge distillation of mel-spectrogram targets
used in FastSpeech. We would like to note that a concurrently
developed FastSpeech 2 [7] describes a similar approach.

Combined with WaveGlow [8], FastPitch is able to syn-
thesize mel-spectrograms over 60⇥ faster than real-time,
without resorting to kernel-level optimizations [9]. Because
the model learns to predict and use pitch in a low resolution
of one value for every input symbol, it makes it easy to adjust
pitch interactively, enabling practical applications in pitch
editing. Constant offsetting of F0 with FastPitch produces
naturally sounding low- and high-pitched variations of voice
that preserve the perceived speaker identity. We conclude that
the model learns to mimic the action of vocal chords, which
happens during the voluntary modulation of voice.

2. MODEL DESCRIPTION

The architecture of FastPitch is shown in Figure 1. It is based
on FastSpeech and composed mainly of two feed-forward
Transformer (FFTr) stacks [1]. The first one operates in the
resolution of input tokens, the second one in the resolution
of the output frames. Let x = (x1, . . . , xn) be the sequence
of input lexical units, and y = (y1, . . . , yt) be the sequence
of target mel-scale spectrogram frames. The first FFTr stack
produces the hidden representation h = FFTr(x). The hid-
den representation h is used to make predictions about the
duration and average pitch of every character with a 1-D CNN

�cMRPPZdX

��1��bfNa

+ZuNY
+qRPZNufq

�vqEuZfd
+qRPZNufq

��1��bfNa

.RnREu

��

�fd{�ğ�

��

�fd{�ğ�

�fd{�ğ�

 /���frr

 /���frr

!�}

!�}�fd{�ğ�

��

�fd{�ğ�

 /���frr

Fig. 1. Architecture of FastPitch follows FastSpeech [1]. A
single pitch value is predicted for every temporal location.

6588978-1-7281-7605-5/21/$31.00 ©2021 I��� I����� 2021

IC
A

S
S

P
 2

0
2
1
 -

 2
0
2
1
 I

E
E

E
 I

n
te

rn
a
ti

o
n
a
l

C
o
n
fe

re
n
c
e
 o

n
 A

c
o
u
s
ti

c
s
,
S

p
e
e
c
h
 a

n
d
 S

ig
n
a
l

P
ro

c
e
s
s
in

g
 (

IC
A

S
S

P
)

|
9
7
8
-1

-7
2
8
1
-7

6
0
5
-5

/2
0
/$

3
1
.0

0
 ©

2
0
2
1
 I

E
E

E
 |
 D

O
I:

 1
0
.1

1
0
9
/I

C
A

S
S

P
3
9
7
2
8
.2

0
2

1
.9

4
1
3

8
8

9

Authorized licensed use limited to: University of Edinburgh. Downloaded on April 02,2022 at 10:58:40 UTC from IEEE Xplore. Restrictions apply.

Module state-of-the-art (1 of 2)
Class

Input and output - add them to the diagram

FASTPITCH: PARALLEL TEXT-TO-SPEECH WITH PITCH PREDICTION

Adrian Łańcucki

NVIDIA Corporation

ABSTRACT

We present FastPitch, a fully-parallel text-to-speech model
based on FastSpeech, conditioned on fundamental frequency
contours. The model predicts pitch contours during inference.
By altering these predictions, the generated speech can be
more expressive, better match the semantic of the utterance,
and in the end more engaging to the listener. Uniformly in-
creasing or decreasing pitch with FastPitch generates speech
that resembles the voluntary modulation of voice. Condi-
tioning on frequency contours improves the overall quality of
synthesized speech, making it comparable to state-of-the-art.
It does not introduce an overhead, and FastPitch retains the
favorable, fully-parallel Transformer architecture, with over
900⇥ real-time factor for mel-spectrogram synthesis of a typ-
ical utterance.

Index Terms— text-to-speech, speech synthesis, funda-
mental frequency

1. INTRODUCTION

Recent advances in neural text-to-speech (TTS) enabled real-
time synthesis of naturally sounding, human-like speech. Par-
allel models are able to synthesize mel-spectrograms orders
of magnitude faster than autoregressive ones, either by rely-
ing on external alignments [1], or aligning themselves [2].
TTS models can be conditioned on qualities of speech such
as linguistic features and fundamental frequency [3]. The lat-
ter has been repeatedly shown to improve the quality of neu-
ral, but also concatenative models [4, 5]. Conditioning on F0

is a common approach to adding singing capabilities [6]. or
adapting to other speakers [5].

In this paper we propose FastPitch, a feed-forward model
based on FastSpeech that improves the quality of synthe-
sized speech. By conditioning on fundamental frequency
estimated for every input symbol, which we refer to simply as
a pitch contour, it matches the state-of-the-art autoregressive
TTS models. We show that explicit modeling of such pitch
contours addresses the quality shortcomings of the plain
feed-forward Transformer architecture. These most likely
arise from collapsing different pronunciations of the same
phonetic units in the absence of enough linguistic informa-
tion in the textual input alone. Conditioning on fundamental
frequency also improves convergence, and eliminates the

need for knowledge distillation of mel-spectrogram targets
used in FastSpeech. We would like to note that a concurrently
developed FastSpeech 2 [7] describes a similar approach.

Combined with WaveGlow [8], FastPitch is able to syn-
thesize mel-spectrograms over 60⇥ faster than real-time,
without resorting to kernel-level optimizations [9]. Because
the model learns to predict and use pitch in a low resolution
of one value for every input symbol, it makes it easy to adjust
pitch interactively, enabling practical applications in pitch
editing. Constant offsetting of F0 with FastPitch produces
naturally sounding low- and high-pitched variations of voice
that preserve the perceived speaker identity. We conclude that
the model learns to mimic the action of vocal chords, which
happens during the voluntary modulation of voice.

2. MODEL DESCRIPTION

The architecture of FastPitch is shown in Figure 1. It is based
on FastSpeech and composed mainly of two feed-forward
Transformer (FFTr) stacks [1]. The first one operates in the
resolution of input tokens, the second one in the resolution
of the output frames. Let x = (x1, . . . , xn) be the sequence
of input lexical units, and y = (y1, . . . , yt) be the sequence
of target mel-scale spectrogram frames. The first FFTr stack
produces the hidden representation h = FFTr(x). The hid-
den representation h is used to make predictions about the
duration and average pitch of every character with a 1-D CNN

�cMRPPZdX

��1��bfNa

+ZuNY
+qRPZNufq

�vqEuZfd
+qRPZNufq

��1��bfNa

.RnREu

��

�fd{�ğ�

��

�fd{�ğ�

�fd{�ğ�

 /���frr

 /���frr

!�}

!�}�fd{�ğ�

��

�fd{�ğ�

 /���frr

Fig. 1. Architecture of FastPitch follows FastSpeech [1]. A
single pitch value is predicted for every temporal location.

6588978-1-7281-7605-5/21/$31.00 ©2021 I��� I����� 2021

IC
A

S
S

P
 2

0
2

1
 -

 2
0

2
1

 I
E

E
E

 I
n

te
rn

a
ti

o
n

a
l

C
o

n
fe

re
n

c
e
 o

n
 A

c
o

u
s
ti

c
s
,

S
p

e
e
c
h

 a
n

d
 S

ig
n

a
l

P
ro

c
e
s
s
in

g
 (

IC
A

S
S

P
)

|
9

7
8

-1
-7

2
8

1
-7

6
0

5
-5

/2
0

/$
3

1
.0

0
 ©

2
0

2
1

 I
E

E
E

 |
 D

O
I:

 1
0

.1
1

0
9

/I
C

A
S

S
P

3
9

7
2

8
.2

0
2

1
.9

4
1

3
8

8
9

Authorized licensed use limited to: University of Edinburgh. Downloaded on April 02,2022 at 10:58:40 UTC from IEEE Xplore. Restrictions apply.

Module state-of-the-art (1 of 2)
Class

Sequences - describe the time steps and length of sequence at every point

Module state-of-the-art (1 of 2)
Class

FASTPITCH: PARALLEL TEXT-TO-SPEECH WITH PITCH PREDICTION

Adrian Łańcucki

NVIDIA Corporation

ABSTRACT

We present FastPitch, a fully-parallel text-to-speech model
based on FastSpeech, conditioned on fundamental frequency
contours. The model predicts pitch contours during inference.
By altering these predictions, the generated speech can be
more expressive, better match the semantic of the utterance,
and in the end more engaging to the listener. Uniformly in-
creasing or decreasing pitch with FastPitch generates speech
that resembles the voluntary modulation of voice. Condi-
tioning on frequency contours improves the overall quality of
synthesized speech, making it comparable to state-of-the-art.
It does not introduce an overhead, and FastPitch retains the
favorable, fully-parallel Transformer architecture, with over
900⇥ real-time factor for mel-spectrogram synthesis of a typ-
ical utterance.

Index Terms— text-to-speech, speech synthesis, funda-
mental frequency

1. INTRODUCTION

Recent advances in neural text-to-speech (TTS) enabled real-
time synthesis of naturally sounding, human-like speech. Par-
allel models are able to synthesize mel-spectrograms orders
of magnitude faster than autoregressive ones, either by rely-
ing on external alignments [1], or aligning themselves [2].
TTS models can be conditioned on qualities of speech such
as linguistic features and fundamental frequency [3]. The lat-
ter has been repeatedly shown to improve the quality of neu-
ral, but also concatenative models [4, 5]. Conditioning on F0

is a common approach to adding singing capabilities [6]. or
adapting to other speakers [5].

In this paper we propose FastPitch, a feed-forward model
based on FastSpeech that improves the quality of synthe-
sized speech. By conditioning on fundamental frequency
estimated for every input symbol, which we refer to simply as
a pitch contour, it matches the state-of-the-art autoregressive
TTS models. We show that explicit modeling of such pitch
contours addresses the quality shortcomings of the plain
feed-forward Transformer architecture. These most likely
arise from collapsing different pronunciations of the same
phonetic units in the absence of enough linguistic informa-
tion in the textual input alone. Conditioning on fundamental
frequency also improves convergence, and eliminates the

need for knowledge distillation of mel-spectrogram targets
used in FastSpeech. We would like to note that a concurrently
developed FastSpeech 2 [7] describes a similar approach.

Combined with WaveGlow [8], FastPitch is able to syn-
thesize mel-spectrograms over 60⇥ faster than real-time,
without resorting to kernel-level optimizations [9]. Because
the model learns to predict and use pitch in a low resolution
of one value for every input symbol, it makes it easy to adjust
pitch interactively, enabling practical applications in pitch
editing. Constant offsetting of F0 with FastPitch produces
naturally sounding low- and high-pitched variations of voice
that preserve the perceived speaker identity. We conclude that
the model learns to mimic the action of vocal chords, which
happens during the voluntary modulation of voice.

2. MODEL DESCRIPTION

The architecture of FastPitch is shown in Figure 1. It is based
on FastSpeech and composed mainly of two feed-forward
Transformer (FFTr) stacks [1]. The first one operates in the
resolution of input tokens, the second one in the resolution
of the output frames. Let x = (x1, . . . , xn) be the sequence
of input lexical units, and y = (y1, . . . , yt) be the sequence
of target mel-scale spectrogram frames. The first FFTr stack
produces the hidden representation h = FFTr(x). The hid-
den representation h is used to make predictions about the
duration and average pitch of every character with a 1-D CNN

�cMRPPZdX

��1��bfNa

+ZuNY
+qRPZNufq

�vqEuZfd
+qRPZNufq

��1��bfNa

.RnREu

��

�fd{�ğ�

��

�fd{�ğ�

�fd{�ğ�

 /���frr

 /���frr

!�}

!�}�fd{�ğ�

��

�fd{�ğ�

 /���frr

Fig. 1. Architecture of FastPitch follows FastSpeech [1]. A
single pitch value is predicted for every temporal location.

6588978-1-7281-7605-5/21/$31.00 ©2021 I��� I����� 2021

IC
A

S
S

P
 2

0
2

1
 -

 2
0

2
1

 I
E

E
E

 I
n

te
rn

a
ti

o
n

a
l

C
o

n
fe

re
n

c
e
 o

n
 A

c
o

u
s
ti

c
s
,

S
p

e
e
c
h

 a
n

d
 S

ig
n

a
l

P
ro

c
e
s
s
in

g
 (

IC
A

S
S

P
)

|
9

7
8

-1
-7

2
8

1
-7

6
0

5
-5

/2
0

/$
3

1
.0

0
 ©

2
0

2
1

 I
E

E
E

 |
 D

O
I:

 1
0

.1
1

0
9

/I
C

A
S

S
P

3
9

7
2

8
.2

0
2

1
.9

4
1

3
8

8
9

Authorized licensed use limited to: University of Edinburgh. Downloaded on April 02,2022 at 10:58:40 UTC from IEEE Xplore. Restrictions apply.

FASTPITCH: PARALLEL TEXT-TO-SPEECH WITH PITCH PREDICTION

Adrian Łańcucki

NVIDIA Corporation

ABSTRACT

We present FastPitch, a fully-parallel text-to-speech model
based on FastSpeech, conditioned on fundamental frequency
contours. The model predicts pitch contours during inference.
By altering these predictions, the generated speech can be
more expressive, better match the semantic of the utterance,
and in the end more engaging to the listener. Uniformly in-
creasing or decreasing pitch with FastPitch generates speech
that resembles the voluntary modulation of voice. Condi-
tioning on frequency contours improves the overall quality of
synthesized speech, making it comparable to state-of-the-art.
It does not introduce an overhead, and FastPitch retains the
favorable, fully-parallel Transformer architecture, with over
900⇥ real-time factor for mel-spectrogram synthesis of a typ-
ical utterance.

Index Terms— text-to-speech, speech synthesis, funda-
mental frequency

1. INTRODUCTION

Recent advances in neural text-to-speech (TTS) enabled real-
time synthesis of naturally sounding, human-like speech. Par-
allel models are able to synthesize mel-spectrograms orders
of magnitude faster than autoregressive ones, either by rely-
ing on external alignments [1], or aligning themselves [2].
TTS models can be conditioned on qualities of speech such
as linguistic features and fundamental frequency [3]. The lat-
ter has been repeatedly shown to improve the quality of neu-
ral, but also concatenative models [4, 5]. Conditioning on F0

is a common approach to adding singing capabilities [6]. or
adapting to other speakers [5].

In this paper we propose FastPitch, a feed-forward model
based on FastSpeech that improves the quality of synthe-
sized speech. By conditioning on fundamental frequency
estimated for every input symbol, which we refer to simply as
a pitch contour, it matches the state-of-the-art autoregressive
TTS models. We show that explicit modeling of such pitch
contours addresses the quality shortcomings of the plain
feed-forward Transformer architecture. These most likely
arise from collapsing different pronunciations of the same
phonetic units in the absence of enough linguistic informa-
tion in the textual input alone. Conditioning on fundamental
frequency also improves convergence, and eliminates the

need for knowledge distillation of mel-spectrogram targets
used in FastSpeech. We would like to note that a concurrently
developed FastSpeech 2 [7] describes a similar approach.

Combined with WaveGlow [8], FastPitch is able to syn-
thesize mel-spectrograms over 60⇥ faster than real-time,
without resorting to kernel-level optimizations [9]. Because
the model learns to predict and use pitch in a low resolution
of one value for every input symbol, it makes it easy to adjust
pitch interactively, enabling practical applications in pitch
editing. Constant offsetting of F0 with FastPitch produces
naturally sounding low- and high-pitched variations of voice
that preserve the perceived speaker identity. We conclude that
the model learns to mimic the action of vocal chords, which
happens during the voluntary modulation of voice.

2. MODEL DESCRIPTION

The architecture of FastPitch is shown in Figure 1. It is based
on FastSpeech and composed mainly of two feed-forward
Transformer (FFTr) stacks [1]. The first one operates in the
resolution of input tokens, the second one in the resolution
of the output frames. Let x = (x1, . . . , xn) be the sequence
of input lexical units, and y = (y1, . . . , yt) be the sequence
of target mel-scale spectrogram frames. The first FFTr stack
produces the hidden representation h = FFTr(x). The hid-
den representation h is used to make predictions about the
duration and average pitch of every character with a 1-D CNN

�cMRPPZdX

��1��bfNa

+ZuNY
+qRPZNufq

�vqEuZfd
+qRPZNufq

��1��bfNa

.RnREu

��

�fd{�ğ�

��

�fd{�ğ�

�fd{�ğ�

 /���frr

 /���frr

!�}

!�}�fd{�ğ�

��

�fd{�ğ�

 /���frr

Fig. 1. Architecture of FastPitch follows FastSpeech [1]. A
single pitch value is predicted for every temporal location.

6588978-1-7281-7605-5/21/$31.00 ©2021 I��� I����� 2021

IC
A

S
S

P
 2

0
2
1
 -

 2
0
2
1
 I

E
E

E
 I

n
te

rn
a
ti

o
n
a
l

C
o
n
fe

re
n
c
e
 o

n
 A

c
o
u
s
ti

c
s
,
S

p
e
e
c
h
 a

n
d

 S
ig

n
a
l

P
ro

c
e
s
s
in

g
 (

IC
A

S
S

P
)

|
9

7
8
-1

-7
2
8

1
-7

6
0

5
-5

/2
0

/$
3

1
.0

0
 ©

2
0
2
1

 I
E

E
E

 |
 D

O
I:

 1
0
.1

1
0

9
/I

C
A

S
S

P
3

9
7
2

8
.2

0
2

1
.9

4
1

3
8

8
9

Authorized licensed use limited to: University of Edinburgh. Downloaded on April 02,2022 at 10:58:40 UTC from IEEE Xplore. Restrictions apply.

Duration - describe how it is predicted and used during inference

FASTPITCH: PARALLEL TEXT-TO-SPEECH WITH PITCH PREDICTION

Adrian Łańcucki

NVIDIA Corporation

ABSTRACT

We present FastPitch, a fully-parallel text-to-speech model
based on FastSpeech, conditioned on fundamental frequency
contours. The model predicts pitch contours during inference.
By altering these predictions, the generated speech can be
more expressive, better match the semantic of the utterance,
and in the end more engaging to the listener. Uniformly in-
creasing or decreasing pitch with FastPitch generates speech
that resembles the voluntary modulation of voice. Condi-
tioning on frequency contours improves the overall quality of
synthesized speech, making it comparable to state-of-the-art.
It does not introduce an overhead, and FastPitch retains the
favorable, fully-parallel Transformer architecture, with over
900⇥ real-time factor for mel-spectrogram synthesis of a typ-
ical utterance.

Index Terms— text-to-speech, speech synthesis, funda-
mental frequency

1. INTRODUCTION

Recent advances in neural text-to-speech (TTS) enabled real-
time synthesis of naturally sounding, human-like speech. Par-
allel models are able to synthesize mel-spectrograms orders
of magnitude faster than autoregressive ones, either by rely-
ing on external alignments [1], or aligning themselves [2].
TTS models can be conditioned on qualities of speech such
as linguistic features and fundamental frequency [3]. The lat-
ter has been repeatedly shown to improve the quality of neu-
ral, but also concatenative models [4, 5]. Conditioning on F0

is a common approach to adding singing capabilities [6]. or
adapting to other speakers [5].

In this paper we propose FastPitch, a feed-forward model
based on FastSpeech that improves the quality of synthe-
sized speech. By conditioning on fundamental frequency
estimated for every input symbol, which we refer to simply as
a pitch contour, it matches the state-of-the-art autoregressive
TTS models. We show that explicit modeling of such pitch
contours addresses the quality shortcomings of the plain
feed-forward Transformer architecture. These most likely
arise from collapsing different pronunciations of the same
phonetic units in the absence of enough linguistic informa-
tion in the textual input alone. Conditioning on fundamental
frequency also improves convergence, and eliminates the

need for knowledge distillation of mel-spectrogram targets
used in FastSpeech. We would like to note that a concurrently
developed FastSpeech 2 [7] describes a similar approach.

Combined with WaveGlow [8], FastPitch is able to syn-
thesize mel-spectrograms over 60⇥ faster than real-time,
without resorting to kernel-level optimizations [9]. Because
the model learns to predict and use pitch in a low resolution
of one value for every input symbol, it makes it easy to adjust
pitch interactively, enabling practical applications in pitch
editing. Constant offsetting of F0 with FastPitch produces
naturally sounding low- and high-pitched variations of voice
that preserve the perceived speaker identity. We conclude that
the model learns to mimic the action of vocal chords, which
happens during the voluntary modulation of voice.

2. MODEL DESCRIPTION

The architecture of FastPitch is shown in Figure 1. It is based
on FastSpeech and composed mainly of two feed-forward
Transformer (FFTr) stacks [1]. The first one operates in the
resolution of input tokens, the second one in the resolution
of the output frames. Let x = (x1, . . . , xn) be the sequence
of input lexical units, and y = (y1, . . . , yt) be the sequence
of target mel-scale spectrogram frames. The first FFTr stack
produces the hidden representation h = FFTr(x). The hid-
den representation h is used to make predictions about the
duration and average pitch of every character with a 1-D CNN

�cMRPPZdX

��1��bfNa

+ZuNY
+qRPZNufq

�vqEuZfd
+qRPZNufq

��1��bfNa

.RnREu

��

�fd{�ğ�

��

�fd{�ğ�

�fd{�ğ�

 /���frr

 /���frr

!�}

!�}�fd{�ğ�

��

�fd{�ğ�

 /���frr

Fig. 1. Architecture of FastPitch follows FastSpeech [1]. A
single pitch value is predicted for every temporal location.

6588978-1-7281-7605-5/21/$31.00 ©2021 I��� I����� 2021

IC
A

S
S

P
 2

0
2
1
 -

 2
0
2
1
 I

E
E

E
 I

n
te

rn
a
ti

o
n
a
l

C
o
n
fe

re
n
c
e
 o

n
 A

c
o
u
s
ti

c
s
,
S

p
e
e
c
h
 a

n
d
 S

ig
n
a
l

P
ro

c
e
s
s
in

g
 (

IC
A

S
S

P
)

|
9

7
8
-1

-7
2
8

1
-7

6
0

5
-5

/2
0

/$
3

1
.0

0
 ©

2
0
2
1

 I
E

E
E

 |
 D

O
I:

 1
0
.1

1
0

9
/I

C
A

S
S

P
3

9
7
2

8
.2

0
2

1
.9

4
1

3
8

8
9

Authorized licensed use limited to: University of Edinburgh. Downloaded on April 02,2022 at 10:58:40 UTC from IEEE Xplore. Restrictions apply.

“Pitch” (F0!) - describe how it is predicted during inference

Module state-of-the-art (1 of 2)
Class

FASTPITCH: PARALLEL TEXT-TO-SPEECH WITH PITCH PREDICTION

Adrian Łańcucki

NVIDIA Corporation

ABSTRACT

We present FastPitch, a fully-parallel text-to-speech model
based on FastSpeech, conditioned on fundamental frequency
contours. The model predicts pitch contours during inference.
By altering these predictions, the generated speech can be
more expressive, better match the semantic of the utterance,
and in the end more engaging to the listener. Uniformly in-
creasing or decreasing pitch with FastPitch generates speech
that resembles the voluntary modulation of voice. Condi-
tioning on frequency contours improves the overall quality of
synthesized speech, making it comparable to state-of-the-art.
It does not introduce an overhead, and FastPitch retains the
favorable, fully-parallel Transformer architecture, with over
900⇥ real-time factor for mel-spectrogram synthesis of a typ-
ical utterance.

Index Terms— text-to-speech, speech synthesis, funda-
mental frequency

1. INTRODUCTION

Recent advances in neural text-to-speech (TTS) enabled real-
time synthesis of naturally sounding, human-like speech. Par-
allel models are able to synthesize mel-spectrograms orders
of magnitude faster than autoregressive ones, either by rely-
ing on external alignments [1], or aligning themselves [2].
TTS models can be conditioned on qualities of speech such
as linguistic features and fundamental frequency [3]. The lat-
ter has been repeatedly shown to improve the quality of neu-
ral, but also concatenative models [4, 5]. Conditioning on F0

is a common approach to adding singing capabilities [6]. or
adapting to other speakers [5].

In this paper we propose FastPitch, a feed-forward model
based on FastSpeech that improves the quality of synthe-
sized speech. By conditioning on fundamental frequency
estimated for every input symbol, which we refer to simply as
a pitch contour, it matches the state-of-the-art autoregressive
TTS models. We show that explicit modeling of such pitch
contours addresses the quality shortcomings of the plain
feed-forward Transformer architecture. These most likely
arise from collapsing different pronunciations of the same
phonetic units in the absence of enough linguistic informa-
tion in the textual input alone. Conditioning on fundamental
frequency also improves convergence, and eliminates the

need for knowledge distillation of mel-spectrogram targets
used in FastSpeech. We would like to note that a concurrently
developed FastSpeech 2 [7] describes a similar approach.

Combined with WaveGlow [8], FastPitch is able to syn-
thesize mel-spectrograms over 60⇥ faster than real-time,
without resorting to kernel-level optimizations [9]. Because
the model learns to predict and use pitch in a low resolution
of one value for every input symbol, it makes it easy to adjust
pitch interactively, enabling practical applications in pitch
editing. Constant offsetting of F0 with FastPitch produces
naturally sounding low- and high-pitched variations of voice
that preserve the perceived speaker identity. We conclude that
the model learns to mimic the action of vocal chords, which
happens during the voluntary modulation of voice.

2. MODEL DESCRIPTION

The architecture of FastPitch is shown in Figure 1. It is based
on FastSpeech and composed mainly of two feed-forward
Transformer (FFTr) stacks [1]. The first one operates in the
resolution of input tokens, the second one in the resolution
of the output frames. Let x = (x1, . . . , xn) be the sequence
of input lexical units, and y = (y1, . . . , yt) be the sequence
of target mel-scale spectrogram frames. The first FFTr stack
produces the hidden representation h = FFTr(x). The hid-
den representation h is used to make predictions about the
duration and average pitch of every character with a 1-D CNN

�cMRPPZdX

��1��bfNa

+ZuNY
+qRPZNufq

�vqEuZfd
+qRPZNufq

��1��bfNa

.RnREu

��

�fd{�ğ�

��

�fd{�ğ�

�fd{�ğ�

 /���frr

 /���frr

!�}

!�}�fd{�ğ�

��

�fd{�ğ�

 /���frr

Fig. 1. Architecture of FastPitch follows FastSpeech [1]. A
single pitch value is predicted for every temporal location.

6588978-1-7281-7605-5/21/$31.00 ©2021 I��� I����� 2021

IC
A

S
S

P
 2

0
2
1
 -

 2
0
2
1
 I

E
E

E
 I

n
te

rn
a
ti

o
n
a
l

C
o
n
fe

re
n
c
e
 o

n
 A

c
o
u
s
ti

c
s
,
S

p
e
e
c
h
 a

n
d
 S

ig
n
a
l

P
ro

c
e
s
s
in

g
 (

IC
A

S
S

P
)

|
9

7
8
-1

-7
2
8

1
-7

6
0

5
-5

/2
0

/$
3

1
.0

0
 ©

2
0
2
1

 I
E

E
E

 |
 D

O
I:

 1
0
.1

1
0

9
/I

C
A

S
S

P
3

9
7
2

8
.2

0
2

1
.9

4
1

3
8

8
9

Authorized licensed use limited to: University of Edinburgh. Downloaded on April 02,2022 at 10:58:40 UTC from IEEE Xplore. Restrictions apply.

“Pitch” (F0!) - describe how it is used during inference

Module state-of-the-art (1 of 2)
Class

Representations - describe them all; which ones are learned?

Module state-of-the-art (1 of 2)
Class

FASTPITCH: PARALLEL TEXT-TO-SPEECH WITH PITCH PREDICTION

Adrian Łańcucki

NVIDIA Corporation

ABSTRACT

We present FastPitch, a fully-parallel text-to-speech model
based on FastSpeech, conditioned on fundamental frequency
contours. The model predicts pitch contours during inference.
By altering these predictions, the generated speech can be
more expressive, better match the semantic of the utterance,
and in the end more engaging to the listener. Uniformly in-
creasing or decreasing pitch with FastPitch generates speech
that resembles the voluntary modulation of voice. Condi-
tioning on frequency contours improves the overall quality of
synthesized speech, making it comparable to state-of-the-art.
It does not introduce an overhead, and FastPitch retains the
favorable, fully-parallel Transformer architecture, with over
900⇥ real-time factor for mel-spectrogram synthesis of a typ-
ical utterance.

Index Terms— text-to-speech, speech synthesis, funda-
mental frequency

1. INTRODUCTION

Recent advances in neural text-to-speech (TTS) enabled real-
time synthesis of naturally sounding, human-like speech. Par-
allel models are able to synthesize mel-spectrograms orders
of magnitude faster than autoregressive ones, either by rely-
ing on external alignments [1], or aligning themselves [2].
TTS models can be conditioned on qualities of speech such
as linguistic features and fundamental frequency [3]. The lat-
ter has been repeatedly shown to improve the quality of neu-
ral, but also concatenative models [4, 5]. Conditioning on F0

is a common approach to adding singing capabilities [6]. or
adapting to other speakers [5].

In this paper we propose FastPitch, a feed-forward model
based on FastSpeech that improves the quality of synthe-
sized speech. By conditioning on fundamental frequency
estimated for every input symbol, which we refer to simply as
a pitch contour, it matches the state-of-the-art autoregressive
TTS models. We show that explicit modeling of such pitch
contours addresses the quality shortcomings of the plain
feed-forward Transformer architecture. These most likely
arise from collapsing different pronunciations of the same
phonetic units in the absence of enough linguistic informa-
tion in the textual input alone. Conditioning on fundamental
frequency also improves convergence, and eliminates the

need for knowledge distillation of mel-spectrogram targets
used in FastSpeech. We would like to note that a concurrently
developed FastSpeech 2 [7] describes a similar approach.

Combined with WaveGlow [8], FastPitch is able to syn-
thesize mel-spectrograms over 60⇥ faster than real-time,
without resorting to kernel-level optimizations [9]. Because
the model learns to predict and use pitch in a low resolution
of one value for every input symbol, it makes it easy to adjust
pitch interactively, enabling practical applications in pitch
editing. Constant offsetting of F0 with FastPitch produces
naturally sounding low- and high-pitched variations of voice
that preserve the perceived speaker identity. We conclude that
the model learns to mimic the action of vocal chords, which
happens during the voluntary modulation of voice.

2. MODEL DESCRIPTION

The architecture of FastPitch is shown in Figure 1. It is based
on FastSpeech and composed mainly of two feed-forward
Transformer (FFTr) stacks [1]. The first one operates in the
resolution of input tokens, the second one in the resolution
of the output frames. Let x = (x1, . . . , xn) be the sequence
of input lexical units, and y = (y1, . . . , yt) be the sequence
of target mel-scale spectrogram frames. The first FFTr stack
produces the hidden representation h = FFTr(x). The hid-
den representation h is used to make predictions about the
duration and average pitch of every character with a 1-D CNN

�cMRPPZdX

��1��bfNa

+ZuNY
+qRPZNufq

�vqEuZfd
+qRPZNufq

��1��bfNa

.RnREu

��

�fd{�ğ�

��

�fd{�ğ�

�fd{�ğ�

 /���frr

 /���frr

!�}

!�}�fd{�ğ�

��

�fd{�ğ�

 /���frr

Fig. 1. Architecture of FastPitch follows FastSpeech [1]. A
single pitch value is predicted for every temporal location.

6588978-1-7281-7605-5/21/$31.00 ©2021 I��� I����� 2021

IC
A

S
S

P
 2

0
2

1
 -

 2
0

2
1

 I
E

E
E

 I
n

te
rn

a
ti

o
n

a
l

C
o

n
fe

re
n

c
e
 o

n
 A

c
o

u
s
ti

c
s
,

S
p

e
e
c
h

 a
n

d
 S

ig
n

a
l

P
ro

c
e
s
s
in

g
 (

IC
A

S
S

P
)

|
9

7
8

-1
-7

2
8

1
-7

6
0

5
-5

/2
0

/$
3

1
.0

0
 ©

2
0

2
1

 I
E

E
E

 |
 D

O
I:

 1
0

.1
1

0
9

/I
C

A
S

S
P

3
9

7
2

8
.2

0
2

1
.9

4
1

3
8

8
9

Authorized licensed use limited to: University of Edinburgh. Downloaded on April 02,2022 at 10:58:40 UTC from IEEE Xplore. Restrictions apply.

Combining representations - describe every point where this occurs

Module state-of-the-art (1 of 2)
Class

FASTPITCH: PARALLEL TEXT-TO-SPEECH WITH PITCH PREDICTION

Adrian Łańcucki

NVIDIA Corporation

ABSTRACT

We present FastPitch, a fully-parallel text-to-speech model
based on FastSpeech, conditioned on fundamental frequency
contours. The model predicts pitch contours during inference.
By altering these predictions, the generated speech can be
more expressive, better match the semantic of the utterance,
and in the end more engaging to the listener. Uniformly in-
creasing or decreasing pitch with FastPitch generates speech
that resembles the voluntary modulation of voice. Condi-
tioning on frequency contours improves the overall quality of
synthesized speech, making it comparable to state-of-the-art.
It does not introduce an overhead, and FastPitch retains the
favorable, fully-parallel Transformer architecture, with over
900⇥ real-time factor for mel-spectrogram synthesis of a typ-
ical utterance.

Index Terms— text-to-speech, speech synthesis, funda-
mental frequency

1. INTRODUCTION

Recent advances in neural text-to-speech (TTS) enabled real-
time synthesis of naturally sounding, human-like speech. Par-
allel models are able to synthesize mel-spectrograms orders
of magnitude faster than autoregressive ones, either by rely-
ing on external alignments [1], or aligning themselves [2].
TTS models can be conditioned on qualities of speech such
as linguistic features and fundamental frequency [3]. The lat-
ter has been repeatedly shown to improve the quality of neu-
ral, but also concatenative models [4, 5]. Conditioning on F0

is a common approach to adding singing capabilities [6]. or
adapting to other speakers [5].

In this paper we propose FastPitch, a feed-forward model
based on FastSpeech that improves the quality of synthe-
sized speech. By conditioning on fundamental frequency
estimated for every input symbol, which we refer to simply as
a pitch contour, it matches the state-of-the-art autoregressive
TTS models. We show that explicit modeling of such pitch
contours addresses the quality shortcomings of the plain
feed-forward Transformer architecture. These most likely
arise from collapsing different pronunciations of the same
phonetic units in the absence of enough linguistic informa-
tion in the textual input alone. Conditioning on fundamental
frequency also improves convergence, and eliminates the

need for knowledge distillation of mel-spectrogram targets
used in FastSpeech. We would like to note that a concurrently
developed FastSpeech 2 [7] describes a similar approach.

Combined with WaveGlow [8], FastPitch is able to syn-
thesize mel-spectrograms over 60⇥ faster than real-time,
without resorting to kernel-level optimizations [9]. Because
the model learns to predict and use pitch in a low resolution
of one value for every input symbol, it makes it easy to adjust
pitch interactively, enabling practical applications in pitch
editing. Constant offsetting of F0 with FastPitch produces
naturally sounding low- and high-pitched variations of voice
that preserve the perceived speaker identity. We conclude that
the model learns to mimic the action of vocal chords, which
happens during the voluntary modulation of voice.

2. MODEL DESCRIPTION

The architecture of FastPitch is shown in Figure 1. It is based
on FastSpeech and composed mainly of two feed-forward
Transformer (FFTr) stacks [1]. The first one operates in the
resolution of input tokens, the second one in the resolution
of the output frames. Let x = (x1, . . . , xn) be the sequence
of input lexical units, and y = (y1, . . . , yt) be the sequence
of target mel-scale spectrogram frames. The first FFTr stack
produces the hidden representation h = FFTr(x). The hid-
den representation h is used to make predictions about the
duration and average pitch of every character with a 1-D CNN

�cMRPPZdX

��1��bfNa

+ZuNY
+qRPZNufq

�vqEuZfd
+qRPZNufq

��1��bfNa

.RnREu

��

�fd{�ğ�

��

�fd{�ğ�

�fd{�ğ�

 /���frr

 /���frr

!�}

!�}�fd{�ğ�

��

�fd{�ğ�

 /���frr

Fig. 1. Architecture of FastPitch follows FastSpeech [1]. A
single pitch value is predicted for every temporal location.

6588978-1-7281-7605-5/21/$31.00 ©2021 I��� I����� 2021

IC
A

S
S

P
 2

0
2

1
 -

 2
0

2
1

 I
E

E
E

 I
n

te
rn

a
ti

o
n

a
l

C
o

n
fe

re
n

c
e
 o

n
 A

c
o

u
s
ti

c
s
,

S
p

e
e
c
h

 a
n

d
 S

ig
n

a
l

P
ro

c
e
s
s
in

g
 (

IC
A

S
S

P
)

|
9

7
8

-1
-7

2
8

1
-7

6
0

5
-5

/2
0

/$
3

1
.0

0
 ©

2
0

2
1

 I
E

E
E

 |
 D

O
I:

 1
0

.1
1

0
9

/I
C

A
S

S
P

3
9

7
2

8
.2

0
2

1
.9

4
1

3
8

8
9

Authorized licensed use limited to: University of Edinburgh. Downloaded on April 02,2022 at 10:58:40 UTC from IEEE Xplore. Restrictions apply.

Training vs. inference - which one is this diagram describing ?

Module state-of-the-art (1 of 2)
Class

FASTPITCH: PARALLEL TEXT-TO-SPEECH WITH PITCH PREDICTION

Adrian Łańcucki

NVIDIA Corporation

ABSTRACT

We present FastPitch, a fully-parallel text-to-speech model
based on FastSpeech, conditioned on fundamental frequency
contours. The model predicts pitch contours during inference.
By altering these predictions, the generated speech can be
more expressive, better match the semantic of the utterance,
and in the end more engaging to the listener. Uniformly in-
creasing or decreasing pitch with FastPitch generates speech
that resembles the voluntary modulation of voice. Condi-
tioning on frequency contours improves the overall quality of
synthesized speech, making it comparable to state-of-the-art.
It does not introduce an overhead, and FastPitch retains the
favorable, fully-parallel Transformer architecture, with over
900⇥ real-time factor for mel-spectrogram synthesis of a typ-
ical utterance.

Index Terms— text-to-speech, speech synthesis, funda-
mental frequency

1. INTRODUCTION

Recent advances in neural text-to-speech (TTS) enabled real-
time synthesis of naturally sounding, human-like speech. Par-
allel models are able to synthesize mel-spectrograms orders
of magnitude faster than autoregressive ones, either by rely-
ing on external alignments [1], or aligning themselves [2].
TTS models can be conditioned on qualities of speech such
as linguistic features and fundamental frequency [3]. The lat-
ter has been repeatedly shown to improve the quality of neu-
ral, but also concatenative models [4, 5]. Conditioning on F0

is a common approach to adding singing capabilities [6]. or
adapting to other speakers [5].

In this paper we propose FastPitch, a feed-forward model
based on FastSpeech that improves the quality of synthe-
sized speech. By conditioning on fundamental frequency
estimated for every input symbol, which we refer to simply as
a pitch contour, it matches the state-of-the-art autoregressive
TTS models. We show that explicit modeling of such pitch
contours addresses the quality shortcomings of the plain
feed-forward Transformer architecture. These most likely
arise from collapsing different pronunciations of the same
phonetic units in the absence of enough linguistic informa-
tion in the textual input alone. Conditioning on fundamental
frequency also improves convergence, and eliminates the

need for knowledge distillation of mel-spectrogram targets
used in FastSpeech. We would like to note that a concurrently
developed FastSpeech 2 [7] describes a similar approach.

Combined with WaveGlow [8], FastPitch is able to syn-
thesize mel-spectrograms over 60⇥ faster than real-time,
without resorting to kernel-level optimizations [9]. Because
the model learns to predict and use pitch in a low resolution
of one value for every input symbol, it makes it easy to adjust
pitch interactively, enabling practical applications in pitch
editing. Constant offsetting of F0 with FastPitch produces
naturally sounding low- and high-pitched variations of voice
that preserve the perceived speaker identity. We conclude that
the model learns to mimic the action of vocal chords, which
happens during the voluntary modulation of voice.

2. MODEL DESCRIPTION

The architecture of FastPitch is shown in Figure 1. It is based
on FastSpeech and composed mainly of two feed-forward
Transformer (FFTr) stacks [1]. The first one operates in the
resolution of input tokens, the second one in the resolution
of the output frames. Let x = (x1, . . . , xn) be the sequence
of input lexical units, and y = (y1, . . . , yt) be the sequence
of target mel-scale spectrogram frames. The first FFTr stack
produces the hidden representation h = FFTr(x). The hid-
den representation h is used to make predictions about the
duration and average pitch of every character with a 1-D CNN

�cMRPPZdX

��1��bfNa

+ZuNY
+qRPZNufq

�vqEuZfd
+qRPZNufq

��1��bfNa

.RnREu

��

�fd{�ğ�

��

�fd{�ğ�

�fd{�ğ�

 /���frr

 /���frr

!�}

!�}�fd{�ğ�

��

�fd{�ğ�

 /���frr

Fig. 1. Architecture of FastPitch follows FastSpeech [1]. A
single pitch value is predicted for every temporal location.

6588978-1-7281-7605-5/21/$31.00 ©2021 I��� I����� 2021

IC
A

S
S

P
 2

0
2

1
 -

 2
0

2
1

 I
E

E
E

 I
n

te
rn

a
ti

o
n

a
l

C
o

n
fe

re
n

c
e
 o

n
 A

c
o

u
s
ti

c
s
,

S
p

e
e
c
h

 a
n

d
 S

ig
n

a
l

P
ro

c
e
s
s
in

g
 (

IC
A

S
S

P
)

|
9

7
8

-1
-7

2
8

1
-7

6
0

5
-5

/2
0

/$
3

1
.0

0
 ©

2
0

2
1

 I
E

E
E

 |
 D

O
I:

 1
0

.1
1

0
9

/I
C

A
S

S
P

3
9

7
2

8
.2

0
2

1
.9

4
1

3
8

8
9

Authorized licensed use limited to: University of Edinburgh. Downloaded on April 02,2022 at 10:58:40 UTC from IEEE Xplore. Restrictions apply.

FASTPITCH: PARALLEL TEXT-TO-SPEECH WITH PITCH PREDICTION

Adrian Łańcucki

NVIDIA Corporation

ABSTRACT

We present FastPitch, a fully-parallel text-to-speech model
based on FastSpeech, conditioned on fundamental frequency
contours. The model predicts pitch contours during inference.
By altering these predictions, the generated speech can be
more expressive, better match the semantic of the utterance,
and in the end more engaging to the listener. Uniformly in-
creasing or decreasing pitch with FastPitch generates speech
that resembles the voluntary modulation of voice. Condi-
tioning on frequency contours improves the overall quality of
synthesized speech, making it comparable to state-of-the-art.
It does not introduce an overhead, and FastPitch retains the
favorable, fully-parallel Transformer architecture, with over
900⇥ real-time factor for mel-spectrogram synthesis of a typ-
ical utterance.

Index Terms— text-to-speech, speech synthesis, funda-
mental frequency

1. INTRODUCTION

Recent advances in neural text-to-speech (TTS) enabled real-
time synthesis of naturally sounding, human-like speech. Par-
allel models are able to synthesize mel-spectrograms orders
of magnitude faster than autoregressive ones, either by rely-
ing on external alignments [1], or aligning themselves [2].
TTS models can be conditioned on qualities of speech such
as linguistic features and fundamental frequency [3]. The lat-
ter has been repeatedly shown to improve the quality of neu-
ral, but also concatenative models [4, 5]. Conditioning on F0

is a common approach to adding singing capabilities [6]. or
adapting to other speakers [5].

In this paper we propose FastPitch, a feed-forward model
based on FastSpeech that improves the quality of synthe-
sized speech. By conditioning on fundamental frequency
estimated for every input symbol, which we refer to simply as
a pitch contour, it matches the state-of-the-art autoregressive
TTS models. We show that explicit modeling of such pitch
contours addresses the quality shortcomings of the plain
feed-forward Transformer architecture. These most likely
arise from collapsing different pronunciations of the same
phonetic units in the absence of enough linguistic informa-
tion in the textual input alone. Conditioning on fundamental
frequency also improves convergence, and eliminates the

need for knowledge distillation of mel-spectrogram targets
used in FastSpeech. We would like to note that a concurrently
developed FastSpeech 2 [7] describes a similar approach.

Combined with WaveGlow [8], FastPitch is able to syn-
thesize mel-spectrograms over 60⇥ faster than real-time,
without resorting to kernel-level optimizations [9]. Because
the model learns to predict and use pitch in a low resolution
of one value for every input symbol, it makes it easy to adjust
pitch interactively, enabling practical applications in pitch
editing. Constant offsetting of F0 with FastPitch produces
naturally sounding low- and high-pitched variations of voice
that preserve the perceived speaker identity. We conclude that
the model learns to mimic the action of vocal chords, which
happens during the voluntary modulation of voice.

2. MODEL DESCRIPTION

The architecture of FastPitch is shown in Figure 1. It is based
on FastSpeech and composed mainly of two feed-forward
Transformer (FFTr) stacks [1]. The first one operates in the
resolution of input tokens, the second one in the resolution
of the output frames. Let x = (x1, . . . , xn) be the sequence
of input lexical units, and y = (y1, . . . , yt) be the sequence
of target mel-scale spectrogram frames. The first FFTr stack
produces the hidden representation h = FFTr(x). The hid-
den representation h is used to make predictions about the
duration and average pitch of every character with a 1-D CNN

�cMRPPZdX

��1��bfNa

+ZuNY
+qRPZNufq

�vqEuZfd
+qRPZNufq

��1��bfNa

.RnREu

��

�fd{�ğ�

��

�fd{�ğ�

�fd{�ğ�

 /���frr

 /���frr

!�}

!�}�fd{�ğ�

��

�fd{�ğ�

 /���frr

Fig. 1. Architecture of FastPitch follows FastSpeech [1]. A
single pitch value is predicted for every temporal location.

6588978-1-7281-7605-5/21/$31.00 ©2021 I��� I����� 2021

IC
A

S
S

P
 2

0
2
1
 -

 2
0
2
1
 I

E
E

E
 I

n
te

rn
a
ti

o
n
a
l

C
o
n
fe

re
n
c
e
 o

n
 A

c
o
u
s
ti

c
s
,
S

p
e
e
c
h
 a

n
d
 S

ig
n
a
l

P
ro

c
e
s
s
in

g
 (

IC
A

S
S

P
)

|
9
7
8
-1

-7
2
8
1
-7

6
0
5
-5

/2
0
/$

3
1
.0

0
 ©

2
0
2
1
 I

E
E

E
 |
 D

O
I:

 1
0
.1

1
0
9
/I

C
A

S
S

P
3
9
7
2
8
.2

0
2
1
.9

4
1
3
8
8
9

Authorized licensed use limited to: University of Edinburgh. Downloaded on April 02,2022 at 10:58:40 UTC from IEEE Xplore. Restrictions apply.

Training the model - what is “MSE Loss”; why are there 3 losses?

Training the model - how is the Pitch Predictor trained?

Module state-of-the-art (1 of 2)
Class

FASTPITCH: PARALLEL TEXT-TO-SPEECH WITH PITCH PREDICTION

Adrian Łańcucki

NVIDIA Corporation

ABSTRACT

We present FastPitch, a fully-parallel text-to-speech model
based on FastSpeech, conditioned on fundamental frequency
contours. The model predicts pitch contours during inference.
By altering these predictions, the generated speech can be
more expressive, better match the semantic of the utterance,
and in the end more engaging to the listener. Uniformly in-
creasing or decreasing pitch with FastPitch generates speech
that resembles the voluntary modulation of voice. Condi-
tioning on frequency contours improves the overall quality of
synthesized speech, making it comparable to state-of-the-art.
It does not introduce an overhead, and FastPitch retains the
favorable, fully-parallel Transformer architecture, with over
900⇥ real-time factor for mel-spectrogram synthesis of a typ-
ical utterance.

Index Terms— text-to-speech, speech synthesis, funda-
mental frequency

1. INTRODUCTION

Recent advances in neural text-to-speech (TTS) enabled real-
time synthesis of naturally sounding, human-like speech. Par-
allel models are able to synthesize mel-spectrograms orders
of magnitude faster than autoregressive ones, either by rely-
ing on external alignments [1], or aligning themselves [2].
TTS models can be conditioned on qualities of speech such
as linguistic features and fundamental frequency [3]. The lat-
ter has been repeatedly shown to improve the quality of neu-
ral, but also concatenative models [4, 5]. Conditioning on F0

is a common approach to adding singing capabilities [6]. or
adapting to other speakers [5].

In this paper we propose FastPitch, a feed-forward model
based on FastSpeech that improves the quality of synthe-
sized speech. By conditioning on fundamental frequency
estimated for every input symbol, which we refer to simply as
a pitch contour, it matches the state-of-the-art autoregressive
TTS models. We show that explicit modeling of such pitch
contours addresses the quality shortcomings of the plain
feed-forward Transformer architecture. These most likely
arise from collapsing different pronunciations of the same
phonetic units in the absence of enough linguistic informa-
tion in the textual input alone. Conditioning on fundamental
frequency also improves convergence, and eliminates the

need for knowledge distillation of mel-spectrogram targets
used in FastSpeech. We would like to note that a concurrently
developed FastSpeech 2 [7] describes a similar approach.

Combined with WaveGlow [8], FastPitch is able to syn-
thesize mel-spectrograms over 60⇥ faster than real-time,
without resorting to kernel-level optimizations [9]. Because
the model learns to predict and use pitch in a low resolution
of one value for every input symbol, it makes it easy to adjust
pitch interactively, enabling practical applications in pitch
editing. Constant offsetting of F0 with FastPitch produces
naturally sounding low- and high-pitched variations of voice
that preserve the perceived speaker identity. We conclude that
the model learns to mimic the action of vocal chords, which
happens during the voluntary modulation of voice.

2. MODEL DESCRIPTION

The architecture of FastPitch is shown in Figure 1. It is based
on FastSpeech and composed mainly of two feed-forward
Transformer (FFTr) stacks [1]. The first one operates in the
resolution of input tokens, the second one in the resolution
of the output frames. Let x = (x1, . . . , xn) be the sequence
of input lexical units, and y = (y1, . . . , yt) be the sequence
of target mel-scale spectrogram frames. The first FFTr stack
produces the hidden representation h = FFTr(x). The hid-
den representation h is used to make predictions about the
duration and average pitch of every character with a 1-D CNN

�cMRPPZdX

��1��bfNa

+ZuNY
+qRPZNufq

�vqEuZfd
+qRPZNufq

��1��bfNa

.RnREu

��

�fd{�ğ�

��

�fd{�ğ�

�fd{�ğ�

 /���frr

 /���frr

!�}

!�}�fd{�ğ�

��

�fd{�ğ�

 /���frr

Fig. 1. Architecture of FastPitch follows FastSpeech [1]. A
single pitch value is predicted for every temporal location.

6588978-1-7281-7605-5/21/$31.00 ©2021 I��� I����� 2021

IC
A

S
S

P
 2

0
2

1
 -

 2
0

2
1

 I
E

E
E

 I
n

te
rn

a
ti

o
n

a
l

C
o

n
fe

re
n

c
e
 o

n
 A

c
o

u
s
ti

c
s
,

S
p

e
e
c
h

 a
n

d
 S

ig
n

a
l

P
ro

c
e
s
s
in

g
 (

IC
A

S
S

P
)

|
9

7
8

-1
-7

2
8

1
-7

6
0

5
-5

/2
0

/$
3

1
.0

0
 ©

2
0

2
1

 I
E

E
E

 |
 D

O
I:

 1
0

.1
1

0
9

/I
C

A
S

S
P

3
9

7
2

8
.2

0
2

1
.9

4
1

3
8

8
9

Authorized licensed use limited to: University of Edinburgh. Downloaded on April 02,2022 at 10:58:40 UTC from IEEE Xplore. Restrictions apply.

Training the model - how is the Duration Predictor trained?

Module state-of-the-art (1 of 2)
Class

FASTPITCH: PARALLEL TEXT-TO-SPEECH WITH PITCH PREDICTION

Adrian Łańcucki

NVIDIA Corporation

ABSTRACT

We present FastPitch, a fully-parallel text-to-speech model
based on FastSpeech, conditioned on fundamental frequency
contours. The model predicts pitch contours during inference.
By altering these predictions, the generated speech can be
more expressive, better match the semantic of the utterance,
and in the end more engaging to the listener. Uniformly in-
creasing or decreasing pitch with FastPitch generates speech
that resembles the voluntary modulation of voice. Condi-
tioning on frequency contours improves the overall quality of
synthesized speech, making it comparable to state-of-the-art.
It does not introduce an overhead, and FastPitch retains the
favorable, fully-parallel Transformer architecture, with over
900⇥ real-time factor for mel-spectrogram synthesis of a typ-
ical utterance.

Index Terms— text-to-speech, speech synthesis, funda-
mental frequency

1. INTRODUCTION

Recent advances in neural text-to-speech (TTS) enabled real-
time synthesis of naturally sounding, human-like speech. Par-
allel models are able to synthesize mel-spectrograms orders
of magnitude faster than autoregressive ones, either by rely-
ing on external alignments [1], or aligning themselves [2].
TTS models can be conditioned on qualities of speech such
as linguistic features and fundamental frequency [3]. The lat-
ter has been repeatedly shown to improve the quality of neu-
ral, but also concatenative models [4, 5]. Conditioning on F0

is a common approach to adding singing capabilities [6]. or
adapting to other speakers [5].

In this paper we propose FastPitch, a feed-forward model
based on FastSpeech that improves the quality of synthe-
sized speech. By conditioning on fundamental frequency
estimated for every input symbol, which we refer to simply as
a pitch contour, it matches the state-of-the-art autoregressive
TTS models. We show that explicit modeling of such pitch
contours addresses the quality shortcomings of the plain
feed-forward Transformer architecture. These most likely
arise from collapsing different pronunciations of the same
phonetic units in the absence of enough linguistic informa-
tion in the textual input alone. Conditioning on fundamental
frequency also improves convergence, and eliminates the

need for knowledge distillation of mel-spectrogram targets
used in FastSpeech. We would like to note that a concurrently
developed FastSpeech 2 [7] describes a similar approach.

Combined with WaveGlow [8], FastPitch is able to syn-
thesize mel-spectrograms over 60⇥ faster than real-time,
without resorting to kernel-level optimizations [9]. Because
the model learns to predict and use pitch in a low resolution
of one value for every input symbol, it makes it easy to adjust
pitch interactively, enabling practical applications in pitch
editing. Constant offsetting of F0 with FastPitch produces
naturally sounding low- and high-pitched variations of voice
that preserve the perceived speaker identity. We conclude that
the model learns to mimic the action of vocal chords, which
happens during the voluntary modulation of voice.

2. MODEL DESCRIPTION

The architecture of FastPitch is shown in Figure 1. It is based
on FastSpeech and composed mainly of two feed-forward
Transformer (FFTr) stacks [1]. The first one operates in the
resolution of input tokens, the second one in the resolution
of the output frames. Let x = (x1, . . . , xn) be the sequence
of input lexical units, and y = (y1, . . . , yt) be the sequence
of target mel-scale spectrogram frames. The first FFTr stack
produces the hidden representation h = FFTr(x). The hid-
den representation h is used to make predictions about the
duration and average pitch of every character with a 1-D CNN

�cMRPPZdX

��1��bfNa

+ZuNY
+qRPZNufq

�vqEuZfd
+qRPZNufq

��1��bfNa

.RnREu

��

�fd{�ğ�

��

�fd{�ğ�

�fd{�ğ�

 /���frr

 /���frr

!�}

!�}�fd{�ğ�

��

�fd{�ğ�

 /���frr

Fig. 1. Architecture of FastPitch follows FastSpeech [1]. A
single pitch value is predicted for every temporal location.

6588978-1-7281-7605-5/21/$31.00 ©2021 I��� I����� 2021

IC
A

S
S

P
 2

0
2

1
 -

 2
0

2
1

 I
E

E
E

 I
n

te
rn

a
ti

o
n

a
l

C
o

n
fe

re
n

c
e
 o

n
 A

c
o

u
s
ti

c
s
,

S
p

e
e
c
h

 a
n

d
 S

ig
n

a
l

P
ro

c
e
s
s
in

g
 (

IC
A

S
S

P
)

|
9

7
8

-1
-7

2
8

1
-7

6
0

5
-5

/2
0

/$
3

1
.0

0
 ©

2
0

2
1

 I
E

E
E

 |
 D

O
I:

 1
0

.1
1

0
9

/I
C

A
S

S
P

3
9

7
2

8
.2

0
2

1
.9

4
1

3
8

8
9

Authorized licensed use limited to: University of Edinburgh. Downloaded on April 02,2022 at 10:58:40 UTC from IEEE Xplore. Restrictions apply.

Terminology & jargon - make sure you understand all terms

• architectures
• fully parallel
• recurrent
• autoregressive
• positional encoding
• causal

• training methods
• optimiser (e.g., Adam)
• teacher forcing (in autoregressive

model)

• input symbol, lexical unit, character,
grapheme

• audio (never “audios” please!!)
• ground truth
• ablation study
• real-time factor (RTF)

Module state-of-the-art (1 of 2)
Class

Orientation

• FastPitch
• case study: model training

• SoundStream
• learning to encode speech

• VALL-E
• a Large Speech Language Model

Module state-of-the-art (1 of 2)
Class

Case study

SoundStream

Module state-of-the-art (1 of 2)
Class

498 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 30, 2022

Fig. 3. Encoder and decoder model architecture.

dilated convolutions with dilation rates of 1, 3, and 9, respec-
tively, followed by a down-sampling layer in the form of a
strided convolution. The number of channels is doubled when-
ever down-sampling, starting from Cenc. A final 1D convolution
layer with a kernel of length 3 and a stride of 1 is used to set
the dimensionality of the embeddings to D (D = 256 in our
experiments). To guarantee real-time inference, all convolutions
are causal. This means that padding is only applied to the past
but not the future in both training and offline inference, whereas
no padding is used in streaming inference. We use the ELU
activation [46] and we do not apply any normalization. The
number Benc of convolution blocks and the corresponding strid-
ing sequence determines the temporal resampling ratio between
the input waveform and the embeddings. For example, when
Benc = 4 and using (2, 4, 5, 8) as strides, one embedding is
computed every M = 2 · 4 · 5 · 8 = 320 input samples. Thus,
the encoder outputs enc(x) ∈ RS×D, with S = T/M .

B. Decoder Architecture

The decoder architecture follows a similar design, as illus-
trated in Fig. 3. A 1D convolution layer is followed by a
sequence ofBdec convolution blocks. The decoder block mirrors
the encoder block, and consists of a transposed convolution
for up-sampling followed by the same three residual units. We
use the same strides as the encoder, but in reverse order, to
reconstruct a waveform with the same resolution as the input
waveform. The number of channels is halved whenever up-
sampling, so that the last decoder block outputs Cdec channels.
A final 1D convolution layer with one filter, a kernel of size
7 and stride 1 projects the embeddings back to the waveform
domain to produce x̂. In Fig. 3, the same number of channels
in both the encoder and the decoder is controlled by the same
parameter, i.e., Cenc = Cdec = C. We also investigate cases in

Algorithm 1: Residual Vector Quantization.
Input: y = enc(x) the output of the encoder, vector

quantizers Qi for i = 1..Nq

Output: the quantized ŷ
ŷ ← 0.0 residual← y
for i = 1 to Nq do
ŷ += Qi(residual)
residual −= Qi(residual)

return ŷ

which Cenc %= Cdec, which results in a computationally lighter
encoder and a heavier decoder, or vice-versa (see Section V-D).

C. Residual Vector Quantizer

The goal of the quantizer is to compress the output of the en-
coder enc(x) to a target bitrateR, expressed in bits/second (bps).
In order to train SoundStream in an end-to-end fashion, the
quantizer needs to be jointly trained with the encoder and
the decoder by backpropagation. The vector quantizer (VQ)
proposed in [34], [35] in the context of VQ-VAEs meets this
requirement. This vector quantizer learns a codebook of N
vectors to encode each D-dimensional frame of enc(x). The
encoded audio enc(x) ∈ RS×D is then mapped to a sequence
of one-hot vectors of shape S ×N , which can be represented
using S log2 N bits.

Limitations of Vector Quantization: As a concrete example,
let us consider a codec targeting a bitrate R = 6000 bps. When
using a striding factor M = 320, each second of audio at a sam-
pling rate fs = 24000Hz is represented byS = 75 frames at the
output of the encoder. This corresponds to r = 6000/75 = 80
bits allocated to each frame. Using a plain vector quantizer, this
requires storing a codebook with N = 280 vectors, which is
obviously unfeasible.

Authorized licensed use limited to: University of Edinburgh. Downloaded on March 25,2024 at 11:14:57 UTC from IEEE Xplore. Restrictions apply.

498 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 30, 2022

Fig. 3. Encoder and decoder model architecture.

dilated convolutions with dilation rates of 1, 3, and 9, respec-
tively, followed by a down-sampling layer in the form of a
strided convolution. The number of channels is doubled when-
ever down-sampling, starting from Cenc. A final 1D convolution
layer with a kernel of length 3 and a stride of 1 is used to set
the dimensionality of the embeddings to D (D = 256 in our
experiments). To guarantee real-time inference, all convolutions
are causal. This means that padding is only applied to the past
but not the future in both training and offline inference, whereas
no padding is used in streaming inference. We use the ELU
activation [46] and we do not apply any normalization. The
number Benc of convolution blocks and the corresponding strid-
ing sequence determines the temporal resampling ratio between
the input waveform and the embeddings. For example, when
Benc = 4 and using (2, 4, 5, 8) as strides, one embedding is
computed every M = 2 · 4 · 5 · 8 = 320 input samples. Thus,
the encoder outputs enc(x) ∈ RS×D, with S = T/M .

B. Decoder Architecture

The decoder architecture follows a similar design, as illus-
trated in Fig. 3. A 1D convolution layer is followed by a
sequence ofBdec convolution blocks. The decoder block mirrors
the encoder block, and consists of a transposed convolution
for up-sampling followed by the same three residual units. We
use the same strides as the encoder, but in reverse order, to
reconstruct a waveform with the same resolution as the input
waveform. The number of channels is halved whenever up-
sampling, so that the last decoder block outputs Cdec channels.
A final 1D convolution layer with one filter, a kernel of size
7 and stride 1 projects the embeddings back to the waveform
domain to produce x̂. In Fig. 3, the same number of channels
in both the encoder and the decoder is controlled by the same
parameter, i.e., Cenc = Cdec = C. We also investigate cases in

Algorithm 1: Residual Vector Quantization.
Input: y = enc(x) the output of the encoder, vector

quantizers Qi for i = 1..Nq

Output: the quantized ŷ
ŷ ← 0.0 residual← y
for i = 1 to Nq do
ŷ += Qi(residual)
residual −= Qi(residual)

return ŷ

which Cenc %= Cdec, which results in a computationally lighter
encoder and a heavier decoder, or vice-versa (see Section V-D).

C. Residual Vector Quantizer

The goal of the quantizer is to compress the output of the en-
coder enc(x) to a target bitrateR, expressed in bits/second (bps).
In order to train SoundStream in an end-to-end fashion, the
quantizer needs to be jointly trained with the encoder and
the decoder by backpropagation. The vector quantizer (VQ)
proposed in [34], [35] in the context of VQ-VAEs meets this
requirement. This vector quantizer learns a codebook of N
vectors to encode each D-dimensional frame of enc(x). The
encoded audio enc(x) ∈ RS×D is then mapped to a sequence
of one-hot vectors of shape S ×N , which can be represented
using S log2 N bits.

Limitations of Vector Quantization: As a concrete example,
let us consider a codec targeting a bitrate R = 6000 bps. When
using a striding factor M = 320, each second of audio at a sam-
pling rate fs = 24000Hz is represented byS = 75 frames at the
output of the encoder. This corresponds to r = 6000/75 = 80
bits allocated to each frame. Using a plain vector quantizer, this
requires storing a codebook with N = 280 vectors, which is
obviously unfeasible.

Authorized licensed use limited to: University of Edinburgh. Downloaded on March 25,2024 at 11:14:57 UTC from IEEE Xplore. Restrictions apply.

Module state-of-the-art (1 of 2)
Class

Warning: up and down have no meaning in architecture diagrams!

498 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 30, 2022

Fig. 3. Encoder and decoder model architecture.

dilated convolutions with dilation rates of 1, 3, and 9, respec-
tively, followed by a down-sampling layer in the form of a
strided convolution. The number of channels is doubled when-
ever down-sampling, starting from Cenc. A final 1D convolution
layer with a kernel of length 3 and a stride of 1 is used to set
the dimensionality of the embeddings to D (D = 256 in our
experiments). To guarantee real-time inference, all convolutions
are causal. This means that padding is only applied to the past
but not the future in both training and offline inference, whereas
no padding is used in streaming inference. We use the ELU
activation [46] and we do not apply any normalization. The
number Benc of convolution blocks and the corresponding strid-
ing sequence determines the temporal resampling ratio between
the input waveform and the embeddings. For example, when
Benc = 4 and using (2, 4, 5, 8) as strides, one embedding is
computed every M = 2 · 4 · 5 · 8 = 320 input samples. Thus,
the encoder outputs enc(x) ∈ RS×D, with S = T/M .

B. Decoder Architecture

The decoder architecture follows a similar design, as illus-
trated in Fig. 3. A 1D convolution layer is followed by a
sequence ofBdec convolution blocks. The decoder block mirrors
the encoder block, and consists of a transposed convolution
for up-sampling followed by the same three residual units. We
use the same strides as the encoder, but in reverse order, to
reconstruct a waveform with the same resolution as the input
waveform. The number of channels is halved whenever up-
sampling, so that the last decoder block outputs Cdec channels.
A final 1D convolution layer with one filter, a kernel of size
7 and stride 1 projects the embeddings back to the waveform
domain to produce x̂. In Fig. 3, the same number of channels
in both the encoder and the decoder is controlled by the same
parameter, i.e., Cenc = Cdec = C. We also investigate cases in

Algorithm 1: Residual Vector Quantization.
Input: y = enc(x) the output of the encoder, vector

quantizers Qi for i = 1..Nq

Output: the quantized ŷ
ŷ ← 0.0 residual← y
for i = 1 to Nq do
ŷ += Qi(residual)
residual −= Qi(residual)

return ŷ

which Cenc %= Cdec, which results in a computationally lighter
encoder and a heavier decoder, or vice-versa (see Section V-D).

C. Residual Vector Quantizer

The goal of the quantizer is to compress the output of the en-
coder enc(x) to a target bitrateR, expressed in bits/second (bps).
In order to train SoundStream in an end-to-end fashion, the
quantizer needs to be jointly trained with the encoder and
the decoder by backpropagation. The vector quantizer (VQ)
proposed in [34], [35] in the context of VQ-VAEs meets this
requirement. This vector quantizer learns a codebook of N
vectors to encode each D-dimensional frame of enc(x). The
encoded audio enc(x) ∈ RS×D is then mapped to a sequence
of one-hot vectors of shape S ×N , which can be represented
using S log2 N bits.

Limitations of Vector Quantization: As a concrete example,
let us consider a codec targeting a bitrate R = 6000 bps. When
using a striding factor M = 320, each second of audio at a sam-
pling rate fs = 24000Hz is represented byS = 75 frames at the
output of the encoder. This corresponds to r = 6000/75 = 80
bits allocated to each frame. Using a plain vector quantizer, this
requires storing a codebook with N = 280 vectors, which is
obviously unfeasible.

Authorized licensed use limited to: University of Edinburgh. Downloaded on March 25,2024 at 11:14:57 UTC from IEEE Xplore. Restrictions apply.

Module state-of-the-art (1 of 2)
Class

FASTPITCH: PARALLEL TEXT-TO-SPEECH WITH PITCH PREDICTION

Adrian Łańcucki

NVIDIA Corporation

ABSTRACT

We present FastPitch, a fully-parallel text-to-speech model
based on FastSpeech, conditioned on fundamental frequency
contours. The model predicts pitch contours during inference.
By altering these predictions, the generated speech can be
more expressive, better match the semantic of the utterance,
and in the end more engaging to the listener. Uniformly in-
creasing or decreasing pitch with FastPitch generates speech
that resembles the voluntary modulation of voice. Condi-
tioning on frequency contours improves the overall quality of
synthesized speech, making it comparable to state-of-the-art.
It does not introduce an overhead, and FastPitch retains the
favorable, fully-parallel Transformer architecture, with over
900⇥ real-time factor for mel-spectrogram synthesis of a typ-
ical utterance.

Index Terms— text-to-speech, speech synthesis, funda-
mental frequency

1. INTRODUCTION

Recent advances in neural text-to-speech (TTS) enabled real-
time synthesis of naturally sounding, human-like speech. Par-
allel models are able to synthesize mel-spectrograms orders
of magnitude faster than autoregressive ones, either by rely-
ing on external alignments [1], or aligning themselves [2].
TTS models can be conditioned on qualities of speech such
as linguistic features and fundamental frequency [3]. The lat-
ter has been repeatedly shown to improve the quality of neu-
ral, but also concatenative models [4, 5]. Conditioning on F0

is a common approach to adding singing capabilities [6]. or
adapting to other speakers [5].

In this paper we propose FastPitch, a feed-forward model
based on FastSpeech that improves the quality of synthe-
sized speech. By conditioning on fundamental frequency
estimated for every input symbol, which we refer to simply as
a pitch contour, it matches the state-of-the-art autoregressive
TTS models. We show that explicit modeling of such pitch
contours addresses the quality shortcomings of the plain
feed-forward Transformer architecture. These most likely
arise from collapsing different pronunciations of the same
phonetic units in the absence of enough linguistic informa-
tion in the textual input alone. Conditioning on fundamental
frequency also improves convergence, and eliminates the

need for knowledge distillation of mel-spectrogram targets
used in FastSpeech. We would like to note that a concurrently
developed FastSpeech 2 [7] describes a similar approach.

Combined with WaveGlow [8], FastPitch is able to syn-
thesize mel-spectrograms over 60⇥ faster than real-time,
without resorting to kernel-level optimizations [9]. Because
the model learns to predict and use pitch in a low resolution
of one value for every input symbol, it makes it easy to adjust
pitch interactively, enabling practical applications in pitch
editing. Constant offsetting of F0 with FastPitch produces
naturally sounding low- and high-pitched variations of voice
that preserve the perceived speaker identity. We conclude that
the model learns to mimic the action of vocal chords, which
happens during the voluntary modulation of voice.

2. MODEL DESCRIPTION

The architecture of FastPitch is shown in Figure 1. It is based
on FastSpeech and composed mainly of two feed-forward
Transformer (FFTr) stacks [1]. The first one operates in the
resolution of input tokens, the second one in the resolution
of the output frames. Let x = (x1, . . . , xn) be the sequence
of input lexical units, and y = (y1, . . . , yt) be the sequence
of target mel-scale spectrogram frames. The first FFTr stack
produces the hidden representation h = FFTr(x). The hid-
den representation h is used to make predictions about the
duration and average pitch of every character with a 1-D CNN

�cMRPPZdX

��1��bfNa

+ZuNY
+qRPZNufq

�vqEuZfd
+qRPZNufq

��1��bfNa

.RnREu

��

�fd{�ğ�

��

�fd{�ğ�

�fd{�ğ�

 /���frr

 /���frr

!�}

!�}�fd{�ğ�

��

�fd{�ğ�

 /���frr

Fig. 1. Architecture of FastPitch follows FastSpeech [1]. A
single pitch value is predicted for every temporal location.

6588978-1-7281-7605-5/21/$31.00 ©2021 I��� I����� 2021

IC
A

S
S

P
 2

0
2

1
 -

 2
0

2
1

 I
E

E
E

 I
n

te
rn

a
ti

o
n

a
l

C
o

n
fe

re
n

c
e
 o

n
 A

c
o

u
s
ti

c
s
,

S
p

e
e
c
h

 a
n

d
 S

ig
n

a
l

P
ro

c
e
s
s
in

g
 (

IC
A

S
S

P
)

|
9

7
8

-1
-7

2
8

1
-7

6
0

5
-5

/2
0

/$
3

1
.0

0
 ©

2
0

2
1

 I
E

E
E

 |
 D

O
I:

 1
0

.1
1

0
9

/I
C

A
S

S
P

3
9

7
2

8
.2

0
2

1
.9

4
1

3
8

8
9

Authorized licensed use limited to: University of Edinburgh. Downloaded on April 02,2022 at 10:58:40 UTC from IEEE Xplore. Restrictions apply.

What is an audio codec ?

• Encoder operates at the transmitter end
• reduces the number of bits-per-second

required to represent the audio signal
• outputs an encoding of the signal

• Decoder operates at the receiver end
• reconstructs the audio signal from

the encoding
• reconstructed waveform will not be

identical to the original (the codec is
“lossy”)

ZEGHIDOUR et al.: SOUNDSTREAM: AN END-TO-END NEURAL AUDIO CODEC 497

Fig. 2. SoundStream model architecture. A convolutional encoder produces a latent representation of the input audio samples, which is quantized using a variable
number nq of residual vector quantizers (RVQ). During training, the model parameters are optimized using a combination of reconstruction and adversarial losses.
An optional conditioning input can be used to indicate whether background noise has to be removed from the audio. When deploying the model, the encoder and
quantizer on a transmitter client send the compressed bitstream to a receiver client that can then decode the audio signal.

Neural audio codecs: End-to-end neural audio codecs rely
on data-driven methods to learn efficient audio representations,
instead of relying on handcrafted signal processing compo-
nents. Autoencoder networks with quantization of hidden fea-
tures were applied to speech coding early on [40]. More re-
cently, a more sophisticated deep convolutional network for
speech compression was described in [41]. Efficient compres-
sion of audio using neural networks has been demonstrated
in several works, mostly targeting speech coding at low bi-
trates. A VQ-VAE speech codec was proposed in [8], operat-
ing at 1.6 kbps. Lyra [10] is a generative model that encodes
quantized mel-spectrogram features of speech, which are de-
coded with an auto-regressive WaveGRU model to achieve
state-of-the-art results at 3 kbps. A very low-bitrate codec pro-
posed in [42] decodes speech representations obtained via
self-supervised learning. An end-to-end audio codec targeting
general audio at high bitrates (i.e., above 64 kbps) was pro-
posed in [43]. The model architecture adopts a residual coding
pipeline, which consists of multiple autoencoding modules and
a psycho-acoustic model is used to drive the loss function during
training.

Unlike [42] which specifically targets speech by combining
speaker, phonetic and pitch embeddings, SoundStream does
not make assumptions on the nature of the signal it encodes,
and thus works for diverse audio content types. While [10]
learns a decoder on fixed features, SoundStream is trained in an
end-to-end fashion. Our experiments (see Section IV) show that
learning the encoder increases the audio quality substantially.
SoundStream achieves bitrate scalability, i.e., the ability of a
single model to operate at different bitrates at no additional
cost, thanks to its residual vector quantizer and to our original
quantizer dropout training scheme (see Section III-C). This is
unlike the work in [41], [43], [44] which enforce a specific bitrate
and require training a different model for each target bitrate. A
single SoundStream model is able to compress speech, music
and general audio, while operating at a 24 kHz sampling rate and
low-to-medium bitrates (3 kbps to 18 kbps in our experiments),
in real time on a smartphone CPU. This is the first time that

a neural audio codec is shown to outperform state-of-the-art
codecs like Opus and EVS over this broad range of bitrates.

Joint compression and enhancement: Recent work has ex-
plored joint compression and enhancement. The work in [45]
trains a speech enhancement system with a quantized bottleneck.
Instead, SoundStream integrates a time-dependent conditioning
layer, which allows for real-time controllable denoising. As we
design SoundStream as a general-purpose audio codec, control-
ling when to denoise allows for encoding acoustic scenes and
natural sounds that would be otherwise removed.

III. MODEL

We consider a single channel recording x ∈ RT of duration T
and sampled at fs. The SoundStream model consists of a se-
quence of three building blocks, as illustrated in Fig. 2:! an encoder, which maps x to a sequence of embeddings

(see Section III-A),! a residual vector quantizer, which replaces each embedding
by the sum of vectors from a set of finite codebooks, thus
compressing the representation with a target number of bits
(see Section III-C),! a decoder, which produces a lossy reconstruction x̂ ∈ RT

from quantized embeddings (see Section III-B).
The model is trained end-to-end together with a discrim-

inator (see Section III-D), using the mix of adversarial and
reconstruction losses described in Section III-E. Optionally, a
conditioning signal can be added, which determines whether
denoising is applied at the encoder or decoder side, as detailed
in Section III-F.

A. Encoder Architecture

The encoder architecture is illustrated in Fig. 3 and follows the
same structure as the streaming SEANet encoder described in [2],
but without skip connections. It consists of a 1D convolution
layer (withCenc channels), followed byBenc convolution blocks.
Each of the blocks consists of three residual units, containing

Authorized licensed use limited to: University of Edinburgh. Downloaded on March 25,2024 at 11:14:57 UTC from IEEE Xplore. Restrictions apply.

Module state-of-the-art (1 of 2)
Class

Key ideas in SoundStream (and similar audio encoder-decoder models)

• Reduce sequence length
• input is a waveform, at a typical sample rate of 24 kHz (samples per second)
• encoded representation is at 75 Hz (frames per second)
• progressively reduce from 24 kHz to 75 Hz

• Quantise the learned representation
• so it becomes a sequence of codes, not vectors

• Residual quantisation
• to avoid the need for a very large set of codes

Module state-of-the-art (1 of 2)
Class

Key ideas in SoundStream (and similar audio encoder-decoder models)

• Reduce sequence length

• input is a waveform, at a typical sample rate of 24 kHz (samples per second)
• encoded representation is at 75 Hz (frames per second)
• progressively reduce from 24 kHz to 75 Hz

• Quantise the learned representation
• so it becomes a sequence of codes, not vectors

• Residual quantisation
• to avoid the need for a very large set of codes

Module state-of-the-art (1 of 2)
Class

498 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 30, 2022

Fig. 3. Encoder and decoder model architecture.

dilated convolutions with dilation rates of 1, 3, and 9, respec-
tively, followed by a down-sampling layer in the form of a
strided convolution. The number of channels is doubled when-
ever down-sampling, starting from Cenc. A final 1D convolution
layer with a kernel of length 3 and a stride of 1 is used to set
the dimensionality of the embeddings to D (D = 256 in our
experiments). To guarantee real-time inference, all convolutions
are causal. This means that padding is only applied to the past
but not the future in both training and offline inference, whereas
no padding is used in streaming inference. We use the ELU
activation [46] and we do not apply any normalization. The
number Benc of convolution blocks and the corresponding strid-
ing sequence determines the temporal resampling ratio between
the input waveform and the embeddings. For example, when
Benc = 4 and using (2, 4, 5, 8) as strides, one embedding is
computed every M = 2 · 4 · 5 · 8 = 320 input samples. Thus,
the encoder outputs enc(x) ∈ RS×D, with S = T/M .

B. Decoder Architecture

The decoder architecture follows a similar design, as illus-
trated in Fig. 3. A 1D convolution layer is followed by a
sequence ofBdec convolution blocks. The decoder block mirrors
the encoder block, and consists of a transposed convolution
for up-sampling followed by the same three residual units. We
use the same strides as the encoder, but in reverse order, to
reconstruct a waveform with the same resolution as the input
waveform. The number of channels is halved whenever up-
sampling, so that the last decoder block outputs Cdec channels.
A final 1D convolution layer with one filter, a kernel of size
7 and stride 1 projects the embeddings back to the waveform
domain to produce x̂. In Fig. 3, the same number of channels
in both the encoder and the decoder is controlled by the same
parameter, i.e., Cenc = Cdec = C. We also investigate cases in

Algorithm 1: Residual Vector Quantization.
Input: y = enc(x) the output of the encoder, vector

quantizers Qi for i = 1..Nq

Output: the quantized ŷ
ŷ ← 0.0 residual← y
for i = 1 to Nq do
ŷ += Qi(residual)
residual −= Qi(residual)

return ŷ

which Cenc %= Cdec, which results in a computationally lighter
encoder and a heavier decoder, or vice-versa (see Section V-D).

C. Residual Vector Quantizer

The goal of the quantizer is to compress the output of the en-
coder enc(x) to a target bitrateR, expressed in bits/second (bps).
In order to train SoundStream in an end-to-end fashion, the
quantizer needs to be jointly trained with the encoder and
the decoder by backpropagation. The vector quantizer (VQ)
proposed in [34], [35] in the context of VQ-VAEs meets this
requirement. This vector quantizer learns a codebook of N
vectors to encode each D-dimensional frame of enc(x). The
encoded audio enc(x) ∈ RS×D is then mapped to a sequence
of one-hot vectors of shape S ×N , which can be represented
using S log2 N bits.

Limitations of Vector Quantization: As a concrete example,
let us consider a codec targeting a bitrate R = 6000 bps. When
using a striding factor M = 320, each second of audio at a sam-
pling rate fs = 24000Hz is represented byS = 75 frames at the
output of the encoder. This corresponds to r = 6000/75 = 80
bits allocated to each frame. Using a plain vector quantizer, this
requires storing a codebook with N = 280 vectors, which is
obviously unfeasible.

Authorized licensed use limited to: University of Edinburgh. Downloaded on March 25,2024 at 11:14:57 UTC from IEEE Xplore. Restrictions apply.

Module state-of-the-art (1 of 2)
Class

ZEGHIDOUR et al.: SOUNDSTREAM: AN END-TO-END NEURAL AUDIO CODEC 497

Fig. 2. SoundStream model architecture. A convolutional encoder produces a latent representation of the input audio samples, which is quantized using a variable
number nq of residual vector quantizers (RVQ). During training, the model parameters are optimized using a combination of reconstruction and adversarial losses.
An optional conditioning input can be used to indicate whether background noise has to be removed from the audio. When deploying the model, the encoder and
quantizer on a transmitter client send the compressed bitstream to a receiver client that can then decode the audio signal.

Neural audio codecs: End-to-end neural audio codecs rely
on data-driven methods to learn efficient audio representations,
instead of relying on handcrafted signal processing compo-
nents. Autoencoder networks with quantization of hidden fea-
tures were applied to speech coding early on [40]. More re-
cently, a more sophisticated deep convolutional network for
speech compression was described in [41]. Efficient compres-
sion of audio using neural networks has been demonstrated
in several works, mostly targeting speech coding at low bi-
trates. A VQ-VAE speech codec was proposed in [8], operat-
ing at 1.6 kbps. Lyra [10] is a generative model that encodes
quantized mel-spectrogram features of speech, which are de-
coded with an auto-regressive WaveGRU model to achieve
state-of-the-art results at 3 kbps. A very low-bitrate codec pro-
posed in [42] decodes speech representations obtained via
self-supervised learning. An end-to-end audio codec targeting
general audio at high bitrates (i.e., above 64 kbps) was pro-
posed in [43]. The model architecture adopts a residual coding
pipeline, which consists of multiple autoencoding modules and
a psycho-acoustic model is used to drive the loss function during
training.

Unlike [42] which specifically targets speech by combining
speaker, phonetic and pitch embeddings, SoundStream does
not make assumptions on the nature of the signal it encodes,
and thus works for diverse audio content types. While [10]
learns a decoder on fixed features, SoundStream is trained in an
end-to-end fashion. Our experiments (see Section IV) show that
learning the encoder increases the audio quality substantially.
SoundStream achieves bitrate scalability, i.e., the ability of a
single model to operate at different bitrates at no additional
cost, thanks to its residual vector quantizer and to our original
quantizer dropout training scheme (see Section III-C). This is
unlike the work in [41], [43], [44] which enforce a specific bitrate
and require training a different model for each target bitrate. A
single SoundStream model is able to compress speech, music
and general audio, while operating at a 24 kHz sampling rate and
low-to-medium bitrates (3 kbps to 18 kbps in our experiments),
in real time on a smartphone CPU. This is the first time that

a neural audio codec is shown to outperform state-of-the-art
codecs like Opus and EVS over this broad range of bitrates.

Joint compression and enhancement: Recent work has ex-
plored joint compression and enhancement. The work in [45]
trains a speech enhancement system with a quantized bottleneck.
Instead, SoundStream integrates a time-dependent conditioning
layer, which allows for real-time controllable denoising. As we
design SoundStream as a general-purpose audio codec, control-
ling when to denoise allows for encoding acoustic scenes and
natural sounds that would be otherwise removed.

III. MODEL

We consider a single channel recording x ∈ RT of duration T
and sampled at fs. The SoundStream model consists of a se-
quence of three building blocks, as illustrated in Fig. 2:! an encoder, which maps x to a sequence of embeddings

(see Section III-A),! a residual vector quantizer, which replaces each embedding
by the sum of vectors from a set of finite codebooks, thus
compressing the representation with a target number of bits
(see Section III-C),! a decoder, which produces a lossy reconstruction x̂ ∈ RT

from quantized embeddings (see Section III-B).
The model is trained end-to-end together with a discrim-

inator (see Section III-D), using the mix of adversarial and
reconstruction losses described in Section III-E. Optionally, a
conditioning signal can be added, which determines whether
denoising is applied at the encoder or decoder side, as detailed
in Section III-F.

A. Encoder Architecture

The encoder architecture is illustrated in Fig. 3 and follows the
same structure as the streaming SEANet encoder described in [2],
but without skip connections. It consists of a 1D convolution
layer (withCenc channels), followed byBenc convolution blocks.
Each of the blocks consists of three residual units, containing

Authorized licensed use limited to: University of Edinburgh. Downloaded on March 25,2024 at 11:14:57 UTC from IEEE Xplore. Restrictions apply.

498 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 30, 2022

Fig. 3. Encoder and decoder model architecture.

dilated convolutions with dilation rates of 1, 3, and 9, respec-
tively, followed by a down-sampling layer in the form of a
strided convolution. The number of channels is doubled when-
ever down-sampling, starting from Cenc. A final 1D convolution
layer with a kernel of length 3 and a stride of 1 is used to set
the dimensionality of the embeddings to D (D = 256 in our
experiments). To guarantee real-time inference, all convolutions
are causal. This means that padding is only applied to the past
but not the future in both training and offline inference, whereas
no padding is used in streaming inference. We use the ELU
activation [46] and we do not apply any normalization. The
number Benc of convolution blocks and the corresponding strid-
ing sequence determines the temporal resampling ratio between
the input waveform and the embeddings. For example, when
Benc = 4 and using (2, 4, 5, 8) as strides, one embedding is
computed every M = 2 · 4 · 5 · 8 = 320 input samples. Thus,
the encoder outputs enc(x) ∈ RS×D, with S = T/M .

B. Decoder Architecture

The decoder architecture follows a similar design, as illus-
trated in Fig. 3. A 1D convolution layer is followed by a
sequence ofBdec convolution blocks. The decoder block mirrors
the encoder block, and consists of a transposed convolution
for up-sampling followed by the same three residual units. We
use the same strides as the encoder, but in reverse order, to
reconstruct a waveform with the same resolution as the input
waveform. The number of channels is halved whenever up-
sampling, so that the last decoder block outputs Cdec channels.
A final 1D convolution layer with one filter, a kernel of size
7 and stride 1 projects the embeddings back to the waveform
domain to produce x̂. In Fig. 3, the same number of channels
in both the encoder and the decoder is controlled by the same
parameter, i.e., Cenc = Cdec = C. We also investigate cases in

Algorithm 1: Residual Vector Quantization.
Input: y = enc(x) the output of the encoder, vector

quantizers Qi for i = 1..Nq

Output: the quantized ŷ
ŷ ← 0.0 residual← y
for i = 1 to Nq do
ŷ += Qi(residual)
residual −= Qi(residual)

return ŷ

which Cenc %= Cdec, which results in a computationally lighter
encoder and a heavier decoder, or vice-versa (see Section V-D).

C. Residual Vector Quantizer

The goal of the quantizer is to compress the output of the en-
coder enc(x) to a target bitrateR, expressed in bits/second (bps).
In order to train SoundStream in an end-to-end fashion, the
quantizer needs to be jointly trained with the encoder and
the decoder by backpropagation. The vector quantizer (VQ)
proposed in [34], [35] in the context of VQ-VAEs meets this
requirement. This vector quantizer learns a codebook of N
vectors to encode each D-dimensional frame of enc(x). The
encoded audio enc(x) ∈ RS×D is then mapped to a sequence
of one-hot vectors of shape S ×N , which can be represented
using S log2 N bits.

Limitations of Vector Quantization: As a concrete example,
let us consider a codec targeting a bitrate R = 6000 bps. When
using a striding factor M = 320, each second of audio at a sam-
pling rate fs = 24000Hz is represented byS = 75 frames at the
output of the encoder. This corresponds to r = 6000/75 = 80
bits allocated to each frame. Using a plain vector quantizer, this
requires storing a codebook with N = 280 vectors, which is
obviously unfeasible.

Authorized licensed use limited to: University of Edinburgh. Downloaded on March 25,2024 at 11:14:57 UTC from IEEE Xplore. Restrictions apply.

Module state-of-the-art (1 of 2)
Class

Reduce sequence length

• Fully convolutional encoder

• EncoderBlock
• convolutional layers with
• stride

• dilation

• then stack as many EncoderBlocks as necessary
to get from 24 000 Hz to 75 Hz

498 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 30, 2022

Fig. 3. Encoder and decoder model architecture.

dilated convolutions with dilation rates of 1, 3, and 9, respec-
tively, followed by a down-sampling layer in the form of a
strided convolution. The number of channels is doubled when-
ever down-sampling, starting from Cenc. A final 1D convolution
layer with a kernel of length 3 and a stride of 1 is used to set
the dimensionality of the embeddings to D (D = 256 in our
experiments). To guarantee real-time inference, all convolutions
are causal. This means that padding is only applied to the past
but not the future in both training and offline inference, whereas
no padding is used in streaming inference. We use the ELU
activation [46] and we do not apply any normalization. The
number Benc of convolution blocks and the corresponding strid-
ing sequence determines the temporal resampling ratio between
the input waveform and the embeddings. For example, when
Benc = 4 and using (2, 4, 5, 8) as strides, one embedding is
computed every M = 2 · 4 · 5 · 8 = 320 input samples. Thus,
the encoder outputs enc(x) ∈ RS×D, with S = T/M .

B. Decoder Architecture

The decoder architecture follows a similar design, as illus-
trated in Fig. 3. A 1D convolution layer is followed by a
sequence ofBdec convolution blocks. The decoder block mirrors
the encoder block, and consists of a transposed convolution
for up-sampling followed by the same three residual units. We
use the same strides as the encoder, but in reverse order, to
reconstruct a waveform with the same resolution as the input
waveform. The number of channels is halved whenever up-
sampling, so that the last decoder block outputs Cdec channels.
A final 1D convolution layer with one filter, a kernel of size
7 and stride 1 projects the embeddings back to the waveform
domain to produce x̂. In Fig. 3, the same number of channels
in both the encoder and the decoder is controlled by the same
parameter, i.e., Cenc = Cdec = C. We also investigate cases in

Algorithm 1: Residual Vector Quantization.
Input: y = enc(x) the output of the encoder, vector

quantizers Qi for i = 1..Nq

Output: the quantized ŷ
ŷ ← 0.0 residual← y
for i = 1 to Nq do
ŷ += Qi(residual)
residual −= Qi(residual)

return ŷ

which Cenc %= Cdec, which results in a computationally lighter
encoder and a heavier decoder, or vice-versa (see Section V-D).

C. Residual Vector Quantizer

The goal of the quantizer is to compress the output of the en-
coder enc(x) to a target bitrateR, expressed in bits/second (bps).
In order to train SoundStream in an end-to-end fashion, the
quantizer needs to be jointly trained with the encoder and
the decoder by backpropagation. The vector quantizer (VQ)
proposed in [34], [35] in the context of VQ-VAEs meets this
requirement. This vector quantizer learns a codebook of N
vectors to encode each D-dimensional frame of enc(x). The
encoded audio enc(x) ∈ RS×D is then mapped to a sequence
of one-hot vectors of shape S ×N , which can be represented
using S log2 N bits.

Limitations of Vector Quantization: As a concrete example,
let us consider a codec targeting a bitrate R = 6000 bps. When
using a striding factor M = 320, each second of audio at a sam-
pling rate fs = 24000Hz is represented byS = 75 frames at the
output of the encoder. This corresponds to r = 6000/75 = 80
bits allocated to each frame. Using a plain vector quantizer, this
requires storing a codebook with N = 280 vectors, which is
obviously unfeasible.

Authorized licensed use limited to: University of Edinburgh. Downloaded on March 25,2024 at 11:14:57 UTC from IEEE Xplore. Restrictions apply.

Module state-of-the-art (1 of 2)
Class

Recap: convolution

receptive field (also known as the kernel size) = 3

stride = 1

Module state-of-the-art (1 of 2)
Class

Increasing the stride = downsampling

stride = 2

Module state-of-the-art (1 of 2)
Class

Dilation

Module state-of-the-art (1 of 2)
Class

Dilation = wider receptive field with fewer parameters

dilation = 2Module state-of-the-art (1 of 2)
Class

Key ideas in SoundStream (and similar audio encoder-decoder models)

• Reduce sequence length
• input is a waveform, at a typical sample rate of 24 kHz (samples per second)
• encoded representation is at 75 Hz (frames per second)
• progressively reduce from 24 kHz to 75 Hz

• Quantise the learned representation

• so it becomes a sequence of codes, not vectors

• Residual quantisation
• to avoid the need for a very large set of codes

Module state-of-the-art (1 of 2)
Class

498 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 30, 2022

Fig. 3. Encoder and decoder model architecture.

dilated convolutions with dilation rates of 1, 3, and 9, respec-
tively, followed by a down-sampling layer in the form of a
strided convolution. The number of channels is doubled when-
ever down-sampling, starting from Cenc. A final 1D convolution
layer with a kernel of length 3 and a stride of 1 is used to set
the dimensionality of the embeddings to D (D = 256 in our
experiments). To guarantee real-time inference, all convolutions
are causal. This means that padding is only applied to the past
but not the future in both training and offline inference, whereas
no padding is used in streaming inference. We use the ELU
activation [46] and we do not apply any normalization. The
number Benc of convolution blocks and the corresponding strid-
ing sequence determines the temporal resampling ratio between
the input waveform and the embeddings. For example, when
Benc = 4 and using (2, 4, 5, 8) as strides, one embedding is
computed every M = 2 · 4 · 5 · 8 = 320 input samples. Thus,
the encoder outputs enc(x) ∈ RS×D, with S = T/M .

B. Decoder Architecture

The decoder architecture follows a similar design, as illus-
trated in Fig. 3. A 1D convolution layer is followed by a
sequence ofBdec convolution blocks. The decoder block mirrors
the encoder block, and consists of a transposed convolution
for up-sampling followed by the same three residual units. We
use the same strides as the encoder, but in reverse order, to
reconstruct a waveform with the same resolution as the input
waveform. The number of channels is halved whenever up-
sampling, so that the last decoder block outputs Cdec channels.
A final 1D convolution layer with one filter, a kernel of size
7 and stride 1 projects the embeddings back to the waveform
domain to produce x̂. In Fig. 3, the same number of channels
in both the encoder and the decoder is controlled by the same
parameter, i.e., Cenc = Cdec = C. We also investigate cases in

Algorithm 1: Residual Vector Quantization.
Input: y = enc(x) the output of the encoder, vector

quantizers Qi for i = 1..Nq

Output: the quantized ŷ
ŷ ← 0.0 residual← y
for i = 1 to Nq do
ŷ += Qi(residual)
residual −= Qi(residual)

return ŷ

which Cenc %= Cdec, which results in a computationally lighter
encoder and a heavier decoder, or vice-versa (see Section V-D).

C. Residual Vector Quantizer

The goal of the quantizer is to compress the output of the en-
coder enc(x) to a target bitrateR, expressed in bits/second (bps).
In order to train SoundStream in an end-to-end fashion, the
quantizer needs to be jointly trained with the encoder and
the decoder by backpropagation. The vector quantizer (VQ)
proposed in [34], [35] in the context of VQ-VAEs meets this
requirement. This vector quantizer learns a codebook of N
vectors to encode each D-dimensional frame of enc(x). The
encoded audio enc(x) ∈ RS×D is then mapped to a sequence
of one-hot vectors of shape S ×N , which can be represented
using S log2 N bits.

Limitations of Vector Quantization: As a concrete example,
let us consider a codec targeting a bitrate R = 6000 bps. When
using a striding factor M = 320, each second of audio at a sam-
pling rate fs = 24000Hz is represented byS = 75 frames at the
output of the encoder. This corresponds to r = 6000/75 = 80
bits allocated to each frame. Using a plain vector quantizer, this
requires storing a codebook with N = 280 vectors, which is
obviously unfeasible.

Authorized licensed use limited to: University of Edinburgh. Downloaded on March 25,2024 at 11:14:57 UTC from IEEE Xplore. Restrictions apply.

Module state-of-the-art (1 of 2)
Class

498 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 30, 2022

Fig. 3. Encoder and decoder model architecture.

dilated convolutions with dilation rates of 1, 3, and 9, respec-
tively, followed by a down-sampling layer in the form of a
strided convolution. The number of channels is doubled when-
ever down-sampling, starting from Cenc. A final 1D convolution
layer with a kernel of length 3 and a stride of 1 is used to set
the dimensionality of the embeddings to D (D = 256 in our
experiments). To guarantee real-time inference, all convolutions
are causal. This means that padding is only applied to the past
but not the future in both training and offline inference, whereas
no padding is used in streaming inference. We use the ELU
activation [46] and we do not apply any normalization. The
number Benc of convolution blocks and the corresponding strid-
ing sequence determines the temporal resampling ratio between
the input waveform and the embeddings. For example, when
Benc = 4 and using (2, 4, 5, 8) as strides, one embedding is
computed every M = 2 · 4 · 5 · 8 = 320 input samples. Thus,
the encoder outputs enc(x) ∈ RS×D, with S = T/M .

B. Decoder Architecture

The decoder architecture follows a similar design, as illus-
trated in Fig. 3. A 1D convolution layer is followed by a
sequence ofBdec convolution blocks. The decoder block mirrors
the encoder block, and consists of a transposed convolution
for up-sampling followed by the same three residual units. We
use the same strides as the encoder, but in reverse order, to
reconstruct a waveform with the same resolution as the input
waveform. The number of channels is halved whenever up-
sampling, so that the last decoder block outputs Cdec channels.
A final 1D convolution layer with one filter, a kernel of size
7 and stride 1 projects the embeddings back to the waveform
domain to produce x̂. In Fig. 3, the same number of channels
in both the encoder and the decoder is controlled by the same
parameter, i.e., Cenc = Cdec = C. We also investigate cases in

Algorithm 1: Residual Vector Quantization.
Input: y = enc(x) the output of the encoder, vector

quantizers Qi for i = 1..Nq

Output: the quantized ŷ
ŷ ← 0.0 residual← y
for i = 1 to Nq do
ŷ += Qi(residual)
residual −= Qi(residual)

return ŷ

which Cenc %= Cdec, which results in a computationally lighter
encoder and a heavier decoder, or vice-versa (see Section V-D).

C. Residual Vector Quantizer

The goal of the quantizer is to compress the output of the en-
coder enc(x) to a target bitrateR, expressed in bits/second (bps).
In order to train SoundStream in an end-to-end fashion, the
quantizer needs to be jointly trained with the encoder and
the decoder by backpropagation. The vector quantizer (VQ)
proposed in [34], [35] in the context of VQ-VAEs meets this
requirement. This vector quantizer learns a codebook of N
vectors to encode each D-dimensional frame of enc(x). The
encoded audio enc(x) ∈ RS×D is then mapped to a sequence
of one-hot vectors of shape S ×N , which can be represented
using S log2 N bits.

Limitations of Vector Quantization: As a concrete example,
let us consider a codec targeting a bitrate R = 6000 bps. When
using a striding factor M = 320, each second of audio at a sam-
pling rate fs = 24000Hz is represented byS = 75 frames at the
output of the encoder. This corresponds to r = 6000/75 = 80
bits allocated to each frame. Using a plain vector quantizer, this
requires storing a codebook with N = 280 vectors, which is
obviously unfeasible.

Authorized licensed use limited to: University of Edinburgh. Downloaded on March 25,2024 at 11:14:57 UTC from IEEE Xplore. Restrictions apply.

49
8

IE
E

E
/A

C
M

T
R

A
N

SA
C

T
IO

N
S

O
N

A
U

D
IO

,S
PE

E
C

H
,A

N
D

L
A

N
G

U
A

G
E

PR
O

C
E

SS
IN

G
,V

O
L

.3
0,

20
22

Fi
g.

3.
E

nc
od

er
an

d
de

co
de

rm
od

el
ar

ch
ite

ct
ur

e.

di
la

te
d

co
nv

ol
ut

io
ns

w
ith

di
la

tio
n

ra
te

s
of

1,
3,

an
d

9,
re

sp
ec

-
tiv

el
y,

fo
llo

w
ed

by
a

do
w

n-
sa

m
pl

in
g

la
ye

r
in

th
e

fo
rm

of
a

st
ri

de
d

co
nv

ol
ut

io
n.

T
he

nu
m

be
r

of
ch

an
ne

ls
is

do
ub

le
d

w
he

n-
ev

er
do

w
n-

sa
m

pl
in

g,
st

ar
tin

g
fr

om
C

en
c.

A
fin

al
1D

co
nv

ol
ut

io
n

la
ye

r
w

ith
a

ke
rn

el
of

le
ng

th
3

an
d

a
st

ri
de

of
1

is
us

ed
to

se
t

th
e

di
m

en
si

on
al

ity
of

th
e

em
be

dd
in

gs
to

D
(D

=
25
6

in
ou

r
ex

pe
ri

m
en

ts
).

To
gu

ar
an

te
e

re
al

-t
im

e
in

fe
re

nc
e,

al
lc

on
vo

lu
tio

ns
ar

e
ca

us
al

.T
hi

s
m

ea
ns

th
at

pa
dd

in
g

is
on

ly
ap

pl
ie

d
to

th
e

pa
st

bu
tn

ot
th

e
fu

tu
re

in
bo

th
tr

ai
ni

ng
an

d
of

fli
ne

in
fe

re
nc

e,
w

he
re

as
no

pa
dd

in
g

is
us

ed
in

st
re

am
in

g
in

fe
re

nc
e.

W
e

us
e

th
e

E
L

U
ac

tiv
at

io
n

[4
6]

an
d

w
e

do
no

t
ap

pl
y

an
y

no
rm

al
iz

at
io

n.
T

he
nu

m
be

rB
en

c
of

co
nv

ol
ut

io
n

bl
oc

ks
an

d
th

e
co

rr
es

po
nd

in
g

st
ri

d-
in

g
se

qu
en

ce
de

te
rm

in
es

th
e

te
m

po
ra

lr
es

am
pl

in
g

ra
tio

be
tw

ee
n

th
e

in
pu

t
w

av
ef

or
m

an
d

th
e

em
be

dd
in

gs
.

Fo
r

ex
am

pl
e,

w
he

n
B

en
c
=

4
an

d
us

in
g
(2
,4
,5
,8
)

as
st

ri
de

s,
on

e
em

be
dd

in
g

is
co

m
pu

te
d

ev
er

y
M

=
2
·4

·5
·8

=
32
0

in
pu

t
sa

m
pl

es
.

T
hu

s,
th

e
en

co
de

ro
ut

pu
ts

en
c(
x
)
∈

R
S
×
D

,w
ith

S
=

T
/M

.

B
.

D
ec

od
er

A
rc

hi
te

ct
ur

e

T
he

de
co

de
r

ar
ch

ite
ct

ur
e

fo
llo

w
s

a
si

m
ila

r
de

si
gn

,
as

ill
us

-
tr

at
ed

in
Fi

g.
3.

A
1D

co
nv

ol
ut

io
n

la
ye

r
is

fo
llo

w
ed

by
a

se
qu

en
ce

of
B

de
c

co
nv

ol
ut

io
n

bl
oc

ks
.T

he
de

co
de

rb
lo

ck
m

ir
ro

rs
th

e
en

co
de

r
bl

oc
k,

an
d

co
ns

is
ts

of
a

tr
an

sp
os

ed
co

nv
ol

ut
io

n
fo

r
up

-s
am

pl
in

g
fo

llo
w

ed
by

th
e

sa
m

e
th

re
e

re
si

du
al

un
its

.W
e

us
e

th
e

sa
m

e
st

ri
de

s
as

th
e

en
co

de
r,

bu
t

in
re

ve
rs

e
or

de
r,

to
re

co
ns

tr
uc

t
a

w
av

ef
or

m
w

ith
th

e
sa

m
e

re
so

lu
tio

n
as

th
e

in
pu

t
w

av
ef

or
m

.
T

he
nu

m
be

r
of

ch
an

ne
ls

is
ha

lv
ed

w
he

ne
ve

r
up

-
sa

m
pl

in
g,

so
th

at
th

e
la

st
de

co
de

r
bl

oc
k

ou
tp

ut
s
C

de
c

ch
an

ne
ls

.
A

fin
al

1D
co

nv
ol

ut
io

n
la

ye
r

w
ith

on
e

fil
te

r,
a

ke
rn

el
of

si
ze

7
an

d
st

ri
de

1
pr

oj
ec

ts
th

e
em

be
dd

in
gs

ba
ck

to
th

e
w

av
ef

or
m

do
m

ai
n

to
pr

od
uc

e
x̂

.I
n

Fi
g.

3,
th

e
sa

m
e

nu
m

be
r

of
ch

an
ne

ls
in

bo
th

th
e

en
co

de
r

an
d

th
e

de
co

de
r

is
co

nt
ro

lle
d

by
th

e
sa

m
e

pa
ra

m
et

er
,i

.e
.,
C

en
c
=

C
de

c
=

C
.W

e
al

so
in

ve
st

ig
at

e
ca

se
s

in

A
lg

or
it

hm
1:

R
es

id
ua

lV
ec

to
rQ

ua
nt

iz
at

io
n.

In
pu

t:
y
=

en
c(
x
)

th
e

ou
tp

ut
of

th
e

en
co

de
r,

ve
ct

or
qu

an
tiz

er
s
Q

i
fo

ri
=

1.
.N

q

O
ut

pu
t:

th
e

qu
an

tiz
ed

ŷ
ŷ
←

0.
0
re
si
d
u
al
←

y
fo

r
i
=

1
to

N
q

do
ŷ
+
=

Q
i(
re
si
d
u
al
)

re
si
d
u
al
−
=

Q
i(
re
si
d
u
al
)

re
tu

rn
ŷ

w
hi

ch
C

en
c
%=

C
de

c,
w

hi
ch

re
su

lts
in

a
co

m
pu

ta
tio

na
lly

lig
ht

er
en

co
de

ra
nd

a
he

av
ie

rd
ec

od
er

,o
rv

ic
e-

ve
rs

a
(s

ee
Se

ct
io

n
V

-D
).

C
.

R
es

id
ua

lV
ec

to
r

Q
ua

nt
iz

er

T
he

go
al

of
th

e
qu

an
tiz

er
is

to
co

m
pr

es
s

th
e

ou
tp

ut
of

th
e

en
-

co
de

re
nc
(x
)

to
a

ta
rg

et
bi

tr
at

e
R

,e
xp

re
ss

ed
in

bi
ts

/s
ec

on
d

(b
ps

).
In

or
de

r
to

tr
ai

n
So

un
dS

tr
ea

m
in

an
en

d-
to

-e
nd

fa
sh

io
n,

th
e

qu
an

tiz
er

ne
ed

s
to

be
jo

in
tly

tr
ai

ne
d

w
ith

th
e

en
co

de
r

an
d

th
e

de
co

de
r

by
ba

ck
pr

op
ag

at
io

n.
T

he
ve

ct
or

qu
an

tiz
er

(V
Q

)
pr

op
os

ed
in

[3
4]

,
[3

5]
in

th
e

co
nt

ex
t

of
V

Q
-V

A
E

s
m

ee
ts

th
is

re
qu

ir
em

en
t.

T
hi

s
ve

ct
or

qu
an

tiz
er

le
ar

ns
a

co
de

bo
ok

of
N

ve
ct

or
s

to
en

co
de

ea
ch

D
-d

im
en

si
on

al
fr

am
e

of
en

c(
x
).

T
he

en
co

de
d

au
di

o
en

c(
x
)
∈

R
S
×
D

is
th

en
m

ap
pe

d
to

a
se

qu
en

ce
of

on
e-

ho
t

ve
ct

or
s

of
sh

ap
e
S
×
N

,w
hi

ch
ca

n
be

re
pr

es
en

te
d

us
in

g
S
lo
g 2

N
bi

ts
.

Li
m

ita
tio

ns
of

Ve
ct

or
Q

ua
nt

iz
at

io
n:

A
s

a
co

nc
re

te
ex

am
pl

e,
le

tu
s

co
ns

id
er

a
co

de
c

ta
rg

et
in

g
a

bi
tr

at
e
R

=
60
00

bp
s.

W
he

n
us

in
g

a
st

ri
di

ng
fa

ct
or

M
=

32
0,

ea
ch

se
co

nd
of

au
di

o
at

a
sa

m
-

pl
in

g
ra

te
f s

=
24
00
0

H
z

is
re

pr
es

en
te

d
by

S
=

75
fr

am
es

at
th

e
ou

tp
ut

of
th

e
en

co
de

r.
T

hi
s

co
rr

es
po

nd
s

to
r
=

60
00
/7
5
=

80
bi

ts
al

lo
ca

te
d

to
ea

ch
fr

am
e.

U
si

ng
a

pl
ai

n
ve

ct
or

qu
an

tiz
er

,t
hi

s
re

qu
ir

es
st

or
in

g
a

co
de

bo
ok

w
ith

N
=

28
0

ve
ct

or
s,

w
hi

ch
is

ob
vi

ou
sl

y
un

fe
as

ib
le

.

Au
th

or
iz

ed
 li

ce
ns

ed
 u

se
 li

m
ite

d
to

: U
ni

ve
rs

ity
 o

f E
di

nb
ur

gh
. D

ow
nl

oa
de

d
on

 M
ar

ch
 2

5,
20

24
 a

t 1
1:

14
:5

7
U

TC
 fr

om
 IE

EE
 X

pl
or

e.
 R

es
tri

ct
io

ns
 a

pp
ly

.

Module state-of-the-art (1 of 2)
Class

49
8

IE
E

E
/A

C
M

T
R

A
N

SA
C

T
IO

N
S

O
N

A
U

D
IO

,S
PE

E
C

H
,A

N
D

L
A

N
G

U
A

G
E

PR
O

C
E

SS
IN

G
,V

O
L

.3
0,

20
22

Fi
g.

3.
E

nc
od

er
an

d
de

co
de

rm
od

el
ar

ch
ite

ct
ur

e.

di
la

te
d

co
nv

ol
ut

io
ns

w
ith

di
la

tio
n

ra
te

s
of

1,
3,

an
d

9,
re

sp
ec

-
tiv

el
y,

fo
llo

w
ed

by
a

do
w

n-
sa

m
pl

in
g

la
ye

r
in

th
e

fo
rm

of
a

st
ri

de
d

co
nv

ol
ut

io
n.

T
he

nu
m

be
r

of
ch

an
ne

ls
is

do
ub

le
d

w
he

n-
ev

er
do

w
n-

sa
m

pl
in

g,
st

ar
tin

g
fr

om
C

en
c.

A
fin

al
1D

co
nv

ol
ut

io
n

la
ye

r
w

ith
a

ke
rn

el
of

le
ng

th
3

an
d

a
st

ri
de

of
1

is
us

ed
to

se
t

th
e

di
m

en
si

on
al

ity
of

th
e

em
be

dd
in

gs
to

D
(D

=
25
6

in
ou

r
ex

pe
ri

m
en

ts
).

To
gu

ar
an

te
e

re
al

-t
im

e
in

fe
re

nc
e,

al
lc

on
vo

lu
tio

ns
ar

e
ca

us
al

.T
hi

s
m

ea
ns

th
at

pa
dd

in
g

is
on

ly
ap

pl
ie

d
to

th
e

pa
st

bu
tn

ot
th

e
fu

tu
re

in
bo

th
tr

ai
ni

ng
an

d
of

fli
ne

in
fe

re
nc

e,
w

he
re

as
no

pa
dd

in
g

is
us

ed
in

st
re

am
in

g
in

fe
re

nc
e.

W
e

us
e

th
e

E
L

U
ac

tiv
at

io
n

[4
6]

an
d

w
e

do
no

t
ap

pl
y

an
y

no
rm

al
iz

at
io

n.
T

he
nu

m
be

rB
en

c
of

co
nv

ol
ut

io
n

bl
oc

ks
an

d
th

e
co

rr
es

po
nd

in
g

st
ri

d-
in

g
se

qu
en

ce
de

te
rm

in
es

th
e

te
m

po
ra

lr
es

am
pl

in
g

ra
tio

be
tw

ee
n

th
e

in
pu

t
w

av
ef

or
m

an
d

th
e

em
be

dd
in

gs
.

Fo
r

ex
am

pl
e,

w
he

n
B

en
c
=

4
an

d
us

in
g
(2
,4
,5
,8
)

as
st

ri
de

s,
on

e
em

be
dd

in
g

is
co

m
pu

te
d

ev
er

y
M

=
2
·4

·5
·8

=
32
0

in
pu

t
sa

m
pl

es
.

T
hu

s,
th

e
en

co
de

ro
ut

pu
ts

en
c(
x
)
∈

R
S
×
D

,w
ith

S
=

T
/M

.

B
.

D
ec

od
er

A
rc

hi
te

ct
ur

e

T
he

de
co

de
r

ar
ch

ite
ct

ur
e

fo
llo

w
s

a
si

m
ila

r
de

si
gn

,
as

ill
us

-
tr

at
ed

in
Fi

g.
3.

A
1D

co
nv

ol
ut

io
n

la
ye

r
is

fo
llo

w
ed

by
a

se
qu

en
ce

of
B

de
c

co
nv

ol
ut

io
n

bl
oc

ks
.T

he
de

co
de

rb
lo

ck
m

ir
ro

rs
th

e
en

co
de

r
bl

oc
k,

an
d

co
ns

is
ts

of
a

tr
an

sp
os

ed
co

nv
ol

ut
io

n
fo

r
up

-s
am

pl
in

g
fo

llo
w

ed
by

th
e

sa
m

e
th

re
e

re
si

du
al

un
its

.W
e

us
e

th
e

sa
m

e
st

ri
de

s
as

th
e

en
co

de
r,

bu
t

in
re

ve
rs

e
or

de
r,

to
re

co
ns

tr
uc

t
a

w
av

ef
or

m
w

ith
th

e
sa

m
e

re
so

lu
tio

n
as

th
e

in
pu

t
w

av
ef

or
m

.
T

he
nu

m
be

r
of

ch
an

ne
ls

is
ha

lv
ed

w
he

ne
ve

r
up

-
sa

m
pl

in
g,

so
th

at
th

e
la

st
de

co
de

r
bl

oc
k

ou
tp

ut
s
C

de
c

ch
an

ne
ls

.
A

fin
al

1D
co

nv
ol

ut
io

n
la

ye
r

w
ith

on
e

fil
te

r,
a

ke
rn

el
of

si
ze

7
an

d
st

ri
de

1
pr

oj
ec

ts
th

e
em

be
dd

in
gs

ba
ck

to
th

e
w

av
ef

or
m

do
m

ai
n

to
pr

od
uc

e
x̂

.I
n

Fi
g.

3,
th

e
sa

m
e

nu
m

be
r

of
ch

an
ne

ls
in

bo
th

th
e

en
co

de
r

an
d

th
e

de
co

de
r

is
co

nt
ro

lle
d

by
th

e
sa

m
e

pa
ra

m
et

er
,i

.e
.,
C

en
c
=

C
de

c
=

C
.W

e
al

so
in

ve
st

ig
at

e
ca

se
s

in

A
lg

or
it

hm
1:

R
es

id
ua

lV
ec

to
rQ

ua
nt

iz
at

io
n.

In
pu

t:
y
=

en
c(
x
)

th
e

ou
tp

ut
of

th
e

en
co

de
r,

ve
ct

or
qu

an
tiz

er
s
Q

i
fo

ri
=

1.
.N

q

O
ut

pu
t:

th
e

qu
an

tiz
ed

ŷ
ŷ
←

0.
0
re
si
d
u
al
←

y
fo

r
i
=

1
to

N
q

do
ŷ
+
=

Q
i(
re
si
d
u
al
)

re
si
d
u
al
−
=

Q
i(
re
si
d
u
al
)

re
tu

rn
ŷ

w
hi

ch
C

en
c
%=

C
de

c,
w

hi
ch

re
su

lts
in

a
co

m
pu

ta
tio

na
lly

lig
ht

er
en

co
de

ra
nd

a
he

av
ie

rd
ec

od
er

,o
rv

ic
e-

ve
rs

a
(s

ee
Se

ct
io

n
V

-D
).

C
.

R
es

id
ua

lV
ec

to
r

Q
ua

nt
iz

er

T
he

go
al

of
th

e
qu

an
tiz

er
is

to
co

m
pr

es
s

th
e

ou
tp

ut
of

th
e

en
-

co
de

re
nc
(x
)

to
a

ta
rg

et
bi

tr
at

e
R

,e
xp

re
ss

ed
in

bi
ts

/s
ec

on
d

(b
ps

).
In

or
de

r
to

tr
ai

n
So

un
dS

tr
ea

m
in

an
en

d-
to

-e
nd

fa
sh

io
n,

th
e

qu
an

tiz
er

ne
ed

s
to

be
jo

in
tly

tr
ai

ne
d

w
ith

th
e

en
co

de
r

an
d

th
e

de
co

de
r

by
ba

ck
pr

op
ag

at
io

n.
T

he
ve

ct
or

qu
an

tiz
er

(V
Q

)
pr

op
os

ed
in

[3
4]

,
[3

5]
in

th
e

co
nt

ex
t

of
V

Q
-V

A
E

s
m

ee
ts

th
is

re
qu

ir
em

en
t.

T
hi

s
ve

ct
or

qu
an

tiz
er

le
ar

ns
a

co
de

bo
ok

of
N

ve
ct

or
s

to
en

co
de

ea
ch

D
-d

im
en

si
on

al
fr

am
e

of
en

c(
x
).

T
he

en
co

de
d

au
di

o
en

c(
x
)
∈

R
S
×
D

is
th

en
m

ap
pe

d
to

a
se

qu
en

ce
of

on
e-

ho
t

ve
ct

or
s

of
sh

ap
e
S
×
N

,w
hi

ch
ca

n
be

re
pr

es
en

te
d

us
in

g
S
lo
g 2

N
bi

ts
.

Li
m

ita
tio

ns
of

Ve
ct

or
Q

ua
nt

iz
at

io
n:

A
s

a
co

nc
re

te
ex

am
pl

e,
le

tu
s

co
ns

id
er

a
co

de
c

ta
rg

et
in

g
a

bi
tr

at
e
R

=
60
00

bp
s.

W
he

n
us

in
g

a
st

ri
di

ng
fa

ct
or

M
=

32
0,

ea
ch

se
co

nd
of

au
di

o
at

a
sa

m
-

pl
in

g
ra

te
f s

=
24
00
0

H
z

is
re

pr
es

en
te

d
by

S
=

75
fr

am
es

at
th

e
ou

tp
ut

of
th

e
en

co
de

r.
T

hi
s

co
rr

es
po

nd
s

to
r
=

60
00
/7
5
=

80
bi

ts
al

lo
ca

te
d

to
ea

ch
fr

am
e.

U
si

ng
a

pl
ai

n
ve

ct
or

qu
an

tiz
er

,t
hi

s
re

qu
ir

es
st

or
in

g
a

co
de

bo
ok

w
ith

N
=

28
0

ve
ct

or
s,

w
hi

ch
is

ob
vi

ou
sl

y
un

fe
as

ib
le

.

Au
th

or
iz

ed
 li

ce
ns

ed
 u

se
 li

m
ite

d
to

: U
ni

ve
rs

ity
 o

f E
di

nb
ur

gh
. D

ow
nl

oa
de

d
on

 M
ar

ch
 2

5,
20

24
 a

t 1
1:

14
:5

7
U

TC
 fr

om
 IE

EE
 X

pl
or

e.
 R

es
tri

ct
io

ns
 a

pp
ly

.

49
8

IE
E

E
/A

C
M

T
R

A
N

SA
C

T
IO

N
S

O
N

A
U

D
IO

,S
PE

E
C

H
,A

N
D

L
A

N
G

U
A

G
E

PR
O

C
E

SS
IN

G
,V

O
L

.3
0,

20
22

Fi
g.

3.
E

nc
od

er
an

d
de

co
de

rm
od

el
ar

ch
ite

ct
ur

e.

di
la

te
d

co
nv

ol
ut

io
ns

w
ith

di
la

tio
n

ra
te

s
of

1,
3,

an
d

9,
re

sp
ec

-
tiv

el
y,

fo
llo

w
ed

by
a

do
w

n-
sa

m
pl

in
g

la
ye

r
in

th
e

fo
rm

of
a

st
ri

de
d

co
nv

ol
ut

io
n.

T
he

nu
m

be
r

of
ch

an
ne

ls
is

do
ub

le
d

w
he

n-
ev

er
do

w
n-

sa
m

pl
in

g,
st

ar
tin

g
fr

om
C

en
c.

A
fin

al
1D

co
nv

ol
ut

io
n

la
ye

r
w

ith
a

ke
rn

el
of

le
ng

th
3

an
d

a
st

ri
de

of
1

is
us

ed
to

se
t

th
e

di
m

en
si

on
al

ity
of

th
e

em
be

dd
in

gs
to

D
(D

=
25
6

in
ou

r
ex

pe
ri

m
en

ts
).

To
gu

ar
an

te
e

re
al

-t
im

e
in

fe
re

nc
e,

al
lc

on
vo

lu
tio

ns
ar

e
ca

us
al

.T
hi

s
m

ea
ns

th
at

pa
dd

in
g

is
on

ly
ap

pl
ie

d
to

th
e

pa
st

bu
tn

ot
th

e
fu

tu
re

in
bo

th
tr

ai
ni

ng
an

d
of

fli
ne

in
fe

re
nc

e,
w

he
re

as
no

pa
dd

in
g

is
us

ed
in

st
re

am
in

g
in

fe
re

nc
e.

W
e

us
e

th
e

E
L

U
ac

tiv
at

io
n

[4
6]

an
d

w
e

do
no

t
ap

pl
y

an
y

no
rm

al
iz

at
io

n.
T

he
nu

m
be

rB
en

c
of

co
nv

ol
ut

io
n

bl
oc

ks
an

d
th

e
co

rr
es

po
nd

in
g

st
ri

d-
in

g
se

qu
en

ce
de

te
rm

in
es

th
e

te
m

po
ra

lr
es

am
pl

in
g

ra
tio

be
tw

ee
n

th
e

in
pu

t
w

av
ef

or
m

an
d

th
e

em
be

dd
in

gs
.

Fo
r

ex
am

pl
e,

w
he

n
B

en
c
=

4
an

d
us

in
g
(2
,4
,5
,8
)

as
st

ri
de

s,
on

e
em

be
dd

in
g

is
co

m
pu

te
d

ev
er

y
M

=
2
·4

·5
·8

=
32
0

in
pu

t
sa

m
pl

es
.

T
hu

s,
th

e
en

co
de

ro
ut

pu
ts

en
c(
x
)
∈

R
S
×
D

,w
ith

S
=

T
/M

.

B
.

D
ec

od
er

A
rc

hi
te

ct
ur

e

T
he

de
co

de
r

ar
ch

ite
ct

ur
e

fo
llo

w
s

a
si

m
ila

r
de

si
gn

,
as

ill
us

-
tr

at
ed

in
Fi

g.
3.

A
1D

co
nv

ol
ut

io
n

la
ye

r
is

fo
llo

w
ed

by
a

se
qu

en
ce

of
B

de
c

co
nv

ol
ut

io
n

bl
oc

ks
.T

he
de

co
de

rb
lo

ck
m

ir
ro

rs
th

e
en

co
de

r
bl

oc
k,

an
d

co
ns

is
ts

of
a

tr
an

sp
os

ed
co

nv
ol

ut
io

n
fo

r
up

-s
am

pl
in

g
fo

llo
w

ed
by

th
e

sa
m

e
th

re
e

re
si

du
al

un
its

.W
e

us
e

th
e

sa
m

e
st

ri
de

s
as

th
e

en
co

de
r,

bu
t

in
re

ve
rs

e
or

de
r,

to
re

co
ns

tr
uc

t
a

w
av

ef
or

m
w

ith
th

e
sa

m
e

re
so

lu
tio

n
as

th
e

in
pu

t
w

av
ef

or
m

.
T

he
nu

m
be

r
of

ch
an

ne
ls

is
ha

lv
ed

w
he

ne
ve

r
up

-
sa

m
pl

in
g,

so
th

at
th

e
la

st
de

co
de

r
bl

oc
k

ou
tp

ut
s
C

de
c

ch
an

ne
ls

.
A

fin
al

1D
co

nv
ol

ut
io

n
la

ye
r

w
ith

on
e

fil
te

r,
a

ke
rn

el
of

si
ze

7
an

d
st

ri
de

1
pr

oj
ec

ts
th

e
em

be
dd

in
gs

ba
ck

to
th

e
w

av
ef

or
m

do
m

ai
n

to
pr

od
uc

e
x̂

.I
n

Fi
g.

3,
th

e
sa

m
e

nu
m

be
r

of
ch

an
ne

ls
in

bo
th

th
e

en
co

de
r

an
d

th
e

de
co

de
r

is
co

nt
ro

lle
d

by
th

e
sa

m
e

pa
ra

m
et

er
,i

.e
.,
C

en
c
=

C
de

c
=

C
.W

e
al

so
in

ve
st

ig
at

e
ca

se
s

in

A
lg

or
it

hm
1:

R
es

id
ua

lV
ec

to
rQ

ua
nt

iz
at

io
n.

In
pu

t:
y
=

en
c(
x
)

th
e

ou
tp

ut
of

th
e

en
co

de
r,

ve
ct

or
qu

an
tiz

er
s
Q

i
fo

ri
=

1.
.N

q

O
ut

pu
t:

th
e

qu
an

tiz
ed

ŷ
ŷ
←

0.
0
re
si
d
u
al
←

y
fo

r
i
=

1
to

N
q

do
ŷ
+
=

Q
i(
re
si
d
u
al
)

re
si
d
u
al
−
=

Q
i(
re
si
d
u
al
)

re
tu

rn
ŷ

w
hi

ch
C

en
c
%=

C
de

c,
w

hi
ch

re
su

lts
in

a
co

m
pu

ta
tio

na
lly

lig
ht

er
en

co
de

ra
nd

a
he

av
ie

rd
ec

od
er

,o
rv

ic
e-

ve
rs

a
(s

ee
Se

ct
io

n
V

-D
).

C
.

R
es

id
ua

lV
ec

to
r

Q
ua

nt
iz

er

T
he

go
al

of
th

e
qu

an
tiz

er
is

to
co

m
pr

es
s

th
e

ou
tp

ut
of

th
e

en
-

co
de

re
nc
(x
)

to
a

ta
rg

et
bi

tr
at

e
R

,e
xp

re
ss

ed
in

bi
ts

/s
ec

on
d

(b
ps

).
In

or
de

r
to

tr
ai

n
So

un
dS

tr
ea

m
in

an
en

d-
to

-e
nd

fa
sh

io
n,

th
e

qu
an

tiz
er

ne
ed

s
to

be
jo

in
tly

tr
ai

ne
d

w
ith

th
e

en
co

de
r

an
d

th
e

de
co

de
r

by
ba

ck
pr

op
ag

at
io

n.
T

he
ve

ct
or

qu
an

tiz
er

(V
Q

)
pr

op
os

ed
in

[3
4]

,
[3

5]
in

th
e

co
nt

ex
t

of
V

Q
-V

A
E

s
m

ee
ts

th
is

re
qu

ir
em

en
t.

T
hi

s
ve

ct
or

qu
an

tiz
er

le
ar

ns
a

co
de

bo
ok

of
N

ve
ct

or
s

to
en

co
de

ea
ch

D
-d

im
en

si
on

al
fr

am
e

of
en

c(
x
).

T
he

en
co

de
d

au
di

o
en

c(
x
)
∈

R
S
×
D

is
th

en
m

ap
pe

d
to

a
se

qu
en

ce
of

on
e-

ho
t

ve
ct

or
s

of
sh

ap
e
S
×
N

,w
hi

ch
ca

n
be

re
pr

es
en

te
d

us
in

g
S
lo
g 2

N
bi

ts
.

Li
m

ita
tio

ns
of

Ve
ct

or
Q

ua
nt

iz
at

io
n:

A
s

a
co

nc
re

te
ex

am
pl

e,
le

tu
s

co
ns

id
er

a
co

de
c

ta
rg

et
in

g
a

bi
tr

at
e
R

=
60
00

bp
s.

W
he

n
us

in
g

a
st

ri
di

ng
fa

ct
or

M
=

32
0,

ea
ch

se
co

nd
of

au
di

o
at

a
sa

m
-

pl
in

g
ra

te
f s

=
24
00
0

H
z

is
re

pr
es

en
te

d
by

S
=

75
fr

am
es

at
th

e
ou

tp
ut

of
th

e
en

co
de

r.
T

hi
s

co
rr

es
po

nd
s

to
r
=

60
00
/7
5
=

80
bi

ts
al

lo
ca

te
d

to
ea

ch
fr

am
e.

U
si

ng
a

pl
ai

n
ve

ct
or

qu
an

tiz
er

,t
hi

s
re

qu
ir

es
st

or
in

g
a

co
de

bo
ok

w
ith

N
=

28
0

ve
ct

or
s,

w
hi

ch
is

ob
vi

ou
sl

y
un

fe
as

ib
le

.

Au
th

or
iz

ed
 li

ce
ns

ed
 u

se
 li

m
ite

d
to

: U
ni

ve
rs

ity
 o

f E
di

nb
ur

gh
. D

ow
nl

oa
de

d
on

 M
ar

ch
 2

5,
20

24
 a

t 1
1:

14
:5

7
U

TC
 fr

om
 IE

EE
 X

pl
or

e.
 R

es
tri

ct
io

ns
 a

pp
ly

.

Module state-of-the-art (1 of 2)
Class

49
8

IE
E

E
/A

C
M

T
R

A
N

SA
C

T
IO

N
S

O
N

A
U

D
IO

,S
PE

E
C

H
,A

N
D

L
A

N
G

U
A

G
E

PR
O

C
E

SS
IN

G
,V

O
L

.3
0,

20
22

Fi
g.

3.
E

nc
od

er
an

d
de

co
de

rm
od

el
ar

ch
ite

ct
ur

e.

di
la

te
d

co
nv

ol
ut

io
ns

w
ith

di
la

tio
n

ra
te

s
of

1,
3,

an
d

9,
re

sp
ec

-
tiv

el
y,

fo
llo

w
ed

by
a

do
w

n-
sa

m
pl

in
g

la
ye

r
in

th
e

fo
rm

of
a

st
ri

de
d

co
nv

ol
ut

io
n.

T
he

nu
m

be
r

of
ch

an
ne

ls
is

do
ub

le
d

w
he

n-
ev

er
do

w
n-

sa
m

pl
in

g,
st

ar
tin

g
fr

om
C

en
c.

A
fin

al
1D

co
nv

ol
ut

io
n

la
ye

r
w

ith
a

ke
rn

el
of

le
ng

th
3

an
d

a
st

ri
de

of
1

is
us

ed
to

se
t

th
e

di
m

en
si

on
al

ity
of

th
e

em
be

dd
in

gs
to

D
(D

=
25
6

in
ou

r
ex

pe
ri

m
en

ts
).

To
gu

ar
an

te
e

re
al

-t
im

e
in

fe
re

nc
e,

al
lc

on
vo

lu
tio

ns
ar

e
ca

us
al

.T
hi

s
m

ea
ns

th
at

pa
dd

in
g

is
on

ly
ap

pl
ie

d
to

th
e

pa
st

bu
tn

ot
th

e
fu

tu
re

in
bo

th
tr

ai
ni

ng
an

d
of

fli
ne

in
fe

re
nc

e,
w

he
re

as
no

pa
dd

in
g

is
us

ed
in

st
re

am
in

g
in

fe
re

nc
e.

W
e

us
e

th
e

E
L

U
ac

tiv
at

io
n

[4
6]

an
d

w
e

do
no

t
ap

pl
y

an
y

no
rm

al
iz

at
io

n.
T

he
nu

m
be

rB
en

c
of

co
nv

ol
ut

io
n

bl
oc

ks
an

d
th

e
co

rr
es

po
nd

in
g

st
ri

d-
in

g
se

qu
en

ce
de

te
rm

in
es

th
e

te
m

po
ra

lr
es

am
pl

in
g

ra
tio

be
tw

ee
n

th
e

in
pu

t
w

av
ef

or
m

an
d

th
e

em
be

dd
in

gs
.

Fo
r

ex
am

pl
e,

w
he

n
B

en
c
=

4
an

d
us

in
g
(2
,4
,5
,8
)

as
st

ri
de

s,
on

e
em

be
dd

in
g

is
co

m
pu

te
d

ev
er

y
M

=
2
·4

·5
·8

=
32
0

in
pu

t
sa

m
pl

es
.

T
hu

s,
th

e
en

co
de

ro
ut

pu
ts

en
c(
x
)
∈

R
S
×
D

,w
ith

S
=

T
/M

.

B
.

D
ec

od
er

A
rc

hi
te

ct
ur

e

T
he

de
co

de
r

ar
ch

ite
ct

ur
e

fo
llo

w
s

a
si

m
ila

r
de

si
gn

,
as

ill
us

-
tr

at
ed

in
Fi

g.
3.

A
1D

co
nv

ol
ut

io
n

la
ye

r
is

fo
llo

w
ed

by
a

se
qu

en
ce

of
B

de
c

co
nv

ol
ut

io
n

bl
oc

ks
.T

he
de

co
de

rb
lo

ck
m

ir
ro

rs
th

e
en

co
de

r
bl

oc
k,

an
d

co
ns

is
ts

of
a

tr
an

sp
os

ed
co

nv
ol

ut
io

n
fo

r
up

-s
am

pl
in

g
fo

llo
w

ed
by

th
e

sa
m

e
th

re
e

re
si

du
al

un
its

.W
e

us
e

th
e

sa
m

e
st

ri
de

s
as

th
e

en
co

de
r,

bu
t

in
re

ve
rs

e
or

de
r,

to
re

co
ns

tr
uc

t
a

w
av

ef
or

m
w

ith
th

e
sa

m
e

re
so

lu
tio

n
as

th
e

in
pu

t
w

av
ef

or
m

.
T

he
nu

m
be

r
of

ch
an

ne
ls

is
ha

lv
ed

w
he

ne
ve

r
up

-
sa

m
pl

in
g,

so
th

at
th

e
la

st
de

co
de

r
bl

oc
k

ou
tp

ut
s
C

de
c

ch
an

ne
ls

.
A

fin
al

1D
co

nv
ol

ut
io

n
la

ye
r

w
ith

on
e

fil
te

r,
a

ke
rn

el
of

si
ze

7
an

d
st

ri
de

1
pr

oj
ec

ts
th

e
em

be
dd

in
gs

ba
ck

to
th

e
w

av
ef

or
m

do
m

ai
n

to
pr

od
uc

e
x̂

.I
n

Fi
g.

3,
th

e
sa

m
e

nu
m

be
r

of
ch

an
ne

ls
in

bo
th

th
e

en
co

de
r

an
d

th
e

de
co

de
r

is
co

nt
ro

lle
d

by
th

e
sa

m
e

pa
ra

m
et

er
,i

.e
.,
C

en
c
=

C
de

c
=

C
.W

e
al

so
in

ve
st

ig
at

e
ca

se
s

in

A
lg

or
it

hm
1:

R
es

id
ua

lV
ec

to
rQ

ua
nt

iz
at

io
n.

In
pu

t:
y
=

en
c(
x
)

th
e

ou
tp

ut
of

th
e

en
co

de
r,

ve
ct

or
qu

an
tiz

er
s
Q

i
fo

ri
=

1.
.N

q

O
ut

pu
t:

th
e

qu
an

tiz
ed

ŷ
ŷ
←

0.
0
re
si
d
u
al
←

y
fo

r
i
=

1
to

N
q

do
ŷ
+
=

Q
i(
re
si
d
u
al
)

re
si
d
u
al
−
=

Q
i(
re
si
d
u
al
)

re
tu

rn
ŷ

w
hi

ch
C

en
c
%=

C
de

c,
w

hi
ch

re
su

lts
in

a
co

m
pu

ta
tio

na
lly

lig
ht

er
en

co
de

ra
nd

a
he

av
ie

rd
ec

od
er

,o
rv

ic
e-

ve
rs

a
(s

ee
Se

ct
io

n
V

-D
).

C
.

R
es

id
ua

lV
ec

to
r

Q
ua

nt
iz

er

T
he

go
al

of
th

e
qu

an
tiz

er
is

to
co

m
pr

es
s

th
e

ou
tp

ut
of

th
e

en
-

co
de

re
nc
(x
)

to
a

ta
rg

et
bi

tr
at

e
R

,e
xp

re
ss

ed
in

bi
ts

/s
ec

on
d

(b
ps

).
In

or
de

r
to

tr
ai

n
So

un
dS

tr
ea

m
in

an
en

d-
to

-e
nd

fa
sh

io
n,

th
e

qu
an

tiz
er

ne
ed

s
to

be
jo

in
tly

tr
ai

ne
d

w
ith

th
e

en
co

de
r

an
d

th
e

de
co

de
r

by
ba

ck
pr

op
ag

at
io

n.
T

he
ve

ct
or

qu
an

tiz
er

(V
Q

)
pr

op
os

ed
in

[3
4]

,
[3

5]
in

th
e

co
nt

ex
t

of
V

Q
-V

A
E

s
m

ee
ts

th
is

re
qu

ir
em

en
t.

T
hi

s
ve

ct
or

qu
an

tiz
er

le
ar

ns
a

co
de

bo
ok

of
N

ve
ct

or
s

to
en

co
de

ea
ch

D
-d

im
en

si
on

al
fr

am
e

of
en

c(
x
).

T
he

en
co

de
d

au
di

o
en

c(
x
)
∈

R
S
×
D

is
th

en
m

ap
pe

d
to

a
se

qu
en

ce
of

on
e-

ho
t

ve
ct

or
s

of
sh

ap
e
S
×
N

,w
hi

ch
ca

n
be

re
pr

es
en

te
d

us
in

g
S
lo
g 2

N
bi

ts
.

Li
m

ita
tio

ns
of

Ve
ct

or
Q

ua
nt

iz
at

io
n:

A
s

a
co

nc
re

te
ex

am
pl

e,
le

tu
s

co
ns

id
er

a
co

de
c

ta
rg

et
in

g
a

bi
tr

at
e
R

=
60
00

bp
s.

W
he

n
us

in
g

a
st

ri
di

ng
fa

ct
or

M
=

32
0,

ea
ch

se
co

nd
of

au
di

o
at

a
sa

m
-

pl
in

g
ra

te
f s

=
24
00
0

H
z

is
re

pr
es

en
te

d
by

S
=

75
fr

am
es

at
th

e
ou

tp
ut

of
th

e
en

co
de

r.
T

hi
s

co
rr

es
po

nd
s

to
r
=

60
00
/7
5
=

80
bi

ts
al

lo
ca

te
d

to
ea

ch
fr

am
e.

U
si

ng
a

pl
ai

n
ve

ct
or

qu
an

tiz
er

,t
hi

s
re

qu
ir

es
st

or
in

g
a

co
de

bo
ok

w
ith

N
=

28
0

ve
ct

or
s,

w
hi

ch
is

ob
vi

ou
sl

y
un

fe
as

ib
le

.

Au
th

or
iz

ed
 li

ce
ns

ed
 u

se
 li

m
ite

d
to

: U
ni

ve
rs

ity
 o

f E
di

nb
ur

gh
. D

ow
nl

oa
de

d
on

 M
ar

ch
 2

5,
20

24
 a

t 1
1:

14
:5

7
U

TC
 fr

om
 IE

EE
 X

pl
or

e.
 R

es
tri

ct
io

ns
 a

pp
ly

.

Model learns a representation that is a sequence of
256-dimensional vectors, at a rate of 75 frames per second

To further compress, each vector will be converted to a code using quantisation

Quantisation

• Convert a continuous value to a
discrete one

• Why?
• continuous values can take an

“infinite” number of values (in a
computer, this isn’t quite true, but
they do require a lot of bits to
store, e.g., 64)

• discrete values from a relatively
small closed set require only a few
bits to store

Module state-of-the-art (1 of 2)
Class

e.g., using a codebook size of 1024
requires only 10 bits to store/transmit each code

We’ve seen uniform quantisation before, when storing waveforms digitally!

Vector quantisation

• Same as before but now for vectors (!)
• Could quantise each dimension independently,

but that would not take advantage of
correlations

• So, quantise the whole vector at once

• The result is a codebook

• a mapping from codes to vectors
• can use this to encode a new vector into a code
• or to decode a code back to a vector

Module state-of-the-art (1 of 2)
Class

note: a code is also known as a “codeword”

Key ideas in SoundStream (and similar audio encoder-decoder models)

• Reduce sequence length
• input is a waveform, at a typical sample rate of 24 kHz (samples per second)
• encoded representation is at 75 Hz (frames per second)
• progressively reduce from 24 kHz to 75 Hz

• Quantise the learned representation
• so it becomes a sequence of codes, not vectors

• Residual quantisation

• to avoid the need for a very large set of codes

Module state-of-the-art (1 of 2)
Class

Residual vector quantisation

• First perform “coarse” quantisation
• “coarse” = small codebook

• Now measure the error that was
introduced by quantisation

• Then represent that error with
another codebook

• Repeat as many times as you wish, to
reduce final error to desired level

Module state-of-the-art (1 of 2)
Class

Orientation

• FastPitch
• case study: model training

• SoundStream
• learning to encode speech

• VALL-E
• a Large Speech Language Model

Module state-of-the-art (1 of 2)
Class

Model: state-of-the-art

• this is the prototypical
architecture of many
previous systems

• we can re-draw this as a
language model

Encoder

Decoder

Vocoder

input
text

speech

reference
speech

Reference
encoder

Encoder

Decoder

Vocoder

input
text

speech

reference
speech

Reference
encoder

Text tokeniser

 Language model

Audio codec
decoder

input
text

speech

speech 
prompt

Audio codec
encoder

N − 1 N

P(xN | x1, x2, …, xN−1)

Neural Codec Language Models are

Zero-Shot Text to Speech Synthesizers

Chengyi Wang
⇤

Sanyuan Chen
⇤

Yu Wu
⇤

Ziqiang Zhang Long Zhou Shujie Liu

Zhuo Chen Yanqing Liu Huaming Wang Jinyu Li Lei He Sheng Zhao Furu Wei

Microsoft
https://github.com/microsoft/unilm

Abstract

We introduce a language modeling approach for text to speech synthesis (TTS).
Specifically, we train a neural codec language model (called VALL-E) using
discrete codes derived from an off-the-shelf neural audio codec model, and re-
gard TTS as a conditional language modeling task rather than continuous signal
regression as in previous work. During the pre-training stage, we scale up the TTS
training data to 60K hours of English speech which is hundreds of times larger than
existing systems. VALL-E emerges in-context learning capabilities and can be
used to synthesize high-quality personalized speech with only a 3-second enrolled
recording of an unseen speaker as an acoustic prompt. Experiment results show
that VALL-E significantly outperforms the state-of-the-art zero-shot TTS system
in terms of speech naturalness and speaker similarity. In addition, we find VALL-E
could preserve the speaker’s emotion and acoustic environment of the acoustic
prompt in synthesis. See https://aka.ms/valle for demos of our work.

Figure 1: The overview of VALL-E. Unlike the previous pipeline (e.g., phoneme ! mel-spectrogram
! waveform), the pipeline of VALL-E is phoneme ! discrete code ! waveform. VALL-E
generates the discrete audio codec codes based on phoneme and acoustic code prompts, corresponding
to the target content and the speaker’s voice. VALL-E directly enables various speech synthesis
applications, such as zero-shot TTS, speech editing, and content creation combined with other
generative AI models like GPT-3 [Brown et al., 2020].

⇤These authors contributed equally to this work. Correspondence: {yuwu1,shujliu,fuwei}@microsoft.com

ar
X

iv
:2

30
1.

02
11

1v
1

 [c
s.C

L]
 5

 Ja
n

20
23

Module state-of-the-art (1 of 2)
Class

VALL-E

1 Introduction

The last decade has yielded dramatic breakthroughs in speech synthesis through the development of
neural networks and end-to-end modeling. Currently, cascaded text to speech (TTS) systems [Shen
et al., 2018, Ren et al., 2019, Li et al., 2019] usually leverage a pipeline with an acoustic model and a
vocoder using mel spectrograms as the intermediate representations. While advanced TTS systems
can synthesize high-quality speech from single or multiple speakers [Liu et al., 2022, Kim et al.,
2021], it still requires high-quality clean data from the recording studio. Large-scale data crawled
from the Internet cannot meet the requirement, and always lead to performance degradation. Because
the training data is relatively small, current TTS systems still suffer from poor generalization. Speaker
similarity and speech naturalness decline dramatically for unseen speakers in the zero-shot scenario.
To tackle the zero-shot TTS problem, existing work leverages speaker adaptation [Chen et al., 2019,
Wang et al., 2020] and speaker encoding [Arik et al., 2018, Casanova et al., 2022b] methods, requiring
additional fine-tuning, complex pre-designed features, or heavy structure engineering.

Instead of designing a complex and specific network for this problem, the ultimate solution is to
train a model with large and diverse data as much as possible, motivated by success in the field of
text synthesis [Brown et al., 2020, Chowdhery et al., 2022]. Recent years have witnessed notable
performance improvement for data increase in the text language model, from 16GB of uncompressed
text [Devlin et al., 2019], to 160GB [Liu et al., 2019], to 570GB [Brown et al., 2020], and finally,
around 1TB [Chowdhery et al., 2022]. Transferring this success to the field of speech synthesis, we
introduce VALL-E, the first language model based TTS framework leveraging the large, diverse, and
multi-speaker speech data. As shown in Figure 1, to synthesize personalized speech (e.g., zero-shot
TTS), VALL-E generates the corresponding acoustic tokens conditioned on the acoustic tokens of
the 3-second enrolled recording and the phoneme prompt, which constrain the speaker and content
information respectively. Finally, the generated acoustic tokens are used to synthesize the final
waveform with the corresponding neural codec decoder [Défossez et al., 2022]. The discrete acoustic
tokens derived from an audio codec model enable us to treat TTS as conditional codec language
modeling, and advanced prompting-based large-model techniques (as in GPTs [Brown et al., 2020])
can be leveraged for the TTS tasks. The acoustic tokens also allow us to generate diverse synthesized
results in TTS by using different sampling strategies during inference.

We train VALL-E with LibriLight [Kahn et al., 2020], a corpus consisting of 60K hours of English
speech with over 7000 unique speakers. The original data is audio-only, so we employ a speech
recognition model to generate the transcriptions. Compared to previous TTS training datasets, such
as LibriTTS [Zen et al., 2019], our data contain more noisy speech and inaccurate transcriptions but
provide diverse speakers and prosodies. We believe the proposed approach is robust to the noise and
generalize well by leveraging large data. It is worth noting that existing TTS systems are always
trained with dozens of hours of single-speaker data or hundreds of hours of multi-speaker data, which
is over hundreds of times smaller than VALL-E. Table 1 summarizes the innovation of VALL-
E, a language model approach for TTS, using audio codec codes as intermediate representations,
leveraging large and diverse data, leading to strong in-context learning capabilities.

Table 1: A comparison between VALL-E and current cascaded TTS systems.

Current Systems VALL-E

Intermediate representation mel spectrogram audio codec code
Objective function continuous signal regression language model

Training data  600 hours 60K hours
In-context learning 7 3

We evaluate VALL-E on LibriSpeech [Panayotov et al., 2015] and VCTK [Veaux et al., 2016]
datasets, where all test speakers are unseen in the training corpus. VALL-E significantly outperforms
the state-of-the-art zero-shot TTS system [Casanova et al., 2022b] in terms of speech naturalness and
speaker similarity, with +0.12 comparative mean option score (CMOS) and +0.93 similarity mean
option score (SMOS) improvement on LibriSpeech. VALL-E also beats the baseline on VCTK with
+0.11 SMOS and +0.23 CMOS improvements. It even achieves a +0.04 CMOS score against ground
truth, showing the synthesized speech of unseen speakers is as natural as human recordings on VCTK.
Moreover, the qualitative analysis shows that VALL-E is able to synthesize diverse outputs with the

2

Module state-of-the-art (1 of 2)
Class

Neural Codec Language Models are

Zero-Shot Text to Speech Synthesizers

Chengyi Wang
⇤

Sanyuan Chen
⇤

Yu Wu
⇤

Ziqiang Zhang Long Zhou Shujie Liu

Zhuo Chen Yanqing Liu Huaming Wang Jinyu Li Lei He Sheng Zhao Furu Wei

Microsoft
https://github.com/microsoft/unilm

Abstract

We introduce a language modeling approach for text to speech synthesis (TTS).
Specifically, we train a neural codec language model (called VALL-E) using
discrete codes derived from an off-the-shelf neural audio codec model, and re-
gard TTS as a conditional language modeling task rather than continuous signal
regression as in previous work. During the pre-training stage, we scale up the TTS
training data to 60K hours of English speech which is hundreds of times larger than
existing systems. VALL-E emerges in-context learning capabilities and can be
used to synthesize high-quality personalized speech with only a 3-second enrolled
recording of an unseen speaker as an acoustic prompt. Experiment results show
that VALL-E significantly outperforms the state-of-the-art zero-shot TTS system
in terms of speech naturalness and speaker similarity. In addition, we find VALL-E
could preserve the speaker’s emotion and acoustic environment of the acoustic
prompt in synthesis. See https://aka.ms/valle for demos of our work.

Figure 1: The overview of VALL-E. Unlike the previous pipeline (e.g., phoneme ! mel-spectrogram
! waveform), the pipeline of VALL-E is phoneme ! discrete code ! waveform. VALL-E
generates the discrete audio codec codes based on phoneme and acoustic code prompts, corresponding
to the target content and the speaker’s voice. VALL-E directly enables various speech synthesis
applications, such as zero-shot TTS, speech editing, and content creation combined with other
generative AI models like GPT-3 [Brown et al., 2020].

⇤These authors contributed equally to this work. Correspondence: {yuwu1,shujliu,fuwei}@microsoft.com

ar
X

iv
:2

30
1.

02
11

1v
1

 [c
s.C

L]
 5

 Ja
n

20
23

How can we combine text and speech into a single sequence ?

Module state-of-the-art (1 of 2)
Class

Inputting a one-hot vector into the model: embedding

Module state-of-the-art (1 of 2)
Class

Inputting a one-hot vector into the model: embedding

Module state-of-the-art (1 of 2)
Class

Inputting a one-hot vector into the model: embedding

Module state-of-the-art (1 of 2)
Class

Inputting a one-hot vector into the model: embedding

Module state-of-the-art (1 of 2)
Class

Inputting a one-hot vector symbol into the model: embedding table

Module state-of-the-art (1 of 2)
Class

How can we combine two different types of symbol into a single sequence ?

Option 1: a single embedding table Option 2: separate embedding tables

Module state-of-the-art (1 of 2)
Class

Language modelling

Neural Codec Language Models are

Zero-Shot Text to Speech Synthesizers

Chengyi Wang
⇤

Sanyuan Chen
⇤

Yu Wu
⇤

Ziqiang Zhang Long Zhou Shujie Liu

Zhuo Chen Yanqing Liu Huaming Wang Jinyu Li Lei He Sheng Zhao Furu Wei

Microsoft
https://github.com/microsoft/unilm

Abstract

We introduce a language modeling approach for text to speech synthesis (TTS).
Specifically, we train a neural codec language model (called VALL-E) using
discrete codes derived from an off-the-shelf neural audio codec model, and re-
gard TTS as a conditional language modeling task rather than continuous signal
regression as in previous work. During the pre-training stage, we scale up the TTS
training data to 60K hours of English speech which is hundreds of times larger than
existing systems. VALL-E emerges in-context learning capabilities and can be
used to synthesize high-quality personalized speech with only a 3-second enrolled
recording of an unseen speaker as an acoustic prompt. Experiment results show
that VALL-E significantly outperforms the state-of-the-art zero-shot TTS system
in terms of speech naturalness and speaker similarity. In addition, we find VALL-E
could preserve the speaker’s emotion and acoustic environment of the acoustic
prompt in synthesis. See https://aka.ms/valle for demos of our work.

Figure 1: The overview of VALL-E. Unlike the previous pipeline (e.g., phoneme ! mel-spectrogram
! waveform), the pipeline of VALL-E is phoneme ! discrete code ! waveform. VALL-E
generates the discrete audio codec codes based on phoneme and acoustic code prompts, corresponding
to the target content and the speaker’s voice. VALL-E directly enables various speech synthesis
applications, such as zero-shot TTS, speech editing, and content creation combined with other
generative AI models like GPT-3 [Brown et al., 2020].

⇤These authors contributed equally to this work. Correspondence: {yuwu1,shujliu,fuwei}@microsoft.com

ar
X

iv
:2

30
1.

02
11

1v
1

 [c
s.C

L]
 5

 Ja
n

20
23

Module state-of-the-art (1 of 2)
Class

Language modelling

Neural Codec Language Models are

Zero-Shot Text to Speech Synthesizers

Chengyi Wang
⇤

Sanyuan Chen
⇤

Yu Wu
⇤

Ziqiang Zhang Long Zhou Shujie Liu

Zhuo Chen Yanqing Liu Huaming Wang Jinyu Li Lei He Sheng Zhao Furu Wei

Microsoft
https://github.com/microsoft/unilm

Abstract

We introduce a language modeling approach for text to speech synthesis (TTS).
Specifically, we train a neural codec language model (called VALL-E) using
discrete codes derived from an off-the-shelf neural audio codec model, and re-
gard TTS as a conditional language modeling task rather than continuous signal
regression as in previous work. During the pre-training stage, we scale up the TTS
training data to 60K hours of English speech which is hundreds of times larger than
existing systems. VALL-E emerges in-context learning capabilities and can be
used to synthesize high-quality personalized speech with only a 3-second enrolled
recording of an unseen speaker as an acoustic prompt. Experiment results show
that VALL-E significantly outperforms the state-of-the-art zero-shot TTS system
in terms of speech naturalness and speaker similarity. In addition, we find VALL-E
could preserve the speaker’s emotion and acoustic environment of the acoustic
prompt in synthesis. See https://aka.ms/valle for demos of our work.

Figure 1: The overview of VALL-E. Unlike the previous pipeline (e.g., phoneme ! mel-spectrogram
! waveform), the pipeline of VALL-E is phoneme ! discrete code ! waveform. VALL-E
generates the discrete audio codec codes based on phoneme and acoustic code prompts, corresponding
to the target content and the speaker’s voice. VALL-E directly enables various speech synthesis
applications, such as zero-shot TTS, speech editing, and content creation combined with other
generative AI models like GPT-3 [Brown et al., 2020].

⇤These authors contributed equally to this work. Correspondence: {yuwu1,shujliu,fuwei}@microsoft.com

ar
X

iv
:2

30
1.

02
11

1v
1

 [c
s.C

L]
 5

 Ja
n

20
23

Neural Codec Language Models are

Zero-Shot Text to Speech Synthesizers

Chengyi Wang
⇤

Sanyuan Chen
⇤

Yu Wu
⇤

Ziqiang Zhang Long Zhou Shujie Liu

Zhuo Chen Yanqing Liu Huaming Wang Jinyu Li Lei He Sheng Zhao Furu Wei

Microsoft
https://github.com/microsoft/unilm

Abstract

We introduce a language modeling approach for text to speech synthesis (TTS).
Specifically, we train a neural codec language model (called VALL-E) using
discrete codes derived from an off-the-shelf neural audio codec model, and re-
gard TTS as a conditional language modeling task rather than continuous signal
regression as in previous work. During the pre-training stage, we scale up the TTS
training data to 60K hours of English speech which is hundreds of times larger than
existing systems. VALL-E emerges in-context learning capabilities and can be
used to synthesize high-quality personalized speech with only a 3-second enrolled
recording of an unseen speaker as an acoustic prompt. Experiment results show
that VALL-E significantly outperforms the state-of-the-art zero-shot TTS system
in terms of speech naturalness and speaker similarity. In addition, we find VALL-E
could preserve the speaker’s emotion and acoustic environment of the acoustic
prompt in synthesis. See https://aka.ms/valle for demos of our work.

Figure 1: The overview of VALL-E. Unlike the previous pipeline (e.g., phoneme ! mel-spectrogram
! waveform), the pipeline of VALL-E is phoneme ! discrete code ! waveform. VALL-E
generates the discrete audio codec codes based on phoneme and acoustic code prompts, corresponding
to the target content and the speaker’s voice. VALL-E directly enables various speech synthesis
applications, such as zero-shot TTS, speech editing, and content creation combined with other
generative AI models like GPT-3 [Brown et al., 2020].

⇤These authors contributed equally to this work. Correspondence: {yuwu1,shujliu,fuwei}@microsoft.com

ar
X

iv
:2

30
1.

02
11

1v
1

 [c
s.C

L]
 5

 Ja
n

20
23

Neural Codec Language Models are

Zero-Shot Text to Speech Synthesizers

Chengyi Wang
⇤

Sanyuan Chen
⇤

Yu Wu
⇤

Ziqiang Zhang Long Zhou Shujie Liu

Zhuo Chen Yanqing Liu Huaming Wang Jinyu Li Lei He Sheng Zhao Furu Wei

Microsoft
https://github.com/microsoft/unilm

Abstract

We introduce a language modeling approach for text to speech synthesis (TTS).
Specifically, we train a neural codec language model (called VALL-E) using
discrete codes derived from an off-the-shelf neural audio codec model, and re-
gard TTS as a conditional language modeling task rather than continuous signal
regression as in previous work. During the pre-training stage, we scale up the TTS
training data to 60K hours of English speech which is hundreds of times larger than
existing systems. VALL-E emerges in-context learning capabilities and can be
used to synthesize high-quality personalized speech with only a 3-second enrolled
recording of an unseen speaker as an acoustic prompt. Experiment results show
that VALL-E significantly outperforms the state-of-the-art zero-shot TTS system
in terms of speech naturalness and speaker similarity. In addition, we find VALL-E
could preserve the speaker’s emotion and acoustic environment of the acoustic
prompt in synthesis. See https://aka.ms/valle for demos of our work.

Figure 1: The overview of VALL-E. Unlike the previous pipeline (e.g., phoneme ! mel-spectrogram
! waveform), the pipeline of VALL-E is phoneme ! discrete code ! waveform. VALL-E
generates the discrete audio codec codes based on phoneme and acoustic code prompts, corresponding
to the target content and the speaker’s voice. VALL-E directly enables various speech synthesis
applications, such as zero-shot TTS, speech editing, and content creation combined with other
generative AI models like GPT-3 [Brown et al., 2020].

⇤These authors contributed equally to this work. Correspondence: {yuwu1,shujliu,fuwei}@microsoft.com

ar
X

iv
:2

30
1.

02
11

1v
1

 [c
s.C

L]
 5

 Ja
n

20
23

NN−1N−21 2 …

P(wN |w1, w2, … wN−1)

Module state-of-the-art (1 of 2)
Class

In-context learning (via prompting)

Neural Codec Language Models are

Zero-Shot Text to Speech Synthesizers

Chengyi Wang
⇤

Sanyuan Chen
⇤

Yu Wu
⇤

Ziqiang Zhang Long Zhou Shujie Liu

Zhuo Chen Yanqing Liu Huaming Wang Jinyu Li Lei He Sheng Zhao Furu Wei

Microsoft
https://github.com/microsoft/unilm

Abstract

We introduce a language modeling approach for text to speech synthesis (TTS).
Specifically, we train a neural codec language model (called VALL-E) using
discrete codes derived from an off-the-shelf neural audio codec model, and re-
gard TTS as a conditional language modeling task rather than continuous signal
regression as in previous work. During the pre-training stage, we scale up the TTS
training data to 60K hours of English speech which is hundreds of times larger than
existing systems. VALL-E emerges in-context learning capabilities and can be
used to synthesize high-quality personalized speech with only a 3-second enrolled
recording of an unseen speaker as an acoustic prompt. Experiment results show
that VALL-E significantly outperforms the state-of-the-art zero-shot TTS system
in terms of speech naturalness and speaker similarity. In addition, we find VALL-E
could preserve the speaker’s emotion and acoustic environment of the acoustic
prompt in synthesis. See https://aka.ms/valle for demos of our work.

Figure 1: The overview of VALL-E. Unlike the previous pipeline (e.g., phoneme ! mel-spectrogram
! waveform), the pipeline of VALL-E is phoneme ! discrete code ! waveform. VALL-E
generates the discrete audio codec codes based on phoneme and acoustic code prompts, corresponding
to the target content and the speaker’s voice. VALL-E directly enables various speech synthesis
applications, such as zero-shot TTS, speech editing, and content creation combined with other
generative AI models like GPT-3 [Brown et al., 2020].

⇤These authors contributed equally to this work. Correspondence: {yuwu1,shujliu,fuwei}@microsoft.com

ar
X

iv
:2

30
1.

02
11

1v
1

 [c
s.C

L]
 5

 Ja
n

20
23

Module state-of-the-art (1 of 2)
Class

Zero shot

Neural Codec Language Models are

Zero-Shot Text to Speech Synthesizers

Chengyi Wang
⇤

Sanyuan Chen
⇤

Yu Wu
⇤

Ziqiang Zhang Long Zhou Shujie Liu

Zhuo Chen Yanqing Liu Huaming Wang Jinyu Li Lei He Sheng Zhao Furu Wei

Microsoft
https://github.com/microsoft/unilm

Abstract

We introduce a language modeling approach for text to speech synthesis (TTS).
Specifically, we train a neural codec language model (called VALL-E) using
discrete codes derived from an off-the-shelf neural audio codec model, and re-
gard TTS as a conditional language modeling task rather than continuous signal
regression as in previous work. During the pre-training stage, we scale up the TTS
training data to 60K hours of English speech which is hundreds of times larger than
existing systems. VALL-E emerges in-context learning capabilities and can be
used to synthesize high-quality personalized speech with only a 3-second enrolled
recording of an unseen speaker as an acoustic prompt. Experiment results show
that VALL-E significantly outperforms the state-of-the-art zero-shot TTS system
in terms of speech naturalness and speaker similarity. In addition, we find VALL-E
could preserve the speaker’s emotion and acoustic environment of the acoustic
prompt in synthesis. See https://aka.ms/valle for demos of our work.

Figure 1: The overview of VALL-E. Unlike the previous pipeline (e.g., phoneme ! mel-spectrogram
! waveform), the pipeline of VALL-E is phoneme ! discrete code ! waveform. VALL-E
generates the discrete audio codec codes based on phoneme and acoustic code prompts, corresponding
to the target content and the speaker’s voice. VALL-E directly enables various speech synthesis
applications, such as zero-shot TTS, speech editing, and content creation combined with other
generative AI models like GPT-3 [Brown et al., 2020].

⇤These authors contributed equally to this work. Correspondence: {yuwu1,shujliu,fuwei}@microsoft.com

ar
X

iv
:2

30
1.

02
11

1v
1

 [c
s.C

L]
 5

 Ja
n

20
23

Module state-of-the-art (1 of 2)
Class

What next?

• Just one more class left...

• Tasks beyond Text-To-Speech
• Current & future trends

Module state-of-the-art (1 of 2)
Class

