Sequence-to-sequence models

Class slides
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Limitations of processing each time step independently

» |Input features

» Requires assembling all necessary contextual information and placing at current input

* Features pre-determined using knowledge-driven feature engineering (e.g., guinphones)

e Duration

» Must be handled separately

» Sequence modelling

A constant regression function, time-independent, memoryless

« Output features

 Predicted using only the Iinput features

» Output I1s condrtionally-independent of previous/next outputs, given the current input



hings to Improve next

» |Input features

» the model should learn input feature
engineering

* Duration

* integrate into the model
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« Sequence modelling
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» enable the model to pass information
between time steps - give it a memory
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« Output features

» allow output to depend on previous
OUTPpUTS




[ hings to Improve next

» |Input features

» the model should learn input feature
engineering

e Duration

* integrate into the model
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Recurrent (nalve version)

* Pass some of the outputs
(or hidden layer activations)

forwards in time, typically to the next
time step

* A kind of memory

e Provides “Infinite” left context
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Recurrent (nalve version)

 Pass some of the outputs

(or hidden layer activations)
forwards in time, typically to the next
time step
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e Provides “Infinite” left context

* (could also pass information
backwards in time)




Recurrent (nalve version)

* Pass some of the outputs (or hidden
ayer activations) forwards in time,
typically to the next time step

* A kind of memory

e Provides “Infinite’ left context

* (could also pass information
backwards in time)




Recurrent

« SImple recurrence Is equivalent to a
very deep network

* |o train this network, we have to
backpropagate the derivative of the

the errors (the gradient) through all
of the layers

* "backpropagation through time”

» Suffers from the “vanishing

gradient’ problem, for long
sequences

ww AN M\ 79

y v

N N




Long short-term memory
(a type of recurrence)

* Solves the vanishing gradient

broblem by using “gates’ to control
the flow of information

« Conceptually
 Special LSTM unrts

* learn when to remember

« remember information for any
number of time steps

* learn when to forget




Long short-term memory
(a type of recurrence)

* Solves the vanishing gradient

broblem by using “gates’ to control
the flow of information

« Conceptually
 Special LSTM units

* learn when to remember

« remember information for any
number of time steps .

* learn when to forget

Fisure from Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton.
"Speech recognition with deep recurrent neural networks™ I[CASSP 2013,
redrawn as SVG by Eddie Antonio Santos Forget: Grate

Output Gate




LSTM units & Gated Recurrent Units (GRUSs)
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Neural building blocks : (bidirectional) LSTM layer
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Orientation

» |Input features

» the model should learn input feature
engineering

* Duration

* integrate into the model

Sequence modelling
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Orientation

. Input features » Feed-forward architecture

» the model should learn input feature © ho memory

engineering  "Simple” recurrent neural
networks

e Duration

* vanishing gradient
problem

| | * LSTMs or GRUs
» enable the model to pass information / (which avoid the vanishing
between time steps - give it a memory oradient problem)

« Output features

* integrate into the model

« Sequence modelling

» allow output to depend on previous
OUTPpUTS



Orientation

» |Input features

» the model should learn input feature
_eng meerlng * Solution |: attention

...

e Duration

integrate jp % the model

Sequence mode\lmg

» enable the model to pass information
between time steps - give It a memory

« Output features

» allow output to depend on previous
OUTPpUTS



During training: alisnment During inference: c

dration

DIreC

» Length of Input sequence Is generally different to length of output sequence

* For example

* Input: sequence of phones

» output: acoustic frames (e.g., a spectrogram, to be input to a vocoder)

« Conceptually

* read In the Input sequence; memorise it using a learned representation

» oiven that representation, write the output sequence

iction



output time steps are frames (e.g., of a mel spectrogram)

ey

input time steps are linguistic units (e.g., phones)



Decoder

Encoder










A sequence-to-sequence network using an encoder-decoder architecture

Encoder Decoder

[ his generally does not work very well!
Why!



Module 9 - sequence-to-sequence models
Class
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How does the model know
when to stop generating output!



lerminology

e encoder
e decoder

e attention



Orientation

» |Input features

» the model should learn input feature
engineering

« Duration /
* integrate into the model » Solution 2: explicit duration model

« Sequence modelling

» enable the model to pass information
between time steps - give It a memory

« Output features

» allow output to depend on previous
OUTPpUTS



output time steps are frames (e.g., of a mel spectrogram)

ey

input time steps are linguistic units (e.g., phones)



Decoder

Encoder







ZS N NN

predmt an explicit duration
for each input time step




Orientation

» |Input features

» the model should learn input feature
engineering

* Duration

* integrate into the model

Sequence modelling
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Orientation
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. Duration
+ integrate into the Mode| ——— -« Solution 2: explicit duration model

« Sequence modelling

» enable the model to pass information
between time steps - give It a memory

« Output features

» allow output to depend on previous
OUTPpUTS



Neural building blocks : fully connected layer
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Neural building blocks : convolutional layer
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Using convolution to learn input feature engineering
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PAUSE!' What are all those layers for! Learning representations!
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a representation of
the output

—

a sequence of non-linear projections




Is

butting a one-hot vector Into the moc

el: embedding



Changing the ¢

imensionality of the re

bresentation: projection




Combining representations as information flows through the model

Option |: concatenate Option 2: sum

[TIITTTITTIITTITITITITT] [LITTTTT]]



Combining representations as information flows through the model

Option |: concatenate Option 2: sum

[TITTTITTITTT] [LITTTTT]]
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Combining representations as information flows through the model

Option |: concatenate Option 2: sum
[TTTTTITITIIITTIT] (LTI T TTTT]
[TTTTTTIT] [TTTT] [TTITITTTIT] [TTITTTTIT]



lerminology

* types of layer
» fully-connected (FC)
* recurrent

. LSTM, GRU, bidirectional LSTM (BILSTM)

» convolutional (cony, conv D)

* operations
» embedding
* projection

« sum ( @) vs. concatenation (concat)



Orientation

» |Input features

» the model should learn input feature
engineering

* Duration

* integrate into the model

Sequence modelling
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Orientation

» |Input features

» the model should learn input feature \
ehgineering « Convolutional layer(s)

e Duration

* integrate into the model

« Sequence modelling

» enable the model to pass information
between time steps - give It 2 memory
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mel spectrogram




lerminology

* autoregressive



Orientation

» |Input features

» the model should learn input feature
engineering

* Duration

* integrate into the model

Sequence modelling
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Orientation

» |Input features

» the model should learn input feature
engineering

e Duration

* integrate into the model

« Sequence modelling

» enable the model to pass information
between time steps - give It a memory

» Output features / » Autoregressive model
» allow output to depend on previous

OUTPpUTS




Case study

Tacotron 2

Waveform samples

4
[ WaveNet MoL ]
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mel spectrogram
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Bi-directional LSTM b Linear Ptojection
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Location .
3 Conv Layers Sensitive  [«—{ 2 LSTM Layers
3 Attention '}
Character Embedding \ / [ 2 Layer Pre-Net
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lacotron 2

Bi-directional LSTM G 2

3 Conv Layers

Character Embedding

Encoder

Waveform samples

WaveNet MoL

mel spectrogram

5 Conv Layer Post-Net

. Location l
S

ensitive
Attention

2 Layer Pre-Net

2 LSTM Layers




Tacotron 2

Bi-directional LSTM G 2
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Waveform samples

WaveNet MoL

Tacotron 2 mel spectrogram
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mel spectrogram
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Linear Projection
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2 LSTM Layers
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VWhat next!

 Neural vocoders & audio codecs

« Approaches based on language models

* Plus a selection of
* very recent models
» tasks beyond T TS




