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What you should already know

• Converting the linguistic specification 
into a form suitable for input to 
DNN

• The input is now simply a sequence 
of vectors

• Simple Deep Neural Network maps 
one input vector to one output 
vector
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Limitations of processing each time step independently

t-1 t t+1

Module 9 - sequence-to-sequence models
Class



Limitations of processing each time step independently

• Input features
• Requires assembling all necessary contextual information and placing at current input
• Features pre-determined using knowledge-driven feature engineering (e.g., quinphones)

• Duration
• Must be handled separately

• Sequence modelling
• A constant regression function, time-independent, memoryless

• Output features
• Predicted using only the input features
• Output is conditionally-independent of previous/next outputs, given the current input
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Things to improve next
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• Input features
• the model should learn input feature 

engineering

• Duration
• integrate into the model

• Sequence modelling
• enable the model to pass information 

between time steps - give it a memory

• Output features
• allow output to depend on previous 

outputs
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Recurrent (naive version)

• Pass some of the outputs 
(or hidden layer activations) 
forwards in time, typically to the next 
time step

• A kind of memory

• Provides “infinite” left context

• (could also pass information 
backwards in time)
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Recurrent

t-1

t

t+1
• Simple recurrence is equivalent to a 

very deep network

• To train this network, we have to 
backpropagate the derivative of the 
the errors (the gradient) through all 
of the layers
• “backpropagation through time”

• Suffers from the “vanishing 
gradient” problem, for long 
sequences
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Long short-term memory
(a type of recurrence)

• Solves the vanishing gradient 
problem by using “gates” to control 
the flow of information

• Conceptually
• Special LSTM units
• learn when to remember

• remember information for any 
number of time steps

• learn when to forget
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• Special LSTM units
• learn when to remember
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Page 1 of 1https://upload.wikimedia.org/wikipedia/commons/5/53/Peephole_Long_Short-Term_Memory.svg

Figure from Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. 
“Speech recognition with deep recurrent neural networks” ICASSP 2013, 

redrawn as SVG by Eddie Antonio Santos 
Module 9 - sequence-to-sequence models

Class

Long short-term memory
(a type of recurrence)



LSTM units & Gated Recurrent Units (GRUs)

t t+1 t+2



Neural building blocks : (bidirectional) LSTM layer

t t+1 t+2
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Orientation
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• Feed-forward architecture
• no memory

• “Simple” recurrent neural 
networks
• vanishing gradient 

problem
• LSTMs or GRUs 

(which avoid the vanishing 
gradient problem)

• Input features
• the model should learn input feature 

engineering

• Duration
• integrate into the model

• Sequence modelling
• enable the model to pass information 

between time steps - give it a memory

• Output features
• allow output to depend on previous 

outputs



Orientation
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• Solution 1: attention

• Solution 2: explicit duration model

• Input features
• the model should learn input feature 

engineering

• Duration
• integrate into the model

• Sequence modelling
• enable the model to pass information 

between time steps - give it a memory

• Output features
• allow output to depend on previous 

outputs



• Length of input sequence is generally different to length of output sequence

• For example
• input: sequence of phones
• output: acoustic frames (e.g., a spectrogram, to be input to a vocoder)

• Conceptually
• read in the input sequence; memorise it using a learned representation 

• given that representation, write the output sequence

During training: alignment                During inference: duration prediction 
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output time steps are frames (e.g., of a mel spectrogram)

input time steps are linguistic units (e.g., phones)



Encoder

Decoder
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A sequence-to-sequence network using an encoder-decoder architecture

Encoder Decoder

This generally does not work very well!
Why?
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Encoder

Decoder
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Encoder-decoder with attention

Encoder

Decoder
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How does the model know
when to stop generating output?

attention



Terminology

• encoder

• decoder

• attention

Module 9 - sequence-to-sequence models
Class



Orientation

Module 9 - sequence-to-sequence models
Class

• Solution 1: attention

• Solution 2: explicit duration model

• Input features
• the model should learn input feature 

engineering

• Duration
• integrate into the model

• Sequence modelling
• enable the model to pass information 

between time steps - give it a memory

• Output features
• allow output to depend on previous 

outputs



Module 9 - sequence-to-sequence models
Class

output time steps are frames (e.g., of a mel spectrogram)

input time steps are linguistic units (e.g., phones)



Encoder

Decoder
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predict an explicit duration 
for each input time step
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Neural building blocks : fully connected layer
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Neural building blocks : convolutional layer

Module 9 - sequence-to-sequence models
Class



Using convolution to learn input feature engineering
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PAUSE! What are all those layers for? Learning representations!

a representation of 
the input a representation of 

the output

learned 
intermediate 
representations

a sequence of non-linear projections

Module 8 - speech synthesis using Neural Networks 
Video 1 - What is a Neural Network?



Inputting a one-hot vector into the model: embedding
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Changing the dimensionality of the representation: projection
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Combining representations as information flows through the model

Option 1: concatenate Option 2: sum
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Terminology

• types of layer
• fully-connected (FC)
• recurrent
• LSTM, GRU, bidirectional LSTM (BiLSTM)
• convolutional (conv, conv 1D)

• operations
• embedding 
• projection
• sum ( ⊕ )   vs.   concatenation (concat)
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Orientation
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• Input features
• the model should learn input feature 

engineering

• Duration
• integrate into the model

• Sequence modelling
• enable the model to pass information 

between time steps - give it a memory

• Output features
• allow output to depend on previous 

outputs
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• Convolutional layer(s)

• Input features
• the model should learn input feature 

engineering

• Duration
• integrate into the model

• Sequence modelling
• enable the model to pass information 

between time steps - give it a memory

• Output features
• allow output to depend on previous 

outputs
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Terminology

• autoregressive

Module 9 - sequence-to-sequence models
Class



Orientation

Module 9 - sequence-to-sequence models
Class

• Input features
• the model should learn input feature 

engineering

• Duration
• integrate into the model

• Sequence modelling
• enable the model to pass information 

between time steps - give it a memory

• Output features
• allow output to depend on previous 

outputs



Orientation
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• Autoregressive model

• Input features
• the model should learn input feature 

engineering

• Duration
• integrate into the model

• Sequence modelling
• enable the model to pass information 

between time steps - give it a memory

• Output features
• allow output to depend on previous 

outputs



Case study

Tacotron 2
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Encoder VocoderDecoder

Tacotron 2



Tacotron 2
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Tacotron 2
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Tacotron 2

Encoder
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What next?

• Neural vocoders & audio codecs
• Approaches based on language models

• Plus a selection of
• very recent models
• tasks beyond TTS
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