Sequence-to-sequence models

Class slides

What you should already know

- Converting the linguistic specification into a form suitable for input to DNN
- The input is now simply a sequence of vectors
- Simple Deep Neural Network maps one input vector to one output vector

Limitations of processing each time step independently

Module 9 - sequence-to-sequence models Class

t+|

Limitations of processing each time step independently

- Input features
- <u>Duration</u>
 - Must be handled separately
- <u>Sequence modelling</u>
 - A constant regression function, time-independent, memoryless
- <u>Output features</u>
 - Predicted using only the input features

• Requires assembling all necessary contextual information and placing at current input • Features pre-determined using knowledge-driven feature engineering (e.g., quinphones)

• Output is conditionally-independent of previous/next outputs, given the current input

Things to improve next

- Input features
 - the model should learn input feature engineering
- <u>Duration</u>
 - **integrate** into the model
- <u>Sequence modelling</u>
 - enable the model to pass information between time steps give it a **memory**
- <u>Output features</u>
 - allow output to **depend** on previous outputs

Things to improve next

- Input features
 - the model should learn input feature engineering
- <u>Duration</u>
 - integrate into the model
- <u>Sequence modelling</u>
 - enable the model to pass information
 between time steps give it a memory
- <u>Output features</u>
 - allow output to **depend** on previous outputs

Module 9 - sequence-to-sequence models Class

Y

Recurrent (naive version)

- Pass some of the **outputs** (or hidden layer activations) forwards in time, typically to the next time step
- A kind of memory
- Provides "infinite" left context
- (could also pass information backwards in time)

Recurrent (naive version)

- Pass some of the outputs

 (or hidden layer activations)
 forwards in time, typically to the next time step
- A kind of **memory**
- Provides "infinite" left context
- (could also pass information backwards in time)

Recurrent (naive version)

- Pass some of the outputs (or hidden layer activations) forwards in time, typically to the next time step
- A kind of memory
- Provides "infinite" left context
- (could also pass information backwards in time)

Recurrent

- Simple recurrence is equivalent to a very deep network
- To train this network, we have to backpropagate the derivative of the the errors (the gradient) through all of the layers
 - "backpropagation through time"
- Suffers from the "vanishing gradient" problem, for long sequences

++

Long short-term memory (a type of recurrence)

- Solves the vanishing gradient problem by using "gates" to control the flow of information
- <u>Conceptually</u>
 - Special LSTM units
 - learn when to **remember**
 - remember information for any number of time steps
 - learn when to forget

Long short-term memory (a type of recurrence)

- Solves the vanishing gradient problem by using "gates" to control the flow of information
- <u>Conceptually</u>
 - Special LSTM units
 - learn when to **remember**
 - remember information for any number of time steps
 - learn when to forget

Figure from Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. "Speech recognition with deep recurrent neural networks" ICASSP 2013, redrawn as SVG by Eddie Antonio Santos

 h_t

LSTM units & Gated Recurrent Units (GRUs)

Neural building blocks : (bidirectional) LSTM layer

- Input features
 - the model should learn input feature engineering
- <u>Duration</u>
 - **integrate** into the model
- <u>Sequence modelling</u>
 - enable the model to pass information
 between time steps give it a memory
- <u>Output features</u>
 - allow output to **depend** on previous outputs

- Input features
 - the model should learn input feature engineering
- <u>Duration</u>
 - integrate into the model
- <u>Sequence modelling</u>
 - enable the model to pass information
 between time steps give it a memory
- <u>Output features</u>
 - allow output to **depend** on previous outputs

Module 9 - sequence-to-sequence models Class

- Feed-forward architecture
 - no memory
- "Simple" recurrent neural networks
 - vanishing gradient problem

• LSTMs or GRUs

(which avoid the vanishing gradient problem)

- Input features
 - the model should learn input feature engineering
 - Duration
 - integrate into the model
- <u>Sequence modelling</u>
 - enable the model to pass information
 between time steps give it a memory
- <u>Output features</u>
 - allow output to **depend** on previous outputs

Module 9 - sequence-to-sequence models Class

Solution 2: explicit duration model

During training: alignment

- Length of input sequence is generally **different** to length of output sequence
- For example
 - input: sequence of phones
 - output: acoustic frames (e.g., a spectrogram, to be input to a vocoder)
- <u>Conceptually</u>
 - read in the input sequence; memorise it using a learned representation
 - given that representation, write the output sequence

Module 9 - sequence-to-sequence models Class

During inference: duration prediction

output time steps are frames (e.g., of a mel spectrogram)

Module 9 - sequence-to-sequence models Class

input time steps are linguistic units (e.g., phones)

Decoder

Encoder

Module 9 - sequence-to-sequence models

Class

A sequence-to-sequence network using an encoder-decoder architecture

Module 9 - sequence-to-sequence models Class

This generally does not work very well! Why?

Encoder

Module 9 - sequence-to-sequence models

Class

Encoder-decoder with attention

How does the model know when to stop generating output?

Terminology

- encoder
- decoder
- attention

- Input features
 - the model should learn input feature engineering
- <u>Duration</u>
 - integrate into the model

- <u>Sequence modelling</u>
 - enable the model to pass information between time steps give it a **memory**
- <u>Output features</u>
 - allow output to **depend** on previous outputs

Module 9 - sequence-to-sequence models Class

Solution I: attention

• Solution 2: explicit duration model

output time steps are frames (e.g., of a mel spectrogram)

Module 9 - sequence-to-sequence models Class

input time steps are linguistic units (e.g., phones)

Decoder

Encoder

Module 9 - sequence-to-sequence models

Class

predict an explicit duration for each input time step

- Input features
 - the model should learn input feature engineering
- <u>Duration</u>
 - **integrate** into the model
- <u>Sequence modelling</u>
 - enable the model to pass information
 between time steps give it a memory
- <u>Output features</u>
 - allow output to **depend** on previous outputs

- Input features
 the model should learn input feature engineering
- Duration
 - integrate into the model
- <u>Sequence modelling</u>
 - enable the model to pass information between time steps - give it a memory
- <u>Output features</u>
 - allow output to **depend** on previous outputs

Module 9 - sequence-to-sequence models Class

• Solution I: attention

• Solution 2: explicit duration model

Neural building blocks : fully connected layer

Neural building blocks : convolutional layer

Using convolution to learn input feature engineering

PAUSE! What are all those layers for? Learning representations!

a representation of the input

Module 8 - speech synthesis using Neural Networks Video I - What is a Neural Network?

learned intermediate representations a representation of the output

a sequence of **non-linear** projections

Inputting a one-hot vector into the model: embedding

ПТ

Changing the dimensionality of the representation: projection

Combining representations as information flows through the model

Option I: concatenate

Combining representations as information flows through the model

Option I: concatenate

Combining representations as information flows through the model

Option I: concatenate

Terminology

- types of layer
 - fully-connected (FC)
 - recurrent
 - LSTM, GRU, bidirectional LSTM (BiLSTM)
 - convolutional (conv, conv ID)
- operations
 - embedding
 - projection
 - sum (\oplus) vs. concatenation (concat)

- Input features
 - the model should learn input feature engineering
- <u>Duration</u>
 - **integrate** into the model
- <u>Sequence modelling</u>
 - enable the model to pass information
 between time steps give it a memory
- <u>Output features</u>
 - allow output to **depend** on previous outputs

- Input features
 - the model should learn input feature
 engineering
- <u>Duration</u>
 - integrate into the model
- <u>Sequence modelling</u>
 - enable the model to pass information between time steps - give it a memory
- <u>Output features</u>
 - allow output to depend on previous outputs

Module 9 - sequence-to-sequence models

Class

mel spectrogram

Terminology

autoregressive

- Input features
 - the model should learn input feature engineering
- <u>Duration</u>
 - **integrate** into the model
- <u>Sequence modelling</u>
 - enable the model to pass information
 between time steps give it a memory
- <u>Output features</u>
 - allow output to **depend** on previous outputs

- Input features
 - the model should learn input feature engineering
- <u>Duration</u>
 - integrate into the model
- <u>Sequence modelling</u>
 - enable the model to pass information between time steps - give it a memory
- <u>Output features</u>
 - allow output to depend on previous

Module 9 - sequence-to-sequence models Class

Autoregressive model

Case study

Tacotron 2

Tacotron 2

Tacotron 2

mel spectrogram

Tacotron 2

mel spectrogram

Module 9 - sequence-to-sequence models Class

Encoder

What next?

- Neural vocoders & audio codecs
- Approaches based on language models
- Plus a selection of
 - very recent models
 - tasks beyond TTS

