Sequence-to-sequence models

Class slides
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Vocoder parameters
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Linguistic features






Doing regression by performing a forward pass through the DNN
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lerminology

* regression
e Inference

» forward pass



Sequence-to-sequence regression using a DNN - ¢

output sequence

INput sequence
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Sequence-to-sequence regression using a DNN - ¢

upsampled input sequence

INput sequence
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Sequence-to-sequence regression using a DNN - ¢

output sequence

upsampled Input sequence
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°rocessing the entire sec
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lerminology

» time step



Limitations of processing each time ste
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Limitations of processing each time step independently

» |Input features

» Requires assembling all necessary contextual information and placing at current input

* Features pre-determined using knowledge-driven feature engineering (e.g., guinphones)

e Duration

» Must be handled separately

» Sequence modelling

A constant regression function, time-independent, memoryless

« Output features

 Predicted using only the Iinput features

» Output I1s condrtionally-independent of previous/next outputs, given the current input



[ hings to Improve next

» |Input features

» the model should learn input feature
engineering

e Duration

* integrate into the model

« Sequence modelling
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Recurrent (nalve version)

* Pass some of the outputs (or hidden
ayer activations) forwards in time,
typically to the next time step

* A kind of memory

e Provides “Infinite’ left context

* (could also pass information
backwards in time)




Recurrent

« SImple recurrence Is equivalent to a
very deep network

* |o train this network, we have to
backpropagate the derivative of the

the errors (the gradient) through all
of the layers

* "backpropagation through time”

» Suffers from the “vanishing

gradient’ problem, for long
sequences
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Long short-term memory
(a type of recurrence)

* Solves the vanishing gradient

broblem by using “gates’ to control
the flow of information

« Conceptually
 Special LSTM unrts

* learn when to remember

« remember information for any
number of time steps

* learn when to forget




Long short-term memory
(a type of recurrence)

* Solves the vanishing gradient

broblem by using “gates’ to control
the flow of information

« Conceptually
 Special LSTM units

* learn when to remember

« remember information for any
number of time steps .

* learn when to forget

Fisure from Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton.
"Speech recognition with deep recurrent neural networks™ I[CASSP 2013,
redrawn as SVG by Eddie Antonio Santos Forget: Grate

Output Gate




LSTM units & Gated Recurrent Units (GRUSs)
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Neural building blocks : (bidirectional) LSTM layer
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Orientation

. Input features » Feed-forward architecture

» the model should learn input feature © ho memory

_eng meerlng  "Simple” recurrent neural
' T networks

e Duration

* vanishing gradient
problem

| | * LSTMs or GRUs
* enable the model to pass information / (which avoid the vanishing
between time steps - give it a memory oradient problem)

« Output features

integrate jp b the model

Sequence mode\lmg

» allow output to depend on previous
OUTPpUTS



During training: alisnment During inference: c

dration

DIreC

» Length of Input sequence Is generally different to length of output sequence

* For example

* Input: sequence of phones

» output: acoustic frames (e.g., a spectrogram, to be input to a vocoder)

« Conceptually

* read In the Input sequence; memorise it using a learned representation

» oiven that representation, write the output sequence

iction



output time steps are frames (e.g., of a mel spectrogram)

ey

input time steps are linguistic units (e.g., phones)



Decoder

Encoder







A sequence-to-sequence network using an encoder-decoder architecture

Encoder Decoder

[ his generally does not work very well!
Why!



Module 9 - sequence-to-sequence models
Class



Decoder

Encoder
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How does the model know
when to stop generating output!



lerminology

e encoder
e decoder

e attention



Orientation

» |Input features

» the model should learn input feature
engineering * Solution |: attention

* Duration /
* integrate into the model

« Sequence modelling

» enable the model to pass information
between time steps - give It a memory

« Output features

» allow output to depend on previous
OUTPpUTS



output time steps are frames (e.g., of a mel spectrogram)

ey

input time steps are linguistic units (e.g., phones)



Decoder

Encoder
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Orientation

o \nDut feature
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. Duration
+ integrate into the Mode| ——— -« Solution 2: explicit duration model

« Sequence modelling

» enable the model to pass information
between time steps - give It a memory

« Output features

» allow output to depend on previous
OUTPpUTS



Neural building blocks : fully connected layer
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Neural building blocks : convolutional layer
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Using convolution to learn input feature engineering
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PAUSE!' What are all those layers for! Learning representations!
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a sequence of non-linear projections
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Combining representations as information flows through the model

Option |: concatenate Option 2: sum

[TITTTITTIITITTITITITT] [LITTTTT]]



Combining representations as information flows through the model

Option |: concatenate Option 2: sum

[TTTTTIITTIITTT] [LITTTTT]]

[TTTTTTTT] [TTTT] EEEEEEEEE EEEEE



Combining representations as information flows through the model

Option |: concatenate Option 2: sum
[TTTTTTITTIITTTIT] EEEEEEEEE
[TTTTTTIT] [TTTT] [TTITTIIT] [TTITITTTIT]



lerminology

* types of layer
» fully-connected (FC)
* recurrent

. LSTM, GRU, bidirectional LSTM (BILSTM)

» convolutional (cony, conv D)

* operations
» embedding
* projection

« sum ( @) vs. concatenation (concat)



Orientation

» |Input features

» the model should learn input feature
engineering

* Duration

* integrate into the model

Sequence modelling
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» enable the model to pass information
between time steps - give it a memory
Output features
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Orientation

» |Input features

» the model should learn input feature \
ehgineering « Convolutional layer(s)

e Duration

* integrate into the model

« Sequence modelling

» enable the model to pass information
between time steps - give It 2 memory
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« Output featu e,
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mel spectrogram




lerminology

* autoregressive



Orientation

» |Input features

» the model should learn input feature
engineering

e Duration

* integrate into the model

« Sequence modelling

» enable the model to pass information
between time steps - give It a memory

» Output features / » Autoregressive model
» allow output to depend on previous

OUTPpUTS
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Waveform samples

WaveNet MoL

Tacotron 2 mel spectrogram
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Linear Projection
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Understanding architecture diagrams
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Fig. 1. Architecture of FastPitch follows FastSpeech [1]. A
single pitch value 1s predicted for every temporal location.



Understanding architecture diagrams : sequences
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Understanding architecture diagrams : combining information
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Understanding architecture diagrams : l0ss
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Waveform
Mel Spectrogram Samples
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VWhat next!

 Neural vocoders

« Approaches based on language models

* Plus some selection of
* very recent models
» tasks beyond T TS




