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What you should already know

• Converting the linguistic specification 
into a form suitable for input to 
DNN

• The input is now simply a sequence 
of vectors

• Simple Deep Neural Network maps 
one input vector to one output 
vector
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Recap

Doing TTS with a DNN

duce Merlin1, which is an Open Source neural network based
speech synthesis system. The system has already been exten-
sively used for the work reported in a number of recent research
papers[30, 26, 22, 20, 31, 32, 23, 33, for example]. This pa-
per will briefly introduce the design and implementation of the
toolkit and provide benchmarking results on a freely-available
speech corpus.

In addition to the results here and in the above list of
previously-published papers, Merlin is the DNN benchmark
system for the 2016 Blizzard Challenge. There, it is used
in combination with the Ossian front-end 2 and the WORLD
vocoder [34], both of which are also Open Source and can be
used without restriction, to provide an easily-reproducible sys-
tem.

2. Design and Implementation

Like HTS, Merlin is not a complete TTS system. It provides
the core acoustic modelling functions: linguistic feature vec-
torisation, acoustic and linguistic feature normalisation, neu-
ral network acoustic model training, and generation. Cur-
rently, the waveform generation module supports two vocoders:
STRAIGHT [35] and WORLD [34] but the toolkit is easily ex-
tensible to other vocoders in the future. It is equally easy to
interface to different front-end text processors.

Merlin is written in Python, based on the theano library.
It comes with documentation for the source code and a set of
‘recipes’ for various system configurations.

2.1. Front-End

Merlin requires an external front-end, such as Festival or Os-
sian. The front-end output must currently be formatted as HTS-
style labels with state-level alignment. The toolkit converts such
labels into vectors of binary and continuous features for neural
network input. The features are derived from the label files us-
ing HTS-style questions. It is also possible to directly provide
already-vectorised input features if this HTS-like workflow is
not convenient.

2.2. Vocoder

Currently, the system supports two vocoders: STRAIGHT (the
C language version) and WORLD. STRAIGHT cannot be in-
cluded in the distribution because it is not Open Source, but
the Merlin distribution does include a modified version of the
WORLD vocoder. The modifications add separate analysis and
synthesis executables, as is necessary for SPSS. It is not diffi-
cult to support some other vocoder, and details on how to do
this can be found in the included documentation.

2.3. Feature normalisation

Before training a neural network, it is important to normalise
features. The toolkit supports two normalisation methods: min-
max, and mean-variance. The min-max normalisation will nor-

1The toolkit can be checked out anonymously from the
Github repository: https://github.com/CSTR-Edinburgh/
merlin

2http://simple4all.org/product/ossian
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Figure 1: An illustration of feedforward neural network with
four hidden layers.

malise features to the range of [0.01 0.99], while the mean-
variance normalisation will normalise features to zero mean and
unit variance. Currently, by default the linguistic features un-
dergo min-max normalisation, while output acoustic features
have mean-variance normalisation applied.

2.4. Acoustic modelling

Merlin includes implementations of several currently-popular
acoustic models, each of which comes with an example ‘recipe’
to demonstrate its use.

2.4.1. Feedforward neural network

A feedforward neural network is the simplest type of network.
With enough layers, this architecture is usually called a Deep
Neural Network (DNN). The input is used to predict the output
via several layers of hidden units, each of which performs a
nonlinear function, as follows:

ht = H(Wxhxt + bh
) (1)

yt = Whyht + by, (2)

where H(·) is a nonlinear activation function in a hidden layer,
Wxh and Why are the weight matrices, bh and by are bias
vectors, and Whyht is a linear regression to predict target fea-
tures from the activations in the preceding hidden layer. Fig. 1
is an illustration of a feedforward neural network. It takes lin-
guistic features as input and predicts the vocoder parameters
through several hidden layers (in the figure, four hidden lay-
ers). In the remainder of this paper, we will use DNN to indi-
cate a feedforward neural network of this general type. In the
toolkit, sigmoid and hyperbolic tangent activation functions are
supported for the hidden layers.

2.4.2. Long short-term memory (LSTM) based RNN

In a DNN, linguistic features are mapped to vocoder parame-
ters frame by frame without considering the sequential nature
of speech. In contrast, recurrent neural networks (RNNs) are

203

Module 9 - sequence-to-sequence models
Class



ʃðθ

Module 9 - sequence-to-sequence models
Class



Doing regression by performing a forward pass through the DNN

θð
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Terminology

• regression

• inference

• forward pass
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Sequence-to-sequence regression using a DNN - dealing with duration

output sequence

input sequence
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Sequence-to-sequence regression using a DNN - dealing with duration

input sequence
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Sequence-to-sequence regression using a DNN - dealing with duration

output sequence
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Processing the entire sequence at once = duplicate model for every time step

output sequence
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Terminology

• time step
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Limitations of processing each time step independently

t-1 t t+1
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Limitations of processing each time step independently

• Input features
• Requires assembling all necessary contextual information and placing at current input
• Features pre-determined using knowledge-driven feature engineering (e.g., quinphones)

• Duration
• Must be handled separately

• Sequence modelling
• A constant regression function, time-independent, memoryless

• Output features
• Predicted using only the input features
• Output is conditionally-independent of previous/next outputs, given the current input

Module 9 - sequence-to-sequence models
Class



Things to improve next
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• Input features
• the model should learn input feature 

engineering

• Duration
• integrate into the model

• Sequence modelling
• enable the model to pass information 

between time steps - give it a memory

• Output features
• allow output to depend on previous 

outputs



Recurrent (naive version)

• Pass some of the outputs (or hidden 
layer activations) forwards in time, 
typically to the next time step

• A kind of memory

• Provides “infinite” left context

• (could also pass information 
backwards in time)

t-1 t t+1
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Recurrent

t-1

t

t+1
• Simple recurrence is equivalent to a 

very deep network

• To train this network, we have to 
backpropagate the derivative of the 
the errors (the gradient) through all 
of the layers
• “backpropagation through time”

• Suffers from the “vanishing 
gradient” problem, for long 
sequences
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Long short-term memory
(a type of recurrence)

• Solves the vanishing gradient 
problem by using “gates” to control 
the flow of information

• Conceptually
• Special LSTM units
• learn when to remember

• remember information for any 
number of time steps

• learn when to forget
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• Solves the vanishing gradient 
problem by using “gates” to control 
the flow of information

• Conceptually
• Special LSTM units
• learn when to remember

• remember information for any 
number of time steps

• learn when to forget

20/07/2017, 09)50

Page 1 of 1https://upload.wikimedia.org/wikipedia/commons/5/53/Peephole_Long_Short-Term_Memory.svg

Figure from Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. 
“Speech recognition with deep recurrent neural networks” ICASSP 2013, 

redrawn as SVG by Eddie Antonio Santos 
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LSTM units & Gated Recurrent Units (GRUs)

t t+1 t+2



Neural building blocks : (bidirectional) LSTM layer

t t+1 t+2
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Orientation
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• Feed-forward architecture
• no memory

• “Simple” recurrent neural 
networks
• vanishing gradient 

problem
• LSTMs or GRUs 

(which avoid the vanishing 
gradient problem)

• Input features
• the model should learn input feature 

engineering

• Duration
• integrate into the model

• Sequence modelling
• enable the model to pass information 

between time steps - give it a memory

• Output features
• allow output to depend on previous 

outputs



• Length of input sequence is generally different to length of output sequence

• For example
• input: sequence of phones
• output: acoustic frames (e.g., a spectrogram, to be input to a vocoder)

• Conceptually
• read in the input sequence; memorise it using a learned representation 

• given that representation, write the output sequence

During training: alignment                During inference: duration prediction 
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output time steps are frames (e.g., of a mel spectrogram)

input time steps are linguistic units (e.g., phones)



Encoder

Decoder
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A sequence-to-sequence network using an encoder-decoder architecture

Encoder Decoder

This generally does not work very well!
Why?
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Encoder

Decoder

Module 9 - sequence-to-sequence models
Class



Encoder-decoder with attention

Encoder

Decoder
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How does the model know
when to stop generating output?

attention



Terminology

• encoder

• decoder

• attention
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Orientation
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• Solution 1: attention

• Solution 2: explicit duration model

• Input features
• the model should learn input feature 

engineering

• Duration
• integrate into the model

• Sequence modelling
• enable the model to pass information 

between time steps - give it a memory

• Output features
• allow output to depend on previous 

outputs
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output time steps are frames (e.g., of a mel spectrogram)

input time steps are linguistic units (e.g., phones)



Encoder

Decoder
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predict an explicit duration 
for each input time step



Orientation
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• Solution 1: attention

• Solution 2: explicit duration model

• Input features
• the model should learn input feature 

engineering

• Duration
• integrate into the model

• Sequence modelling
• enable the model to pass information 

between time steps - give it a memory

• Output features
• allow output to depend on previous 

outputs



Neural building blocks : fully connected layer
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Neural building blocks : convolutional layer
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Using convolution to learn input feature engineering
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PAUSE! What are all those layers for? Learning representations!

a representation of 
the input a representation of 

the output

learned 
intermediate 
representations

a sequence of non-linear projections

Module 8 - speech synthesis using Neural Networks 
Video 1 - What is a Neural Network?



Inputting a one-hot vector into the model: embedding



Changing the dimensionality of the representation: projection



Combining representations as information flows through the model

Option 1: concatenate Option 2: sum



Combining representations as information flows through the model

Option 1: concatenate Option 2: sum



Combining representations as information flows through the model

Option 1: concatenate Option 2: sum



Terminology

• types of layer
• fully-connected (FC)
• recurrent
• LSTM, GRU, bidirectional LSTM (BiLSTM)
• convolutional (conv, conv 1D)

• operations
• embedding 
• projection
• sum ( ⊕ )   vs.   concatenation (concat)
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Orientation
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• Input features
• the model should learn input feature 

engineering

• Duration
• integrate into the model

• Sequence modelling
• enable the model to pass information 

between time steps - give it a memory

• Output features
• allow output to depend on previous 

outputs



Orientation
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• Convolutional layer(s)

• Input features
• the model should learn input feature 

engineering

• Duration
• integrate into the model

• Sequence modelling
• enable the model to pass information 

between time steps - give it a memory

• Output features
• allow output to depend on previous 

outputs
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Terminology

• autoregressive
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Orientation
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• Autoregressive model

• Input features
• the model should learn input feature 

engineering

• Duration
• integrate into the model

• Sequence modelling
• enable the model to pass information 

between time steps - give it a memory

• Output features
• allow output to depend on previous 

outputs



Case study

Tacotron 2
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Tacotron 2

Encoder
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Case study

FastPitch

FASTPITCH: PARALLEL TEXT-TO-SPEECH WITH PITCH PREDICTION

Adrian Łańcucki

NVIDIA Corporation

ABSTRACT

We present FastPitch, a fully-parallel text-to-speech model
based on FastSpeech, conditioned on fundamental frequency
contours. The model predicts pitch contours during inference.
By altering these predictions, the generated speech can be
more expressive, better match the semantic of the utterance,
and in the end more engaging to the listener. Uniformly in-
creasing or decreasing pitch with FastPitch generates speech
that resembles the voluntary modulation of voice. Condi-
tioning on frequency contours improves the overall quality of
synthesized speech, making it comparable to state-of-the-art.
It does not introduce an overhead, and FastPitch retains the
favorable, fully-parallel Transformer architecture, with over
900⇥ real-time factor for mel-spectrogram synthesis of a typ-
ical utterance.

Index Terms— text-to-speech, speech synthesis, funda-
mental frequency

1. INTRODUCTION

Recent advances in neural text-to-speech (TTS) enabled real-
time synthesis of naturally sounding, human-like speech. Par-
allel models are able to synthesize mel-spectrograms orders
of magnitude faster than autoregressive ones, either by rely-
ing on external alignments [1], or aligning themselves [2].
TTS models can be conditioned on qualities of speech such
as linguistic features and fundamental frequency [3]. The lat-
ter has been repeatedly shown to improve the quality of neu-
ral, but also concatenative models [4, 5]. Conditioning on F0

is a common approach to adding singing capabilities [6]. or
adapting to other speakers [5].

In this paper we propose FastPitch, a feed-forward model
based on FastSpeech that improves the quality of synthe-
sized speech. By conditioning on fundamental frequency
estimated for every input symbol, which we refer to simply as
a pitch contour, it matches the state-of-the-art autoregressive
TTS models. We show that explicit modeling of such pitch
contours addresses the quality shortcomings of the plain
feed-forward Transformer architecture. These most likely
arise from collapsing different pronunciations of the same
phonetic units in the absence of enough linguistic informa-
tion in the textual input alone. Conditioning on fundamental
frequency also improves convergence, and eliminates the

need for knowledge distillation of mel-spectrogram targets
used in FastSpeech. We would like to note that a concurrently
developed FastSpeech 2 [7] describes a similar approach.

Combined with WaveGlow [8], FastPitch is able to syn-
thesize mel-spectrograms over 60⇥ faster than real-time,
without resorting to kernel-level optimizations [9]. Because
the model learns to predict and use pitch in a low resolution
of one value for every input symbol, it makes it easy to adjust
pitch interactively, enabling practical applications in pitch
editing. Constant offsetting of F0 with FastPitch produces
naturally sounding low- and high-pitched variations of voice
that preserve the perceived speaker identity. We conclude that
the model learns to mimic the action of vocal chords, which
happens during the voluntary modulation of voice.

2. MODEL DESCRIPTION

The architecture of FastPitch is shown in Figure 1. It is based
on FastSpeech and composed mainly of two feed-forward
Transformer (FFTr) stacks [1]. The first one operates in the
resolution of input tokens, the second one in the resolution
of the output frames. Let x = (x1, . . . , xn) be the sequence
of input lexical units, and y = (y1, . . . , yt) be the sequence
of target mel-scale spectrogram frames. The first FFTr stack
produces the hidden representation h = FFTr(x). The hid-
den representation h is used to make predictions about the
duration and average pitch of every character with a 1-D CNN

�cMRPPZdX

��1��bfNa

+ZuNY
+qRPZNufq

�vqEuZfd
+qRPZNufq

��1��bfNa

.RnREu

��

�fd{�ğ�

��

�fd{�ğ�

�fd{�ğ�

 /���frr

 /���frr

!�}

!�}�fd{�ğ�

��

�fd{�ğ�

 /���frr

Fig. 1. Architecture of FastPitch follows FastSpeech [1]. A
single pitch value is predicted for every temporal location.
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Adrian Łańcucki
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ABSTRACT

We present FastPitch, a fully-parallel text-to-speech model
based on FastSpeech, conditioned on fundamental frequency
contours. The model predicts pitch contours during inference.
By altering these predictions, the generated speech can be
more expressive, better match the semantic of the utterance,
and in the end more engaging to the listener. Uniformly in-
creasing or decreasing pitch with FastPitch generates speech
that resembles the voluntary modulation of voice. Condi-
tioning on frequency contours improves the overall quality of
synthesized speech, making it comparable to state-of-the-art.
It does not introduce an overhead, and FastPitch retains the
favorable, fully-parallel Transformer architecture, with over
900⇥ real-time factor for mel-spectrogram synthesis of a typ-
ical utterance.

Index Terms— text-to-speech, speech synthesis, funda-
mental frequency

1. INTRODUCTION

Recent advances in neural text-to-speech (TTS) enabled real-
time synthesis of naturally sounding, human-like speech. Par-
allel models are able to synthesize mel-spectrograms orders
of magnitude faster than autoregressive ones, either by rely-
ing on external alignments [1], or aligning themselves [2].
TTS models can be conditioned on qualities of speech such
as linguistic features and fundamental frequency [3]. The lat-
ter has been repeatedly shown to improve the quality of neu-
ral, but also concatenative models [4, 5]. Conditioning on F0

is a common approach to adding singing capabilities [6]. or
adapting to other speakers [5].

In this paper we propose FastPitch, a feed-forward model
based on FastSpeech that improves the quality of synthe-
sized speech. By conditioning on fundamental frequency
estimated for every input symbol, which we refer to simply as
a pitch contour, it matches the state-of-the-art autoregressive
TTS models. We show that explicit modeling of such pitch
contours addresses the quality shortcomings of the plain
feed-forward Transformer architecture. These most likely
arise from collapsing different pronunciations of the same
phonetic units in the absence of enough linguistic informa-
tion in the textual input alone. Conditioning on fundamental
frequency also improves convergence, and eliminates the

need for knowledge distillation of mel-spectrogram targets
used in FastSpeech. We would like to note that a concurrently
developed FastSpeech 2 [7] describes a similar approach.

Combined with WaveGlow [8], FastPitch is able to syn-
thesize mel-spectrograms over 60⇥ faster than real-time,
without resorting to kernel-level optimizations [9]. Because
the model learns to predict and use pitch in a low resolution
of one value for every input symbol, it makes it easy to adjust
pitch interactively, enabling practical applications in pitch
editing. Constant offsetting of F0 with FastPitch produces
naturally sounding low- and high-pitched variations of voice
that preserve the perceived speaker identity. We conclude that
the model learns to mimic the action of vocal chords, which
happens during the voluntary modulation of voice.

2. MODEL DESCRIPTION

The architecture of FastPitch is shown in Figure 1. It is based
on FastSpeech and composed mainly of two feed-forward
Transformer (FFTr) stacks [1]. The first one operates in the
resolution of input tokens, the second one in the resolution
of the output frames. Let x = (x1, . . . , xn) be the sequence
of input lexical units, and y = (y1, . . . , yt) be the sequence
of target mel-scale spectrogram frames. The first FFTr stack
produces the hidden representation h = FFTr(x). The hid-
den representation h is used to make predictions about the
duration and average pitch of every character with a 1-D CNN
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Fig. 1. Architecture of FastPitch follows FastSpeech [1]. A
single pitch value is predicted for every temporal location.
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ABSTRACT

We present FastPitch, a fully-parallel text-to-speech model
based on FastSpeech, conditioned on fundamental frequency
contours. The model predicts pitch contours during inference.
By altering these predictions, the generated speech can be
more expressive, better match the semantic of the utterance,
and in the end more engaging to the listener. Uniformly in-
creasing or decreasing pitch with FastPitch generates speech
that resembles the voluntary modulation of voice. Condi-
tioning on frequency contours improves the overall quality of
synthesized speech, making it comparable to state-of-the-art.
It does not introduce an overhead, and FastPitch retains the
favorable, fully-parallel Transformer architecture, with over
900⇥ real-time factor for mel-spectrogram synthesis of a typ-
ical utterance.

Index Terms— text-to-speech, speech synthesis, funda-
mental frequency

1. INTRODUCTION

Recent advances in neural text-to-speech (TTS) enabled real-
time synthesis of naturally sounding, human-like speech. Par-
allel models are able to synthesize mel-spectrograms orders
of magnitude faster than autoregressive ones, either by rely-
ing on external alignments [1], or aligning themselves [2].
TTS models can be conditioned on qualities of speech such
as linguistic features and fundamental frequency [3]. The lat-
ter has been repeatedly shown to improve the quality of neu-
ral, but also concatenative models [4, 5]. Conditioning on F0

is a common approach to adding singing capabilities [6]. or
adapting to other speakers [5].

In this paper we propose FastPitch, a feed-forward model
based on FastSpeech that improves the quality of synthe-
sized speech. By conditioning on fundamental frequency
estimated for every input symbol, which we refer to simply as
a pitch contour, it matches the state-of-the-art autoregressive
TTS models. We show that explicit modeling of such pitch
contours addresses the quality shortcomings of the plain
feed-forward Transformer architecture. These most likely
arise from collapsing different pronunciations of the same
phonetic units in the absence of enough linguistic informa-
tion in the textual input alone. Conditioning on fundamental
frequency also improves convergence, and eliminates the

need for knowledge distillation of mel-spectrogram targets
used in FastSpeech. We would like to note that a concurrently
developed FastSpeech 2 [7] describes a similar approach.

Combined with WaveGlow [8], FastPitch is able to syn-
thesize mel-spectrograms over 60⇥ faster than real-time,
without resorting to kernel-level optimizations [9]. Because
the model learns to predict and use pitch in a low resolution
of one value for every input symbol, it makes it easy to adjust
pitch interactively, enabling practical applications in pitch
editing. Constant offsetting of F0 with FastPitch produces
naturally sounding low- and high-pitched variations of voice
that preserve the perceived speaker identity. We conclude that
the model learns to mimic the action of vocal chords, which
happens during the voluntary modulation of voice.

2. MODEL DESCRIPTION

The architecture of FastPitch is shown in Figure 1. It is based
on FastSpeech and composed mainly of two feed-forward
Transformer (FFTr) stacks [1]. The first one operates in the
resolution of input tokens, the second one in the resolution
of the output frames. Let x = (x1, . . . , xn) be the sequence
of input lexical units, and y = (y1, . . . , yt) be the sequence
of target mel-scale spectrogram frames. The first FFTr stack
produces the hidden representation h = FFTr(x). The hid-
den representation h is used to make predictions about the
duration and average pitch of every character with a 1-D CNN
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Fig. 1. Architecture of FastPitch follows FastSpeech [1]. A
single pitch value is predicted for every temporal location.
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FASTPITCH: PARALLEL TEXT-TO-SPEECH WITH PITCH PREDICTION

Adrian Łańcucki

NVIDIA Corporation

ABSTRACT

We present FastPitch, a fully-parallel text-to-speech model
based on FastSpeech, conditioned on fundamental frequency
contours. The model predicts pitch contours during inference.
By altering these predictions, the generated speech can be
more expressive, better match the semantic of the utterance,
and in the end more engaging to the listener. Uniformly in-
creasing or decreasing pitch with FastPitch generates speech
that resembles the voluntary modulation of voice. Condi-
tioning on frequency contours improves the overall quality of
synthesized speech, making it comparable to state-of-the-art.
It does not introduce an overhead, and FastPitch retains the
favorable, fully-parallel Transformer architecture, with over
900⇥ real-time factor for mel-spectrogram synthesis of a typ-
ical utterance.

Index Terms— text-to-speech, speech synthesis, funda-
mental frequency

1. INTRODUCTION

Recent advances in neural text-to-speech (TTS) enabled real-
time synthesis of naturally sounding, human-like speech. Par-
allel models are able to synthesize mel-spectrograms orders
of magnitude faster than autoregressive ones, either by rely-
ing on external alignments [1], or aligning themselves [2].
TTS models can be conditioned on qualities of speech such
as linguistic features and fundamental frequency [3]. The lat-
ter has been repeatedly shown to improve the quality of neu-
ral, but also concatenative models [4, 5]. Conditioning on F0

is a common approach to adding singing capabilities [6]. or
adapting to other speakers [5].

In this paper we propose FastPitch, a feed-forward model
based on FastSpeech that improves the quality of synthe-
sized speech. By conditioning on fundamental frequency
estimated for every input symbol, which we refer to simply as
a pitch contour, it matches the state-of-the-art autoregressive
TTS models. We show that explicit modeling of such pitch
contours addresses the quality shortcomings of the plain
feed-forward Transformer architecture. These most likely
arise from collapsing different pronunciations of the same
phonetic units in the absence of enough linguistic informa-
tion in the textual input alone. Conditioning on fundamental
frequency also improves convergence, and eliminates the

need for knowledge distillation of mel-spectrogram targets
used in FastSpeech. We would like to note that a concurrently
developed FastSpeech 2 [7] describes a similar approach.

Combined with WaveGlow [8], FastPitch is able to syn-
thesize mel-spectrograms over 60⇥ faster than real-time,
without resorting to kernel-level optimizations [9]. Because
the model learns to predict and use pitch in a low resolution
of one value for every input symbol, it makes it easy to adjust
pitch interactively, enabling practical applications in pitch
editing. Constant offsetting of F0 with FastPitch produces
naturally sounding low- and high-pitched variations of voice
that preserve the perceived speaker identity. We conclude that
the model learns to mimic the action of vocal chords, which
happens during the voluntary modulation of voice.

2. MODEL DESCRIPTION

The architecture of FastPitch is shown in Figure 1. It is based
on FastSpeech and composed mainly of two feed-forward
Transformer (FFTr) stacks [1]. The first one operates in the
resolution of input tokens, the second one in the resolution
of the output frames. Let x = (x1, . . . , xn) be the sequence
of input lexical units, and y = (y1, . . . , yt) be the sequence
of target mel-scale spectrogram frames. The first FFTr stack
produces the hidden representation h = FFTr(x). The hid-
den representation h is used to make predictions about the
duration and average pitch of every character with a 1-D CNN
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Fig. 1. Architecture of FastPitch follows FastSpeech [1]. A
single pitch value is predicted for every temporal location.
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FASTPITCH: PARALLEL TEXT-TO-SPEECH WITH PITCH PREDICTION

Adrian Łańcucki

NVIDIA Corporation

ABSTRACT

We present FastPitch, a fully-parallel text-to-speech model
based on FastSpeech, conditioned on fundamental frequency
contours. The model predicts pitch contours during inference.
By altering these predictions, the generated speech can be
more expressive, better match the semantic of the utterance,
and in the end more engaging to the listener. Uniformly in-
creasing or decreasing pitch with FastPitch generates speech
that resembles the voluntary modulation of voice. Condi-
tioning on frequency contours improves the overall quality of
synthesized speech, making it comparable to state-of-the-art.
It does not introduce an overhead, and FastPitch retains the
favorable, fully-parallel Transformer architecture, with over
900⇥ real-time factor for mel-spectrogram synthesis of a typ-
ical utterance.

Index Terms— text-to-speech, speech synthesis, funda-
mental frequency

1. INTRODUCTION

Recent advances in neural text-to-speech (TTS) enabled real-
time synthesis of naturally sounding, human-like speech. Par-
allel models are able to synthesize mel-spectrograms orders
of magnitude faster than autoregressive ones, either by rely-
ing on external alignments [1], or aligning themselves [2].
TTS models can be conditioned on qualities of speech such
as linguistic features and fundamental frequency [3]. The lat-
ter has been repeatedly shown to improve the quality of neu-
ral, but also concatenative models [4, 5]. Conditioning on F0

is a common approach to adding singing capabilities [6]. or
adapting to other speakers [5].

In this paper we propose FastPitch, a feed-forward model
based on FastSpeech that improves the quality of synthe-
sized speech. By conditioning on fundamental frequency
estimated for every input symbol, which we refer to simply as
a pitch contour, it matches the state-of-the-art autoregressive
TTS models. We show that explicit modeling of such pitch
contours addresses the quality shortcomings of the plain
feed-forward Transformer architecture. These most likely
arise from collapsing different pronunciations of the same
phonetic units in the absence of enough linguistic informa-
tion in the textual input alone. Conditioning on fundamental
frequency also improves convergence, and eliminates the

need for knowledge distillation of mel-spectrogram targets
used in FastSpeech. We would like to note that a concurrently
developed FastSpeech 2 [7] describes a similar approach.

Combined with WaveGlow [8], FastPitch is able to syn-
thesize mel-spectrograms over 60⇥ faster than real-time,
without resorting to kernel-level optimizations [9]. Because
the model learns to predict and use pitch in a low resolution
of one value for every input symbol, it makes it easy to adjust
pitch interactively, enabling practical applications in pitch
editing. Constant offsetting of F0 with FastPitch produces
naturally sounding low- and high-pitched variations of voice
that preserve the perceived speaker identity. We conclude that
the model learns to mimic the action of vocal chords, which
happens during the voluntary modulation of voice.

2. MODEL DESCRIPTION

The architecture of FastPitch is shown in Figure 1. It is based
on FastSpeech and composed mainly of two feed-forward
Transformer (FFTr) stacks [1]. The first one operates in the
resolution of input tokens, the second one in the resolution
of the output frames. Let x = (x1, . . . , xn) be the sequence
of input lexical units, and y = (y1, . . . , yt) be the sequence
of target mel-scale spectrogram frames. The first FFTr stack
produces the hidden representation h = FFTr(x). The hid-
den representation h is used to make predictions about the
duration and average pitch of every character with a 1-D CNN
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Fig. 1. Architecture of FastPitch follows FastSpeech [1]. A
single pitch value is predicted for every temporal location.
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FASTPITCH: PARALLEL TEXT-TO-SPEECH WITH PITCH PREDICTION

Adrian Łańcucki

NVIDIA Corporation

ABSTRACT

We present FastPitch, a fully-parallel text-to-speech model
based on FastSpeech, conditioned on fundamental frequency
contours. The model predicts pitch contours during inference.
By altering these predictions, the generated speech can be
more expressive, better match the semantic of the utterance,
and in the end more engaging to the listener. Uniformly in-
creasing or decreasing pitch with FastPitch generates speech
that resembles the voluntary modulation of voice. Condi-
tioning on frequency contours improves the overall quality of
synthesized speech, making it comparable to state-of-the-art.
It does not introduce an overhead, and FastPitch retains the
favorable, fully-parallel Transformer architecture, with over
900⇥ real-time factor for mel-spectrogram synthesis of a typ-
ical utterance.

Index Terms— text-to-speech, speech synthesis, funda-
mental frequency

1. INTRODUCTION

Recent advances in neural text-to-speech (TTS) enabled real-
time synthesis of naturally sounding, human-like speech. Par-
allel models are able to synthesize mel-spectrograms orders
of magnitude faster than autoregressive ones, either by rely-
ing on external alignments [1], or aligning themselves [2].
TTS models can be conditioned on qualities of speech such
as linguistic features and fundamental frequency [3]. The lat-
ter has been repeatedly shown to improve the quality of neu-
ral, but also concatenative models [4, 5]. Conditioning on F0

is a common approach to adding singing capabilities [6]. or
adapting to other speakers [5].

In this paper we propose FastPitch, a feed-forward model
based on FastSpeech that improves the quality of synthe-
sized speech. By conditioning on fundamental frequency
estimated for every input symbol, which we refer to simply as
a pitch contour, it matches the state-of-the-art autoregressive
TTS models. We show that explicit modeling of such pitch
contours addresses the quality shortcomings of the plain
feed-forward Transformer architecture. These most likely
arise from collapsing different pronunciations of the same
phonetic units in the absence of enough linguistic informa-
tion in the textual input alone. Conditioning on fundamental
frequency also improves convergence, and eliminates the

need for knowledge distillation of mel-spectrogram targets
used in FastSpeech. We would like to note that a concurrently
developed FastSpeech 2 [7] describes a similar approach.

Combined with WaveGlow [8], FastPitch is able to syn-
thesize mel-spectrograms over 60⇥ faster than real-time,
without resorting to kernel-level optimizations [9]. Because
the model learns to predict and use pitch in a low resolution
of one value for every input symbol, it makes it easy to adjust
pitch interactively, enabling practical applications in pitch
editing. Constant offsetting of F0 with FastPitch produces
naturally sounding low- and high-pitched variations of voice
that preserve the perceived speaker identity. We conclude that
the model learns to mimic the action of vocal chords, which
happens during the voluntary modulation of voice.

2. MODEL DESCRIPTION

The architecture of FastPitch is shown in Figure 1. It is based
on FastSpeech and composed mainly of two feed-forward
Transformer (FFTr) stacks [1]. The first one operates in the
resolution of input tokens, the second one in the resolution
of the output frames. Let x = (x1, . . . , xn) be the sequence
of input lexical units, and y = (y1, . . . , yt) be the sequence
of target mel-scale spectrogram frames. The first FFTr stack
produces the hidden representation h = FFTr(x). The hid-
den representation h is used to make predictions about the
duration and average pitch of every character with a 1-D CNN
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Fig. 1. Architecture of FastPitch follows FastSpeech [1]. A
single pitch value is predicted for every temporal location.
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FASTPITCH: PARALLEL TEXT-TO-SPEECH WITH PITCH PREDICTION

Adrian Łańcucki

NVIDIA Corporation

ABSTRACT

We present FastPitch, a fully-parallel text-to-speech model
based on FastSpeech, conditioned on fundamental frequency
contours. The model predicts pitch contours during inference.
By altering these predictions, the generated speech can be
more expressive, better match the semantic of the utterance,
and in the end more engaging to the listener. Uniformly in-
creasing or decreasing pitch with FastPitch generates speech
that resembles the voluntary modulation of voice. Condi-
tioning on frequency contours improves the overall quality of
synthesized speech, making it comparable to state-of-the-art.
It does not introduce an overhead, and FastPitch retains the
favorable, fully-parallel Transformer architecture, with over
900⇥ real-time factor for mel-spectrogram synthesis of a typ-
ical utterance.

Index Terms— text-to-speech, speech synthesis, funda-
mental frequency

1. INTRODUCTION

Recent advances in neural text-to-speech (TTS) enabled real-
time synthesis of naturally sounding, human-like speech. Par-
allel models are able to synthesize mel-spectrograms orders
of magnitude faster than autoregressive ones, either by rely-
ing on external alignments [1], or aligning themselves [2].
TTS models can be conditioned on qualities of speech such
as linguistic features and fundamental frequency [3]. The lat-
ter has been repeatedly shown to improve the quality of neu-
ral, but also concatenative models [4, 5]. Conditioning on F0

is a common approach to adding singing capabilities [6]. or
adapting to other speakers [5].

In this paper we propose FastPitch, a feed-forward model
based on FastSpeech that improves the quality of synthe-
sized speech. By conditioning on fundamental frequency
estimated for every input symbol, which we refer to simply as
a pitch contour, it matches the state-of-the-art autoregressive
TTS models. We show that explicit modeling of such pitch
contours addresses the quality shortcomings of the plain
feed-forward Transformer architecture. These most likely
arise from collapsing different pronunciations of the same
phonetic units in the absence of enough linguistic informa-
tion in the textual input alone. Conditioning on fundamental
frequency also improves convergence, and eliminates the

need for knowledge distillation of mel-spectrogram targets
used in FastSpeech. We would like to note that a concurrently
developed FastSpeech 2 [7] describes a similar approach.

Combined with WaveGlow [8], FastPitch is able to syn-
thesize mel-spectrograms over 60⇥ faster than real-time,
without resorting to kernel-level optimizations [9]. Because
the model learns to predict and use pitch in a low resolution
of one value for every input symbol, it makes it easy to adjust
pitch interactively, enabling practical applications in pitch
editing. Constant offsetting of F0 with FastPitch produces
naturally sounding low- and high-pitched variations of voice
that preserve the perceived speaker identity. We conclude that
the model learns to mimic the action of vocal chords, which
happens during the voluntary modulation of voice.

2. MODEL DESCRIPTION

The architecture of FastPitch is shown in Figure 1. It is based
on FastSpeech and composed mainly of two feed-forward
Transformer (FFTr) stacks [1]. The first one operates in the
resolution of input tokens, the second one in the resolution
of the output frames. Let x = (x1, . . . , xn) be the sequence
of input lexical units, and y = (y1, . . . , yt) be the sequence
of target mel-scale spectrogram frames. The first FFTr stack
produces the hidden representation h = FFTr(x). The hid-
den representation h is used to make predictions about the
duration and average pitch of every character with a 1-D CNN
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Fig. 1. Architecture of FastPitch follows FastSpeech [1]. A
single pitch value is predicted for every temporal location.
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FASTPITCH: PARALLEL TEXT-TO-SPEECH WITH PITCH PREDICTION

Adrian Łańcucki

NVIDIA Corporation

ABSTRACT

We present FastPitch, a fully-parallel text-to-speech model
based on FastSpeech, conditioned on fundamental frequency
contours. The model predicts pitch contours during inference.
By altering these predictions, the generated speech can be
more expressive, better match the semantic of the utterance,
and in the end more engaging to the listener. Uniformly in-
creasing or decreasing pitch with FastPitch generates speech
that resembles the voluntary modulation of voice. Condi-
tioning on frequency contours improves the overall quality of
synthesized speech, making it comparable to state-of-the-art.
It does not introduce an overhead, and FastPitch retains the
favorable, fully-parallel Transformer architecture, with over
900⇥ real-time factor for mel-spectrogram synthesis of a typ-
ical utterance.

Index Terms— text-to-speech, speech synthesis, funda-
mental frequency

1. INTRODUCTION

Recent advances in neural text-to-speech (TTS) enabled real-
time synthesis of naturally sounding, human-like speech. Par-
allel models are able to synthesize mel-spectrograms orders
of magnitude faster than autoregressive ones, either by rely-
ing on external alignments [1], or aligning themselves [2].
TTS models can be conditioned on qualities of speech such
as linguistic features and fundamental frequency [3]. The lat-
ter has been repeatedly shown to improve the quality of neu-
ral, but also concatenative models [4, 5]. Conditioning on F0

is a common approach to adding singing capabilities [6]. or
adapting to other speakers [5].

In this paper we propose FastPitch, a feed-forward model
based on FastSpeech that improves the quality of synthe-
sized speech. By conditioning on fundamental frequency
estimated for every input symbol, which we refer to simply as
a pitch contour, it matches the state-of-the-art autoregressive
TTS models. We show that explicit modeling of such pitch
contours addresses the quality shortcomings of the plain
feed-forward Transformer architecture. These most likely
arise from collapsing different pronunciations of the same
phonetic units in the absence of enough linguistic informa-
tion in the textual input alone. Conditioning on fundamental
frequency also improves convergence, and eliminates the

need for knowledge distillation of mel-spectrogram targets
used in FastSpeech. We would like to note that a concurrently
developed FastSpeech 2 [7] describes a similar approach.

Combined with WaveGlow [8], FastPitch is able to syn-
thesize mel-spectrograms over 60⇥ faster than real-time,
without resorting to kernel-level optimizations [9]. Because
the model learns to predict and use pitch in a low resolution
of one value for every input symbol, it makes it easy to adjust
pitch interactively, enabling practical applications in pitch
editing. Constant offsetting of F0 with FastPitch produces
naturally sounding low- and high-pitched variations of voice
that preserve the perceived speaker identity. We conclude that
the model learns to mimic the action of vocal chords, which
happens during the voluntary modulation of voice.

2. MODEL DESCRIPTION

The architecture of FastPitch is shown in Figure 1. It is based
on FastSpeech and composed mainly of two feed-forward
Transformer (FFTr) stacks [1]. The first one operates in the
resolution of input tokens, the second one in the resolution
of the output frames. Let x = (x1, . . . , xn) be the sequence
of input lexical units, and y = (y1, . . . , yt) be the sequence
of target mel-scale spectrogram frames. The first FFTr stack
produces the hidden representation h = FFTr(x). The hid-
den representation h is used to make predictions about the
duration and average pitch of every character with a 1-D CNN
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Fig. 1. Architecture of FastPitch follows FastSpeech [1]. A
single pitch value is predicted for every temporal location.
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FASTPITCH: PARALLEL TEXT-TO-SPEECH WITH PITCH PREDICTION

Adrian Łańcucki

NVIDIA Corporation

ABSTRACT

We present FastPitch, a fully-parallel text-to-speech model
based on FastSpeech, conditioned on fundamental frequency
contours. The model predicts pitch contours during inference.
By altering these predictions, the generated speech can be
more expressive, better match the semantic of the utterance,
and in the end more engaging to the listener. Uniformly in-
creasing or decreasing pitch with FastPitch generates speech
that resembles the voluntary modulation of voice. Condi-
tioning on frequency contours improves the overall quality of
synthesized speech, making it comparable to state-of-the-art.
It does not introduce an overhead, and FastPitch retains the
favorable, fully-parallel Transformer architecture, with over
900⇥ real-time factor for mel-spectrogram synthesis of a typ-
ical utterance.

Index Terms— text-to-speech, speech synthesis, funda-
mental frequency

1. INTRODUCTION

Recent advances in neural text-to-speech (TTS) enabled real-
time synthesis of naturally sounding, human-like speech. Par-
allel models are able to synthesize mel-spectrograms orders
of magnitude faster than autoregressive ones, either by rely-
ing on external alignments [1], or aligning themselves [2].
TTS models can be conditioned on qualities of speech such
as linguistic features and fundamental frequency [3]. The lat-
ter has been repeatedly shown to improve the quality of neu-
ral, but also concatenative models [4, 5]. Conditioning on F0

is a common approach to adding singing capabilities [6]. or
adapting to other speakers [5].

In this paper we propose FastPitch, a feed-forward model
based on FastSpeech that improves the quality of synthe-
sized speech. By conditioning on fundamental frequency
estimated for every input symbol, which we refer to simply as
a pitch contour, it matches the state-of-the-art autoregressive
TTS models. We show that explicit modeling of such pitch
contours addresses the quality shortcomings of the plain
feed-forward Transformer architecture. These most likely
arise from collapsing different pronunciations of the same
phonetic units in the absence of enough linguistic informa-
tion in the textual input alone. Conditioning on fundamental
frequency also improves convergence, and eliminates the

need for knowledge distillation of mel-spectrogram targets
used in FastSpeech. We would like to note that a concurrently
developed FastSpeech 2 [7] describes a similar approach.

Combined with WaveGlow [8], FastPitch is able to syn-
thesize mel-spectrograms over 60⇥ faster than real-time,
without resorting to kernel-level optimizations [9]. Because
the model learns to predict and use pitch in a low resolution
of one value for every input symbol, it makes it easy to adjust
pitch interactively, enabling practical applications in pitch
editing. Constant offsetting of F0 with FastPitch produces
naturally sounding low- and high-pitched variations of voice
that preserve the perceived speaker identity. We conclude that
the model learns to mimic the action of vocal chords, which
happens during the voluntary modulation of voice.

2. MODEL DESCRIPTION

The architecture of FastPitch is shown in Figure 1. It is based
on FastSpeech and composed mainly of two feed-forward
Transformer (FFTr) stacks [1]. The first one operates in the
resolution of input tokens, the second one in the resolution
of the output frames. Let x = (x1, . . . , xn) be the sequence
of input lexical units, and y = (y1, . . . , yt) be the sequence
of target mel-scale spectrogram frames. The first FFTr stack
produces the hidden representation h = FFTr(x). The hid-
den representation h is used to make predictions about the
duration and average pitch of every character with a 1-D CNN
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Fig. 1. Architecture of FastPitch follows FastSpeech [1]. A
single pitch value is predicted for every temporal location.

6588978-1-7281-7605-5/21/$31.00 ©2021 I��� I����� 2021

IC
A

S
S

P
 2

0
2
1
 -

 2
0
2
1
 I

E
E

E
 I

n
te

rn
a
ti

o
n
a
l 

C
o
n
fe

re
n
c
e
 o

n
 A

c
o
u
s
ti

c
s
, 
S

p
e
e
c
h
 a

n
d
 S

ig
n
a
l 

P
ro

c
e
s
s
in

g
 (

IC
A

S
S

P
) 

| 
9
7
8
-1

-7
2
8
1
-7

6
0
5
-5

/2
0
/$

3
1
.0

0
 ©

2
0
2
1
 I

E
E

E
 |
 D

O
I:

 1
0
.1

1
0
9
/I

C
A

S
S

P
3
9
7
2
8
.2

0
2
1
.9

4
1
3
8
8
9

Authorized licensed use limited to: University of Edinburgh. Downloaded on April 02,2022 at 10:58:40 UTC from IEEE Xplore.  Restrictions apply. 



What next?

• Neural vocoders
• Approaches based on language models

• Plus some selection of
• very recent models
• tasks beyond TTS
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