Speech synthesis using Neural Networks

- what is a Neural Network?
- doing Text-to-Speech with a Neural Network
- training a Neural Network

What you should already know

- Text processing in the front end
- what the available linguistic features are
- how they can be flattened on to the phonetic sequence
- how categorical linguistic features can be treated as binary
- HMM-based speech synthesis
- how questions in a regression tree use those binary features
- typical speech parameters used by vocoders

What you should already know

- Text processing in the front end
- what the available linguistic features are
- how they can be flattened on to the phonetic sequence
- how categorical linguistic features can be treated as binary
- HMM-based speech synthesis
- how questions in a regression tree use those binary features
- typical speech parameters used by vocoders

What you should already know

- Text processing in the front end
- what the available linguistic features are
- how they can be flattened on to the phonetic sequence
"one-hot" encoding
also known as
1-of-K or 1-of-N
- HMM-based speech synthesis
- how questions in a regression tree use those binary features
- typical speech parameters used by vocoders

Speech synthesis using Neural Networks

- what is a Neural Network?
- doing Text-to-Speech with a Neural Network
- training a Neural Network

A simple "feed forward" neural network

A simple "feed forward" neural network

units (or"neurons"), each with an activation function

A simple "feed forward" neural network

A simple "feed forward" neural network

A simple "feed forward" neural network
directed connections, each with a weight

A simple "feed forward" neural network

A simple "feed forward"' neural network

a weight matrix

A simple "feed forward" neural network

A simple "feed forward" neural network

A simple "feed forward" neural network
a hidden layer

A simple "feed forward" neural network

A simple "feed forward" neural network

information flows in this direction

A simple "feed forward" neural network

information flows in this direction

A simple "feed forward" neural network

output layer
information flows in this direction

What is a unit, and what does it do?

What is a unit, and what does it do?

What is a unit, and what does it do?

What is a unit, and what does it do?

What is a unit, and what does it do?

What is a unit, and what does it do?

What is a unit, and what does it do?

What is a unit, and what does it do?

What are all those layers for?

What are all those layers for?

a representation of the input

What are all those layers for?

a representation of the input

What are all those layers for?

a representation of the input

What are all those layers for?

a representation of the input

a sequence of non-linear projections

Training a neural network using back-propagation of the error

- what is the objective of training?
- notation
- taking the derivative
- deriving back-propagation

Supervised machine learning : input-output pairs

 (the output is the label for the input example)$\left[\begin{array}{lllllllllllll}0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & \ldots & 0.2 & 0.0\end{array}\right]$
$\left[\begin{array}{lllllllllllll}0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & \ldots & 0.2 & 0.1\end{array}\right]$
$\left[\begin{array}{lllllllllllll}0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & \ldots & 0.2 & 1.0\end{array}\right]$
$\left[\begin{array}{lllllllllllll}0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & \ldots & 0.4 & 0.0\end{array}\right]$
$\left[\begin{array}{lllllllllllll}0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & \ldots & 0.4 & 0.5\end{array}\right]$
$\left[\begin{array}{lllllllllllll}0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & \ldots & 0.4 & 1.0\end{array}\right]$
$\left[\begin{array}{lllllllllllll}0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & \ldots & 1.0 & 1.0\end{array}\right]$
$\left[\begin{array}{lllllllllllll}0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & \ldots & 0.2 & 0.0\end{array}\right]$

$\left[\begin{array}{lllllllllllll}0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & \ldots & 0.2 & 0.4\end{array}\right]$

\cdots

$\left[\begin{array}{llllll}0.12 & 2.33 & 2.01 & 0.32 & 6.33 & \ldots\end{array}\right]$
$\left[\begin{array}{lllllll}0.43 & 2.11 & 1.99 & 0.39 & 4.83 & \ldots\end{array}\right]$
$\left[\begin{array}{lllllll}1.11 & 2.01 & 1.87 & 0.36 & 2.14 & \ldots\end{array}\right]$
$\left[\begin{array}{llllll}1.52 & 1.82 & 1.89 & 0.34 & 1.04 & \ldots\end{array}\right]$
$\left[\begin{array}{llllll}1.79 & 1.74 & 2.21 & 0.33 & 0.65 & \ldots\end{array}\right]$
$\left[\begin{array}{llllll}1.65 & 1.58 & 2.68 & 0.31 & 0.73 & \ldots\end{array}\right]$
$\left[\begin{array}{lllllll}1.55 & 1.03 & 3.44 & 0.30 & 1.07 & \ldots\end{array}\right]$
$\left[\begin{array}{llllll}1.92 & 0.99 & 3.89 & 0.29 & 1.45 & \ldots .\end{array}\right]$
$\left[\begin{array}{lllllll}2.38 & 1.13 & 4.02 & 0.28 & 1.98 & \ldots\end{array}\right]$
$\left[\begin{array}{lllllll}2.65 & 1.98 & 3.94 & 0.29 & 2.16 & \ldots\end{array}\right]$

Training a neural network by back-propagation of the error ('backprop')

Training a neural network using back-propagation of the error

- what is the objective of training?
- notation
- taking the derivative
- deriving back-propagation
input, output, target

input, output, target - could write as vectors

The goal of training is to choose model parameters that minimise error

Each output is the activation of a unit in the output layer

The error at one output

Define the total error to be minimised : E

$$
\begin{aligned}
e_{k} & =a_{k}-t_{k} \\
E & =\sum_{k=1}^{K}(\quad)^{2} \\
E & =\sum_{k=1}^{K}(\quad)^{2}
\end{aligned}
$$

Notation

Training a neural network using back-propagation of the error

- what is the objective of training?
- notation
- taking the derivative
- deriving back-propagation

Partial derivative

or, how much does a function change when one variable changes?

$$
\begin{aligned}
y & =3 a^{2}-4 b^{3}-2 a c+8 a \\
\frac{\partial y}{\partial a} & = \\
\frac{\partial y}{\partial b} & =
\end{aligned}
$$

Partial derivative

or, how much does a function change when one variable changes?

$$
\begin{aligned}
y & =3 a^{2}-4 b^{3}-2 a c+8 a \\
\frac{\partial y}{\partial a} & =6 a-0-2 c+8 \\
\frac{\partial y}{\partial b} & =
\end{aligned}
$$

Partial derivative

or, how much does a function change when one variable changes?

$$
\begin{aligned}
y & =3 a^{2}-4 b^{3}-2 a c+8 a \\
\frac{\partial y}{\partial a} & =6 a-0-2 c+8 \\
\frac{\partial y}{\partial b} & =-12 b^{2}
\end{aligned}
$$

Differentiating a sum

$$
\begin{aligned}
& Y=\sum_{k=1}^{K} m_{k} n_{k} \\
& Y=m_{1} n_{1}+m_{2} n_{2}+m_{3} n_{3}+\ldots+m_{K} n_{K}
\end{aligned}
$$

∂Y
$\overline{\partial m_{3}}=$

Differentiating a sum

$$
\begin{aligned}
& Y=\sum_{k=1}^{K} m_{k} n_{k} \\
& Y=m_{1} n_{1}+m_{2} n_{2}+m_{3} n_{3}+\ldots+m_{K} n_{K}
\end{aligned}
$$

$\frac{\partial Y}{\partial m_{k}}=$

Any term not involving the variable is constant and therefore is zero in the partial derivative

Any term not involving the variable is constant and therefore is zero in the partial derivative

Any term not involving the variable is constant and therefore is zero in the partial derivative

The chain rule

$$
E=f(e)
$$

$$
\frac{\partial E}{\partial w}=
$$

The chain rule

$$
E=f(e)
$$

$$
\frac{\partial E}{\partial w}=\frac{\partial E}{\partial e} \frac{\partial e}{\partial w}
$$

The chain rule

$$
\begin{aligned}
E & =\frac{1}{2} \sum_{k=1}^{K}\left(e_{k}\right)^{2} \\
\frac{\partial E}{\partial w_{j k}} & =
\end{aligned}
$$

The chain rule

$$
\begin{gathered}
E=\frac{1}{2} \sum_{k=1}^{K}\left(e_{k}\right)^{2} \\
\frac{\partial E}{\partial w_{j k}}=\frac{\partial E}{\partial e_{k}} \frac{\partial e_{k}}{\partial w_{j k}}
\end{gathered}
$$

Training a neural network using back-propagation of the error

- what is the objective of training?
- notation
- taking the derivative
- deriving back-propagation

How much would the total error E change, if we changed one weight?

How much would the total error E change, if we changed one weight?

How much would the total error E change, if we changed one weight?

How much would the total error E change, if we changed one weight?

How much would the total error E change, if we changed one weight?

How much would the total error E change, if we changed one weight?
$\partial E \quad \partial E \quad \partial e_{k}$
$\overline{\partial w_{j k}}=\frac{\partial e_{k}}{\partial w_{j k}}$

$\frac{\partial E}{\partial w_{j k}}=\frac{\partial E}{\partial e_{k}} \frac{\partial e_{k}}{\partial w_{j k}}$

$$
\begin{aligned}
E & =\frac{1}{2} \sum_{k}\left(e_{k}\right)^{2} & e_{k} & =a_{k}-t_{k} \\
\frac{\partial E}{\partial e_{k}} & = & \frac{\partial e_{k}}{\partial w_{j k}} & =
\end{aligned}
$$

$\frac{\partial E}{\partial w_{j k}}=\frac{\partial E}{\partial e_{k}} \frac{\partial e_{k}}{\partial w_{j k}}$

$$
\begin{aligned}
E & =\frac{1}{2} \sum_{k}\left(e_{k}\right)^{2} & e_{k} & =a_{k}-t_{k} \\
\frac{\partial E}{\partial e_{k}} & =e_{k} & \frac{\partial e_{k}}{\partial w_{j k}} & =
\end{aligned}
$$

$\frac{\partial E}{\partial w_{j k}}=\frac{\partial E}{\partial e_{k}} \frac{\partial e_{k}}{\partial w_{j k}}$

$$
\begin{aligned}
E & =\frac{1}{2} \sum_{k}\left(e_{k}\right)^{2} & e_{k} & =a_{k}-t_{k} \\
\frac{\partial E}{\partial e_{k}} & =e_{k}=a_{k}-t_{k} & \frac{\partial e_{k}}{\partial w_{j k}} & =
\end{aligned}
$$

$\frac{\partial E}{\partial w_{j k}}=\frac{\partial E}{\partial e_{k}} \frac{\partial e_{k}}{\partial w_{j k}}$

$$
\begin{aligned}
E & =\frac{1}{2} \sum_{k}\left(e_{k}\right)^{2} & e_{k} & =a_{k}-t_{k} \\
\frac{\partial E}{\partial e_{k}} & =e_{k}=a_{k}-t_{k} & \frac{\partial e_{k}}{\partial w_{j k}} & =\frac{\partial a_{k}}{\partial w_{j k}}
\end{aligned}
$$

$$
\frac{\partial E}{\partial w_{j k}}=e_{k} \frac{\partial e_{k}}{\partial w_{j k}}
$$

$$
\begin{aligned}
E & =\frac{1}{2} \sum_{k}\left(e_{k}\right)^{2} & e_{k} & =a_{k}-t_{k} \\
\frac{\partial E}{\partial e_{k}} & =e_{k}=a_{k}-t_{k} & \frac{\partial e_{k}}{\partial w_{j k}} & =\frac{\partial a_{k}}{\partial w_{j k}}
\end{aligned}
$$

$$
\frac{\partial E}{\partial w_{j k}}=e_{k} \frac{\partial a_{k}}{\partial w_{j k}}
$$

$$
\begin{aligned}
E & =\frac{1}{2} \sum_{k}\left(e_{k}\right)^{2} & e_{k} & =a_{k}-t_{k} \\
\frac{\partial E}{\partial e_{k}} & =e_{k}=a_{k}-t_{k} & \frac{\partial e_{k}}{\partial w_{j k}} & =\frac{\partial a_{k}}{\partial w_{j k}}
\end{aligned}
$$

$$
\frac{\partial E}{\partial w_{j k}}=e_{k} \frac{\partial a_{k}}{\partial w_{j k}}
$$

$$
\frac{\partial E}{\partial w_{j k}}=e_{k} \frac{\partial a_{k}}{\partial w_{j k}}
$$

$$
\frac{\partial E}{\partial w_{j k}}=e_{k} \frac{\partial a_{k}}{\partial w_{j k}}
$$

$$
\begin{aligned}
\frac{\partial E}{\partial w_{j k}} & =e_{k} \frac{\partial a_{k}}{\partial w_{j k}} \\
a_{k} & =g_{k}\left(z_{k}\right)
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial E}{\partial w_{j k}} & =e_{k} \frac{\partial a_{k}}{\partial w_{j k}} \\
a_{k} & =g_{k}\left(z_{k}\right) \\
\frac{\partial a_{k}}{\partial w_{j k}} & =
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial E}{\partial w_{j k}} & =e_{k} \frac{\partial a_{k}}{\partial w_{j k}} \\
a_{k} & =g_{k}\left(z_{k}\right) \\
\frac{\partial a_{k}}{\partial w_{j k}} & =\frac{\partial g_{k}\left(z_{k}\right)}{\partial z_{k}} \frac{\partial z_{k}}{\partial w_{j k}}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial E}{\partial w_{j k}} & =e_{k} \frac{\partial a_{k}}{\partial w_{j k}} \\
a_{k} & =g_{k}\left(z_{k}\right) \\
\frac{\partial a_{k}}{\partial w_{j k}} & =\frac{\partial g_{k}\left(z_{k}\right)}{\partial z_{k}} \frac{\partial z_{k}}{\partial w_{j k}} \\
\frac{\partial a_{k}}{\partial w_{j k}} & =
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial E}{\partial w_{j k}} & =e_{k} \frac{\partial a_{k}}{\partial w_{j k}} \\
a_{k} & =g_{k}\left(z_{k}\right) \\
\frac{\partial a_{k}}{\partial w_{j k}} & =\frac{\partial g_{k}\left(z_{k}\right)}{\partial z_{k}} \frac{\partial z_{k}}{\partial w_{j k}} \\
\frac{\partial a_{k}}{\partial w_{j k}} & =g_{k}^{\prime}\left(z_{k}\right) \frac{\partial z_{k}}{\partial w_{j k}}
\end{aligned}
$$

$$
\frac{\partial E}{\partial w_{j k}}=e_{k} g_{k}^{\prime}\left(z_{k}\right) \frac{\partial z_{k}}{\partial w_{j k}}
$$

$$
a_{k}=g_{k}\left(z_{k}\right)
$$

$$
\begin{aligned}
\frac{\partial a_{k}}{\partial w_{j k}} & =\frac{\partial g_{k}\left(z_{k}\right)}{\partial z_{k}} \frac{\partial z_{k}}{\partial w_{j k}} \\
\frac{\partial a_{k}}{\partial w_{j k}} & =g_{k}^{\prime}\left(z_{k}\right) \frac{\partial z_{k}}{\partial w_{j k}}
\end{aligned}
$$

$$
\frac{\partial E}{\partial w_{j k}}=e_{k} g_{k}^{\prime}\left(z_{k}\right) \frac{\partial z_{k}}{\partial w_{j k}}
$$

$$
\frac{\partial E}{\partial w_{j k}}=e_{k} g_{k}^{\prime}\left(z_{k}\right) \frac{\partial z_{k}}{\partial w_{j k}}
$$

$$
\frac{\partial E}{\partial w_{j k}}=e_{k} g_{k}^{\prime}\left(z_{k}\right) \frac{\partial z_{k}}{\partial w_{j k}}
$$

$$
\frac{\partial E}{\partial w_{j k}}=e_{k} g_{k}^{\prime}\left(z_{k}\right) \frac{\partial z_{k}}{\partial w_{j k}}
$$

$$
z_{k}=\sum_{j} a_{j} w_{j k}
$$

$$
\frac{\partial E}{\partial w_{j k}}=e_{k} g_{k}^{\prime}\left(z_{k}\right) \frac{\partial z_{k}}{\partial w_{j k}}
$$

$$
z_{k}=\sum_{j} a_{j} w_{j k}
$$

$$
\frac{\partial z_{k}}{\partial w_{j k}}=
$$

$$
\frac{\partial E}{\partial w_{j k}}=e_{k} g_{k}^{\prime}\left(z_{k}\right) \frac{\partial z_{k}}{\partial w_{j k}}
$$

$$
z_{k}=\sum_{j} a_{j} w_{j k}
$$

$$
\frac{\partial z_{k}}{\partial w_{j k}}=a_{j}
$$

∂E
 $=e_{k} g_{k}^{\prime}\left(z_{k}\right) a_{j}$

$$
z_{k}=\sum_{j} a_{j} w_{j k}
$$

$$
\frac{\partial z_{k}}{\partial w_{j k}}=a_{j}
$$

∂E

∂E

$$
\frac{\partial E}{\partial w_{j k}}=e_{k} \quad g_{k}^{\prime}\left(z_{k}\right) \quad a_{j}=\delta_{k} a_{j}
$$

$$
\frac{\partial E}{\partial w_{j k}}=e_{k} g_{k}^{\prime}\left(z_{k}\right) \quad a_{j}=\delta_{k} a_{j}
$$

Weight update

so make a small change in $w_{j k}$ that causes E to get a little bit smaller

Weight update

so make a small change in $w_{j k}$ that causes E to get a little bit smaller

$$
w_{j k} \leftarrow w_{j k}-\eta \frac{\partial E}{\partial w_{j k}}
$$

