Databases for speech synthesis

· Case study: using a keyword lexicon (Unisyn)

Phonemes, phones, accent variation and the IPA

- In the lab, many of you may have realised that none of the provided lexicons (a.k.a. pronunciation dictionaries) is a good match to the way you speak
 - Why?
 - What effect will this have?
- Inter-speaker variation
 - tuning the lexicon to an individual speaker (or group of speakers, e.g. an accent)
- Intra-speaker variation
 - · dealing with a speaker's individual variation

Recap: lexicons and letter-to-sound

Lexicon:

```
• "lives" nns (((l ai v z) 1))
```

```
• "lives" vbz (((l i v z) 1))
```

- LTS "rules" are often a model learned from data
 - e.g., classification tree (CART)
 - predicts the pronunciation for each grapheme-in-context

Obvious: speakers say things differently! Less obvious: find systematic patterns we can exploit

	British English	Canadian English
par	pa	paj
pa	pa	pa
paw	po	pa
pore	po	pol
pour	po	pol
poor	po	pol

Keyword lexicons (Wells, 1982), (Fitt & Isard, 1999)

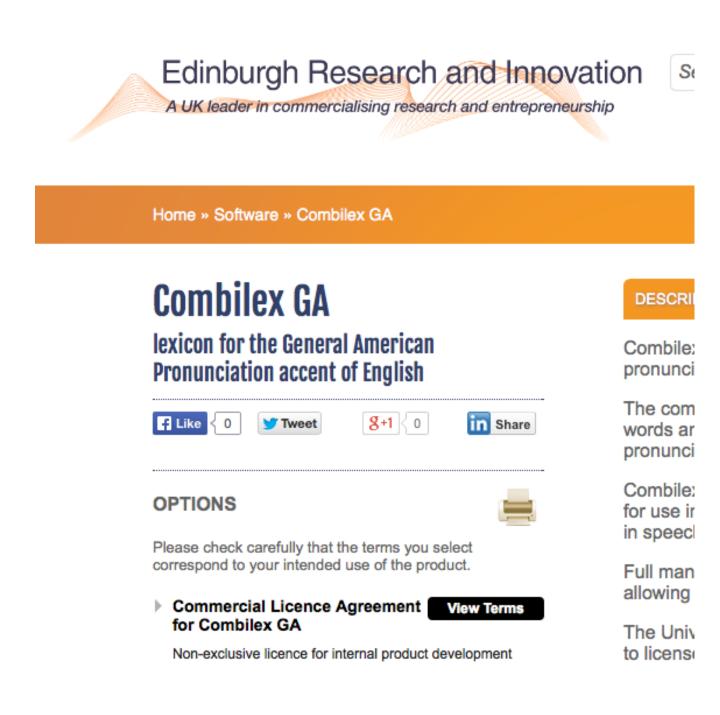
- Rather than using phonetic symbols in the lexicon, key symbols are used
- A key symbol is defined for each sound that behaves differently across different accents
- The base lexicon contains pronunciations in terms of key-symbols, with every possible distinction encoded
- A set of pronunciation rules maps the key symbol representation into a surface representation of phonetic symbols for a given accent
 - e.g., multiple key-symbols merge into one surface symbol
- Each key-symbol is characterised by a keyword. This is an example word that exhibits the behaviour that the key-symbol is designed to represent.

Lexical sets

A keyword lexicon

	Key-symbol entry	British English	Canadian English
par	p ar r	pa	рал
pa	p aa	pa	pa
paw	p 00	рэ	pa
pore	p our r	рэ	pol
pour	p our r	рэ	pol
poor	p ur r	po/poi	LCq

rules:


keysymbol	British English	Canadian English
r	-	J
ar	a	a
00	C	a

More details

- Rules can be hierarchical
 - Rhoticity rule for all rhotic accents
 - Specific rules for just one accent, or just one speaker
- Some rules need to be post-lexical (e.g., if they operate across word boundaries)
 - "My father is ..." in RP ($r \rightarrow /J$ and is not deleted)
- Rule sets are generally specified for specific accents, but can be tuned for individual speakers

Keyword lexicons in practice

- Festival uses Unisyn or Combilex
 - large, manually-written lists of words and pronunciations in terms of key symbols
 - plus small set of rules to generate surface forms
- Complete **surface form** lexicons can be generated for specific accents e.g., unilex-rpx, unilex-gam, unilex-edi
- Editing a keyword lexicon is very skilled
 - Adding a new word is harder than with a traditional lexicon, because the pronunciation is in key-symbols, not phonemes
 - Adding a new accent may be very hard, if it involves new distinctions not already encoded

Databases for speech synthesis

• Group activity: design the script to be recorded

Group activity: design the script to be recorded

- Step I
 - find a source of text
 - things to consider include: copyright, domain, size, readability, NSWs, ...
- <u>Step 2</u>
 - clean the text
 - things to consider include: vocabulary, readability, normalisation, . . .
- <u>Step 3</u>
 - design a simple 'richness' measure
 - write this as a function that computes a score for one sentence