Speech Processing

Undergraduate course code: LASC10061
Postgraduate course code: LASC11065

Speech Synthesis

« The next section of the course is on speech synthesis
« Defining the problem
« Applications
« Text-to-speech (TTS)
« Synthesis methods

« Diphones

http://www.cstr.ed.ac.uk/projects/festival/morevoices.html

Examples: diphones, unit selection, HMMs

2

Assessed speech synthesis practical

- The main objective is to “learn by doing”

« This practical is in three parts
Part | — Festival: running the pipeline step-by-step
Part Il — Festival: finding and explaining errors
Part lll — mini literature review

Due: see Learn for due date and submission instructions

« Suggestion: keep a detailed lab book in which you record every thing you do

What is speech synthesis?

+ We will define speech synthesis by what it is not:
Playback of whole sentences (this is called ‘canned speech’)
Only being able to say a set of fixed sentences
and by what it is:
Synthesising new sentences

Usually including new words

First, lets look at some applications

Applications

« The application may determine the method we choose
« Automated services, e.g., reading your email by telephone

 Assistive technologies, e.g., reading machines (screen readers), voice
output communication aids

* Interactive dialogue systems, e.g., flight booking systems

- Entertainment, e.qg., taking characters in a computer game, ebook reader

- Speech-to-speech translation

« Can you think of any other applications?

INnput

* The form of input to the system might be:
« Plain text
« Marked-up text
« Semantic (concept)
* On this course we will limit ourselves to
« text-to-speech systems where the input is plain text
- the diphone method for waveform generation

- The second semester course “Speech synthesis” covers more advanced
material, including

 the unit selection method for waveform generation,

- statistical parametric speech synthesis

6

Text-to-speech (TTS)

Definition: a text-to-speech system must be
« Able to read any text
Intelligible

Natural sounding

- The first of these puts a constraint on the method we can choose:

e playback of whole words or phrases in not a solution

« The second is actually closer to being a ‘solved problem’ than the third

Methods

- The methods available for speech synthesis fall into two categories:
« Model-based, or parametric
- Concatenative - we will only cover this type of system
* In the past, model-based used to only mean
« some sort of simplified model of speech production
- which requires values for a set of parameters (e.g. formant frequencies)
- which are in turn generated from hand-crafted rules
« (Concatenative systems use

« recorded examples of real speech

Concatenative systems (“cut and paste”)

« Most common method in state-of-the-art commercial and research systems.

« Example systems

- CHATR, Ximera — ATR, Japan
Festival — University of Edinburgh, UK (Open Source)
rVoice — Rhetorical, UK (how Nuance)
Natural Voices — AT&T, USA
RealSpeak — ScanSoft (now Nuance)
* Vocalizer — Nuance
Loguendo TTS - Loquendo, ltaly (how Nuance)
InterPhonic - iFlyTek, China
IVONA - IVO software, Poland (how Amazon)
« SVOX, Switzerland (now Nuance)
Cepstral, USA
Phonetic Arts, UK (now Google)
CereVoice - Cereproc, UK

- Concatenative speech synthesis = joining together pre-recorded units of
speech

Pros of concatenative synthesis

Can change the voice relatively easily (but not necessarily cheaply) without
changing any software

« Just record a new speaker
Can sound very much like a particular individual

On a good day - very natural sounding indeed

10

Cons of concatenative systems

On a bad day - just plain awful!
Large database of speech required for best quality

Expensive to collect; large memory/disk requirements; problems in
maintaining consistent voice quality during recording

Can sometimes hear the joins between units
Control over most aspects of the speech is limited

FO, duration control is possible (some signal degradation); voice quality
control is not possible

Concatenative systems sound much better than rule-driven models

but statistical parametric synthesis is nearly as good, and more flexible

11

Components of a concatenative system

In this course we will examine a typical concatenative TTS system

- We’ll look at the pipeline of processes that takes us from input text to output
waveform; the pipeline can be broken into two main parts

+ the ‘front end’
- waveform generation

- We’ll see how the front end infers additional information like pronunciation,
intonation and phrasing to produce a ‘linguistic specification’

- The pitch and duration are manipulated during waveform generation, in order
to convey this information

Examples: diphones vs. unit selection

12

Techniques required

« A variety of techniques will be required in the various components of our
synthesiser.

Natural language processing
« text analysis, morphology, syntactic parsing
Phonetics and phonology

generating pronunciations, syllabification of unknown words
Prosody

determining durations and FO (e.g. pitch accents)
Signal processing

generating the waveform

13

A text-to-speech system: Festival

« The practicals will use Festival version 1.96 which is a complete toolkit for
speech synthesis research, widely used around the world. The principal
stages in the pipeline are:

« Text processing
- Tokenisation; rules (e.g. for dates and numbers)

Part of speech tagging
Phrase break prediction

Pronunciation
Lexicon
Letter-to-sound rules or decision tree (CART) trained on data

Duration prediction
CART trained on data

14

A text-to-speech system: Festival

e [ntonation (not covered in this course)
e TOBI accents predicted using CART models
« Waveform generation
Diphone units

 Various signal processing methods
(PSOLA, LPC, MBROLA)

15

The ‘front end’

From input text to linguistic specification

16

Text processing

« Text processing breaks the original input text into units suitable for further
processing; this involves tasks such as

« expanding abbreviations

« part-of-speech (POS) tagging
- letter-to-sound rules

« prosody prediction

* We end up with a ‘linguistic specification’ - in other words, all the
information required to generate a speech waveform, such as

* phone sequence
« phone durations

« pitch contour

17

Tokenisation

- The input to a TTS system can be any text, for example:

In 1871, Stanley famously said “Dr. Livingston, | presume”

Punctuation is generally preserved, so this might be tokenised as:

(In) (1871) (,) (Stanley) (famously) (said) (“) (Dr.) (Livingston) (,) (I) (oresume) ()

In some systems, the punctuation is stored as a feature of the preceding or
following token

18

Abbreviations

In text, abbreviations are often used, but conventionally they are read out
fully:

Even simple abbreviations can be ambiguous, e.g.:
Dr. Livingston vs. Livingston Dr.
St. James vs. James St.
« V can be a roman numeral or Volts
100m could be “100 million” or “100 metres” or “100 miles”, ...
* The system must
recognise abbreviations

« then expand them

19

Numbers

- The interpretation of numbers is context sensitive

2.16pm
15:22
2.1
20/11/05
* The 2nd
$100bn
99p
0131 651 3174

Simple rules can be used to expand most of these into words, although
writing such rules is pretty tedious, and often language dependent

20

Finite state methods

- A common implementation of rules used to recognise abbreviations, for
example, is as regular expressions (or their equivalent finite state machine)

Here is a machine which will accept time expressions like 2.16pm, 15:22,
4am, 11.05am. The labels on the arcs are the input symbols.

digit digit digit digi am,pm
P g N g . Y W N
f \ { \ ‘1' \ { \ Ir' ‘n' z" \
— T ——_ ¥
~———— — digit
digit —
am, pm

The arcs could have probabilities, and by adding the output symbols, the
machine becomes a finite state transducer, which can simultaneously
recognise and expand abbreviations (see Jurafsky and Martin)
Finite state machines are computationally efficient (fast, low memory)

21

From letters to sounds

« Once we have a sequence of fully spelled-out words, we next need to work
towards a sequence of phonemes

Morphology (optional - not very helpful for English)
Part-of-speech (POS) tagging
« The lexicon
Post-lexical rules
Letter-to-sound (LTS) rules

- Which will involve a very useful type of model called a “Classification and
Regression Tree (CART)”

22

Part-of-Speech (POS)

Some words have multiple possible POS categories
+ We must disambiguate the POS:
- without POS information, pronunciation might be ambiguous e.g. “lives”
POS will also be used to predict the prosody later on

POS tagging is the process of determining a single POS tag for each word in
the input; the method can be

deterministic, or

probabilistic

23

CC Coordinating conjunction
CD Cardinal number

DT Determiner

EX Existential there

FW Foreign word

IN Preposition or subordinating conjunction
JJ Adjective

JJR Adjective, comparative
JJS Adjective, superlative
LS List item marker

MD Modal

NN Noun, singular or mass
NNS Noun, plural

NNP Proper noun, singular
NNPS Proper noun, plural
PDT Predeterminer

POS Possessive ending

PRP Personal pronoun

Penn treebank POS tag set

« PRP$ Possessive pronoun
* RB Adverb
* RBR Adverb, comparative
* RBS Adverb, superlative
* RP Particle
+ SYM Symbol
+ TOto
* UH Interjection
* VB Verb, base form
* VBD Verb, past tense
+ VBG Verb, gerund or present participle
* VBN Verb, past participle
* VBP Verb, non-3rd person singular present
+ VBZ Verb, 3rd person singular present
+ WDT Wh-determiner
+ WP Wh-pronoun
« WP$ Possessive wh-pronoun
+ WRB Wh-adverb
plus 9 tags for punctuation

24

Probabilistic POS tagging

One of the simplest and most popular methods is to train models on labelled
data (i.e., already tagged, by hand), combining

HMMs (Hidden Markov Models):

- where the observations are words and the models are the POS
classes (This will make more sense after the speech recognition part
of the course)

N-grams

- The latest state-of-the-art taggers are extremely accurate. Festival’s tagger is
now somewhat dated, but performs well enough

25

Progress check

« Our TTS system is a pipeline, taking words and gradually transforming them
into speech. How far have we got?

text | Dogs like to bark.
token | (Dogs) | (like) (to) (bark) (.)
POS | NNS | VBP TO VB

26

The lexicon

* The lexicon entries have three parts:
Head word
POS
Pronunciation (in terms of phonemes)

- The POS is sometimes necessary to distinguish homographs, e.g.:

nead POS phonemes

ives NNS 1 ai v z

ives VBZ 1 I vz

27

Syllables and lexical stress

« The lexicon will usually also mark syllable structure and lexical stress
present n (((p r eh z) 1) ((ax n t) 0))
present v (((priy z) 0) (eh nt) 1))
In Festival, there are three steps to find the pronunciation of a word:
Look up in main lexicon
If not found, look up in addenda (e.g. domain specific additional lexicon)
If not found, use letter-to-sound model

- The main lexicon is large and ordered to allow fast searching, the addenda
contains a small number of words added by hand, and the letter-to-sound
model will deal with the rest

28

| etter-to-sounad

If lexical lookup fails, we fall back on letter-to-sound rules

Example:
- The letter c can be realised as /k/, /ch/, /s/, /sh/, /ts/ or /e/ [deleted]
« We might write rules like:

If the “c” is word-initial and followed by “i” then map to /s/
If the “c” is word-initial and followed by “h” then map to /ch/
If ...
- This approach works well for Spanish, but performs very poorly for English

In general, we want an automatic method for constructing these “rules”

- The most popular form of model: a classification tree

29

Post-lexical rules

« The lexicon and letter-to-sound rules arrive at a pronunciation for each word as
it would be spoken in isolation, known as the “citation form”

« Now we need to apply cross word and phrasal effects such as:

« Vowel reduction

* Phrase-final devoicing

* r-insertion
« Since these effects are small in number, hand written rules work OK
« Festival has a mixture of

« hard-wired rules (compiled into the C++ code), and

- voice specific rules (implemented in Scheme which can be changed at
run-time)

30

Progress

text Dogs like to park.
token (Dogs) (like) (to) (bark) (.)
POS NNS VBP TO VB
Lex/lts | /daagz/)|/layk/| /tuw/ |/baark/
postlex | /daagz/ |/layk/| /tax/ |/baark/

31

CART - classification and regression trees

These are decision trees for predicting the value of either a
- Categorical variable (classification tree)
« Continuous variable (regression tree)

- We’ll consider only the categorical case, but the principles are the same for
continuous variables

« The nodes in the tree are questions about features which describe the
environment

« The tree is learned automatically from data
- Trees are human readable and editable (mostly)
« Concise and fast

« Automatically select predictors that are useful, ignores those that are not

32

Learning from data: the two main stages

It’s very important to make a clear distinction between:

Learning the model from data (“training”)
« we obtain some labelled training data
- we choose some form of model (e.g., classification tree)

- we fit the model to the training data (e.g., grow the tree)

Using the model to make classifications, predictions, etc. (“testing”)
« we have some unlabelled test data

« we use the model to label the test data

33

Predictors and predictees

Predictors: things whose value we know (think independent variables)
Can be just about anything

Continuously valued

Discrete (categorical)

Predictee: the thing whose value you want to predict (think dependant
variable)

Letter-to-sound “rules” can be written as a classification tree

- The predictors used for letter to sound rules might include: the
surrounding context letters, position in the word, word boundary
information

34

Classification trees are equivalent to ordered rules

« Here’s a fragment of a tree - we’ve already decided the letter is “c” :

word initial ?

£
'\ R

next letter is “i” ?

y
N R

pronounce as /s/

35

Part of Festival’s LTS tree

- Here is a fragment of the LTS tree from Festival: letter “a” for British English

letters ppp pp p @ n nn nnn

ppp=0 7?7
‘O’\ ar
n=r? -
."\/
S P ..war..
--’?‘ ‘.—-’)
...... - nn=r ? warr
.” \
yes nn=‘e ? /o/
----- no ""\

36

Learning a CART from data: prerequisites

Before learning a CART model, we need to specify:
« The predictors (sometimes called features)
« The predictee

« All the possible questions we can ask about the predictors

« The list of possible questions can be determined automatically (e.g., ask
whether a categorical predictor is equal to each possible value it can take)

« The training algorithm will choose which questions to use, and where to put
then in the decision tree

37

Questions

For discrete predictors, question are simply of the form:
- Is value of predictor equal to v ?
« Is value of predictor in the set {u,v,w}?

- The number of possible questions of the first type is much smaller than for the
second type

« For continuous predictors, questions are simply of the form:
* Is the value of predictor greater than v

« To reduce the space of possible questions, can try only a fixed number of v
values (e.g. 10). This is in effect quantising the continuous variable and then
treating it as discrete

38

Learning a CART from data: algorithm

« At the start, all data is placed in a single set at the root node of the tree

« A question is placed in the tree, and the data is split according to it: the data
is partitioned into two subsets, which descend the branches of the tree. This
procedure is then recursively applied

« At each iteration, we need to decide:

- Which gquestion to put into the tree next?

« need to measure how well each question splits the data, i.e., how
coherent the resulting subsets are (e.g., measure variance for
continuous data or entropy for discrete data)

« Whether to stop growing the tree?

- some stopping criterion is required, such as a minimum number of
data points in a subset)

39

Learning a CART from data: pseudo code

e Function: partition()

Consider each possible question in turn

e Choose the question that splits the data into the most
consistent two subsets

Place this question in the tree
Partition the data using question

Send the resulting subsets of data down the branches of
the tree

Recurse: for each subset, call partition()

-+ To start the algorithm, we make a tree with only one node (the root), place all of the
data there, and call partition() on it

« This type of algorithm is called a greedy algorithm — at a given point during the
training procedure, a decision is made which gives the best outcome at that point,
with no regard to how it will affect future outcomes. There is no backtracking

40

Discrete predictee example

« The predictee is discrete and can take one of three values: red, green or blue

Each training example has particular values for the predictors and a known
value for the predictee

Here are three training examples:

ah I 253 093 W
dh B 220 035 [
ah I 78 204 B

— |

predictors predictee

41

Training data

« The training data set has a total of 5 examples for each of these classes

Here is the distribution of the predictee values in the training set:

They are all equally likely, in other words:
The probabillity of each predictee value occurring in the
complete training set is 1/3 or about 0.33

42

Probability

In this simple example, the probability distribution of the training data
predictee value is:

P(red) = 1/3
P(green) = 1/3
P(blue) = 1/3

- We will be coming back to probability in more depth in the second half of this
course.

43

Possible questions

Does feature1 = “ah”?

Does feature1 = “dh”?

Does feature2 =| |?

Does feature2 =[Jj]?

Does feature2 =| |?

|s feature3d > 07
Is feature3 > 1007?
Is feature3 > 2007?
Is feature4 > 17?

etc.

44

Partitioning

« Try each yes/no question in turn.

Here is what happens for one question we are trying:

yes no

45

Entropy measures ‘purity’

Low entropy means highly predictable.

Here is what happens for two different questions we are trying, which each
give a different split of the data:

al

In the second question (lower
figure), the total entropy is
lower, so this is a better split
of the data

possible split 1

possible split 2

46

Entropy more formally:

* Entropy is: H = — ZP(CIT)ZOQ(Z?(Q?))

entropy

o] f

L »]

Entropy is zero when things are 100% predictable,
e.g., everything is blue

47

How big should the tree grow”?

« We want to stop the tree-building algorithm at some point
Need a criterion for when to stop
* When none of the remaining questions usefully split the data
Limit the depth of the tree
« When the number of data points in a partition is too small
Don’t simply want to continue until we run out of questions because:

Not all questions usefully split the data (perhaps because not all
predictees are informative)

Can’t reliably measure goodness of split for small data partitions

48

When can CART be used

« When there are a number of predictors, possibly of mixed types
 When we don’t know which are the most important ones
« When some predictors might not be useful

- When we can ask yes/no questions about the predictors

49

Prosody and intonation - in brief!

* Recap:
« We have processed the text into tokens and then into words
« We have determined a sequence of phonemes
- We now turn to suprasegmental aspects of synthesis.
« Not covering this in detail in this course, just need to mention
* phrase boundaries
 intonation events (e.g., pitch accents & breaks)

* realisation of intonation via the FO contour

50

Describing intonation using ToBl

Fo
- A | CL4+H*
A rN L

0 *

180} d W -
* / '
160} H .
1 1 | 1
& 1 15 2,

ToBl provides a stylised symbolic representation suitable for
hand-annotation of data, and for computation

51

Automatic phrase boundary prediction

« Task: predict boundary position and strength
Equivalent task: predict a boundary strength after every word (some are zero)
Predictee

« break strength

Festival uses just 3 boundary strengths (instead of ToBlI’s 5):
Major (BB [big break]), Minor (B [break]), No break (NB)

Predictors

« contextual features of current and neighbouring syllables (similar to
intonational event prediction - see next slide)

Models

CART
Markov model with N-gram

52

Automatic intonation event prediction: placement

Step 1: placement
Predictee

- placement (whether a syllable receives an accent)

Predictors

Syllable position in phrase
- Syllable context
Lexical stress
Lexical stress of neighbours
Break strength of this word and neighbouring words
POS tags

53

Automatic intonation event prediction: type

Step 2: type
Predictee
« accent type

For ToBl, one of: L*, H*, L*+H, L+H*, H+L* or a boundary tone
L% or H% (using a CART as a classification tree)

In parametric models, a parameterised representation of accent
height, duration, etc. (using a CART as a regression tree)

Predictors

again, a number of factors relating to the syllable in question and its
context

54

Automatic intonation event prediction: realisation

- Step 3: realisation
« The ToBl symbol must now be realised as actual FO values.
- Typically predict FO at 3 points per syllable

It will not come as surprise that this prediction too can be done using a
model trained on data

- We’re now predicting continuous values

Use a CART : this time as a regression tree

55

Waveform generation

56

Waveform generation

Now we have got
sequence of phonemes
FO and duration for all phonemes

« we didn’t discuss duration prediction in detail, but you can work out
for yourself the type of model and the predictees we could use

« All that remains is to

concatenate the recorded speech units

impose the required FO and duration using signal processing
« This stage of the pipeline is called waveform generation

+ the techniques will generally be language-independent

57

Concatenative synthesis

« What size are the units (pieces of pre-recorded speech) that we are going to
concatenate?

- Large
- Fewer joins per utterance
* but, more unit types means a larger inventory is needed

« Small

« Fewer unit types means a smaller inventory is needed

« but, more joins per utterance

58

Why are joins bad"?

« We will hear them!
- Why?
Mismatch between units
Pitch
- Amplitude
Natural variation in segment quality
Co-articulation / assimilation effects
Signal processing artefacts

properties of the signal not present in the original speech

59

Why is a smaller inventory good??

Easier and quick to construct and record
Easier to store at run-time
Quicker to access units

Smaller set of possible unit type sequences for any given utterance to be
synthesised (possibly a unique sequence; e.g., phonemes, diphones)

60

Possible choices of unit size

Sub-phone sized units (e.g. half phone)
Phones
Diphones (same size as phones)
Demi-syllables
Syllables

- Words

Phrases

« We need to trade off: the number of joins, how noticeable they will be and the
iInventory size

61

Phones”?

« Phones (i.e. recorded instances of phonemes) are an obvious choice: but are
they a good unit for concatenative synthesis?

« Small inventory
« Unique unit sequence
- But

- Lots of joins

* Very context dependent

62

Joining phones

« Joins will be a phone boundaries
« Where there is a maximum amount of coarticulation

« The articulators are on the move from the configuration of the previous
phone to the next phone

* Articulator position depends on both the left and right phone
« Acoustic signal is determined by articulator positions
- Therefore acoustic signal is highly context dependent

* Phones are not suitable

63

Diphones

- Why are diphones a good idea?
- We have moved the concatenation points (joins) to the mid-phone position

Diphones are the second half of one phone plus the first half of the following
phone

« There will still be one join per phone

~——phone———phone—~f~—phone—

- - -‘- diphone——“diphone——k——

64

—> fime

Advantages of diphones

Joins will be mid-phone
- The mid-point of a phones is relatively acoustically stable
Further from phone edges means less context sensitive
Still fairly small inventory
approximately (number of phones)?
For any given phone sequence: there is a unique diphone sequence
Less context dependent than phones

But still lots of joins, although in better positions than with phone units

65

Alternatives to diphones

Diphones tend to be the standard unit for concatenative synthesis, but there
are alternatives:

Smaller units

e.g., AT&T’s Next Gen uses half phones
Larger units

syllables, half syllables
Mixed inventory

syllables, half syllables, diphones, affixes

66

Time-domain

- The inventory contains the waveform plus pitch-marks for each speech unit
(i.e., diphone)

|
bk b
M‘(\“’- \ | ”Jl,'ﬁ'f] Y J‘fﬂldi'lﬂ»,q‘ 'I Jl ""‘-{ F—"v

l
| : \’ \ ; 'JIH‘;‘E"”(
1 A \ | "i

Units have their original duration and FO, which will get
modified during waveform generation
The pitch-marks are needed by PSOLA-type algorithms

67

PSOLA (Pitch Synchronous OverLap and Add)

« The first method we consider for modifying FO and duration is a time domain
version of PSOLA called TD-PSOLA.

It operates directly on waveforms

[N

68

How TD-PSOLA works

Deal with individual pitch periods (each of which is essentially the impulse
response of the vocal tract)

« The pitch periods themselves are not modified

« To increase FO, periods are moved closer together; where they overlap, we
add the waveforms

« To decrease FO, periods are moved further apart

69

: —]
O W)
5
& N
S O
(@)
% |

B

TD-PSOLA

 Increasing FO:

Overlap and add

71

TD-PSOLA

 Increasing duration:

[NV
{NNINTAS

\

duplicate

72

TD-PSOLA for duration and FO modification

Modify duration by duplicating or deleting pitch periods

Modify FO by changing the spacing between pitch periods

In practice, the pitch periods are windowed to give smooth joins
« we actually deal with two pitch periods, windowed

« We also have to compensate by adding or deleting pitch periods when
modifying FO, if duration is to be kept the same

73

Advantages of TD-PSOLA

Incredibly simple
« Works in time-domain
Computationally very fast

No coding/decoding of waveform (no explicit source-filter separation), so
potentially very few artefacts

74

Problems with TD-PSOLA

Overlap-add algorithm can add artefacts

High FO or duration modification factors sound bad (as you can discover for
yourself with Praat)

Duration modification limited to whole pitch periods
Needs very accurate and consistent pitch marking
Cannot modify spectral shape to smooth joins
Must use pseudo-pitch marks for unvoiced speech

+ this can introduce periodic sounds - perceived as buzziness

75

Linear predictive synthesis

« An alternative to time-domain PSOLA for manipulating FO, duration and in
additional the spectral envelope (related to vocal tract shape)

Overcomes some problems of TD-PSOLA
« Widely used
« the default method in Festival

- With a few tweaks, can sound very good

76

What is spectral mismatch?

- The spectrum of the two diphones either side of a boundary, will not (usually)
be the same

because they were recorded separately

« This will be true, however carefully we construct our database

diphone 1 diphone 2

s <L <

\

spectrum boundary

77

Working in another domain

Need to hide this spectral mismatch
Smooth the transition across the boundary
« Working in the time domain does not allow this
« We need:
« to manipulate FO and duration independently

an explicit representation of the spectral envelope in order to remove
mismatch across joins

78

How to remove spectral mismatch

 Interpolate in the frequency domain

diphone 1 diphone 2

s s <L S

N/

interpolate

Manipulate the spectral envelope to disguise discontinuity in the
vocal tract shape

79

Reminder: spectrum of speech

Remember that
overall spectral shape is due to the vocal tract configuration

- fine spectral detail (harmonics) is due to the source (vocal folds)

magnitude

T

frequency

80

Spectral envelope: how do we represent it”

- What exactly is the representation for?
So we can modify the spectral shape independently of FO / duration

If we separate the source and filter, we could interpolate just the filter part
(spectral shape), and manipulate FO / duration independently

How can we make this separation?

81

Reminder; the source-filter model

maghitude

““llll

frequency

pulse train
represents vocal folds

randotn signal

represents turbulence

magnirde

f nequenc}

inaghitude

voiced

A

frequency

filter

_’.

} urnvoiced

82

4

inaghitude

IH[it

frequency

Linear prediction

« A simple form of filter

linear predictive
e(t) filter s(t)

N /

driving function speech
p

sit) => a;js(t—3)

7=1

p
s(t) =e(®) + > a;s(t—j)

j=1

t = discrete time; p = filter order

83

Things we can do with linear prediction

- Because the filter represents only the vocal tract, we can use it to get a
smooth spectrum

« try this in Praat or Wavesurfer, by generating a spectrum using ‘LPC’ as
the analysis type

« It is possible to convert from the filter parameters to vocal tract area, and so
recover vocal tract shape from the acoustic signal

« applications in speech therapy and acoustic phonetics

- Filter coefficients are a compact and slowly-changing representation of
speech

« can be used for coding and compression (e.g., sending speech over
digital channels, like mobile phones)

84

Using LP for speech synthesis

Building the system
Record diphones
Perform linear predictive analysis
- find the filter coefficients for each frame of speech

Store the sequence of LP filter coefficients (LPCs) for each diphone in a
database

Synthesising speech
Select the sequence of speech units (e.g., diphones)
Obtain the sequence of LPCs from the stored database

Re-synthesise the waveform using a LP filter + source

85

Moditying FO and duration

Since we now have an explicit source-filter model, this is now trivial

Modifying FO:
Simply change the period of the voiced excitation signal
Modifying duration:

Simply change the duration of the excitation signal

86

Can we disguise the joins better now?

One reason for doing LPC analysis was to make smoothing around the
concatenation points possible

- This is now simple too: we can smooth the filter coefficients, but leave the
excitation signal alone. Consider a single filter coefficient (analogy - think of a
formant frequency):

original value

O-. ~O- smoothed
- O -

A

~
‘ (rme

LPC

~
~

boundary

87

Pros & cons of linear prediction for synthesis

Easy modification of pitch and duration
Can smooth the spectral envelope over the joins
Optionally, compressed storage of diphones

Fast to compute

Limited by source filter model
Linear predictive filter is not perfect - it’s just an approximation
|dealised excitation (e.g., either voiced or unvoiced, not mixed)
Signal processing artefacts

Can limit these by doing pitch-synchronous parameter update

88

How does TD-PSOLA separate source and filter

Consider a single pitch period, as used by TD-PSOLA

J”V

- The shape of the waveform reflects the frequency response of the vocal tract.
Stretching it in time would be like stretching the vocal tract in length

So TD-PSOLA tries to keep the individual pitch periods unmodified

« To modify pitch, it must then slide the pitch periods over one another, hence
“overlap-and-add”

89

Overcoming limitations of linear prediction

« We can overcome some of the limitations of LPC synthesis

Multi-pulse LPC

Replace the voiced excitation signal with multiple pulses per pitch period
(reduces the synthesis error)

Residual excited LPC

Replace the voiced excitation signal with the actual error computed
during LPC analysis (known as the residual), which leads to almost
perfect reproduction of the original signal

Festival uses residual excited LPC (RELP) by default

Near-perfect reconstruction is possible provided FO and duration are not
modified too far from their original values

90

