
Speech Processing

Undergraduate course code: LASC10061

Postgraduate course code: LASC11065

1

Speech Synthesis

• The next section of the course is on speech synthesis

• Defining the problem

• Applications

• Text-to-speech (TTS)

• Synthesis methods

• Diphones

Examples: diphones, unit selection, HMMs

http://www.cstr.ed.ac.uk/projects/festival/morevoices.html

2

Assessed speech synthesis practical

• The main objective is to “learn by doing”

• This practical is in three parts

• Part I – Festival: running the pipeline step-by-step

• Part II – Festival: finding and explaining errors

• Part III – mini literature review

• Due: see Learn for due date and submission instructions

• Suggestion: keep a detailed lab book in which you record every thing you do

3

What is speech synthesis?

• We will define speech synthesis by what it is not:

• Playback of whole sentences (this is called ‘canned speech’)

• Only being able to say a set of fixed sentences

• and by what it is:

• Synthesising new sentences

• Usually including new words

!
• First, lets look at some applications

4

Applications

• The application may determine the method we choose

• Automated services, e.g., reading your email by telephone

• Assistive technologies, e.g., reading machines (screen readers), voice
output communication aids

• Interactive dialogue systems, e.g., flight booking systems

• Entertainment, e.g., taking characters in a computer game, ebook reader

• Speech-to-speech translation

!
• Can you think of any other applications?

5

Input

• The form of input to the system might be:

• Plain text

• Marked-up text

• Semantic (concept)

• On this course we will limit ourselves to

• text-to-speech systems where the input is plain text

• the diphone method for waveform generation

• The second semester course “Speech synthesis” covers more advanced
material, including

• the unit selection method for waveform generation,

• statistical parametric speech synthesis

6

Text-to-speech (TTS)

• Definition: a text-to-speech system must be

• Able to read any text

• Intelligible

• Natural sounding

!
• The first of these puts a constraint on the method we can choose:

• playback of whole words or phrases in not a solution

!
• The second is actually closer to being a ‘solved problem’ than the third

7

Methods

• The methods available for speech synthesis fall into two categories:

• Model-based, or parametric

• Concatenative - we will only cover this type of system

• In the past, model-based used to only mean

• some sort of simplified model of speech production

• which requires values for a set of parameters (e.g. formant frequencies)

• which are in turn generated from hand-crafted rules

• Concatenative systems use

• recorded examples of real speech

8

Concatenative systems (“cut and paste”)

• Most common method in state-of-the-art commercial and research systems.

• Example systems

• CHATR, Ximera – ATR, Japan

• Festival – University of Edinburgh, UK (Open Source)

• rVoice – Rhetorical, UK (now Nuance)

• Natural Voices – AT&T, USA

• RealSpeak – ScanSoft (now Nuance)

• Vocalizer – Nuance

• Loquendo TTS – Loquendo, Italy (now Nuance)

• InterPhonic – iFlyTek, China

• IVONA – IVO software, Poland (now Amazon)

• SVOX, Switzerland (now Nuance)

• Cepstral, USA

• Phonetic Arts, UK (now Google)

• CereVoice - Cereproc, UK

• Concatenative speech synthesis = joining together pre-recorded units of
speech

9

Pros of concatenative synthesis

• Can change the voice relatively easily (but not necessarily cheaply) without
changing any software

• Just record a new speaker

• Can sound very much like a particular individual

• On a good day – very natural sounding indeed

10

Cons of concatenative systems

• On a bad day – just plain awful!

• Large database of speech required for best quality

• Expensive to collect; large memory/disk requirements; problems in
maintaining consistent voice quality during recording

• Can sometimes hear the joins between units

• Control over most aspects of the speech is limited

• F0, duration control is possible (some signal degradation); voice quality
control is not possible

• Concatenative systems sound much better than rule-driven models

• but statistical parametric synthesis is nearly as good, and more flexible

11

Components of a concatenative system

• In this course we will examine a typical concatenative TTS system

• We’ll look at the pipeline of processes that takes us from input text to output
waveform; the pipeline can be broken into two main parts

• the ‘front end’

• waveform generation

• We’ll see how the front end infers additional information like pronunciation,
intonation and phrasing to produce a ‘linguistic specification’

• The pitch and duration are manipulated during waveform generation, in order
to convey this information

Examples: diphones vs. unit selection
12

Techniques required

• A variety of techniques will be required in the various components of our
synthesiser.

• Natural language processing

• text analysis, morphology, syntactic parsing

• Phonetics and phonology

• generating pronunciations, syllabification of unknown words

• Prosody

• determining durations and F0 (e.g. pitch accents)

• Signal processing

• generating the waveform

13

A text-to-speech system: Festival

• The practicals will use Festival version 1.96 which is a complete toolkit for
speech synthesis research, widely used around the world. The principal
stages in the pipeline are:

• Text processing

• Tokenisation; rules (e.g. for dates and numbers)

• Part of speech tagging

• Phrase break prediction

• Pronunciation

• Lexicon

• Letter-to-sound rules or decision tree (CART) trained on data

• Duration prediction

• CART trained on data

14

A text-to-speech system: Festival

• Intonation (not covered in this course)

• TOBI accents predicted using CART models

• Waveform generation

• Diphone units

• Various signal processing methods 
(PSOLA, LPC, MBROLA)

15

The ‘front end’

From input text to linguistic specification

16

Text processing

• Text processing breaks the original input text into units suitable for further
processing; this involves tasks such as

• expanding abbreviations

• part-of-speech (POS) tagging

• letter-to-sound rules

• prosody prediction

• We end up with a ‘linguistic specification’ - in other words, all the
information required to generate a speech waveform, such as

• phone sequence

• phone durations

• pitch contour

17

Tokenisation

• The input to a TTS system can be any text, for example:

!
!

• Punctuation is generally preserved, so this might be tokenised as:

!
!

• In some systems, the punctuation is stored as a feature of the preceding or
following token

(In) (1871) (,) (Stanley) (famously) (said) (“) (Dr.) (Livingston) (,) (I) (presume) (”)

In 1871, Stanley famously said “Dr. Livingston, I presume”

18

Abbreviations

• In text, abbreviations are often used, but conventionally they are read out
fully:

• Even simple abbreviations can be ambiguous, e.g.:

• Dr. Livingston vs. Livingston Dr.

• St. James vs. James St.

• V can be a roman numeral or Volts

• 100m could be “100 million” or “100 metres” or “100 miles”, …

• The system must

• recognise abbreviations

• then expand them

19

Numbers

• The interpretation of numbers is context sensitive

• 2.16pm

• 15:22

• 2.1

• 20/11/05

• The 2nd

• $100bn

• 99p

• 0131 651 3174

• Simple rules can be used to expand most of these into words, although
writing such rules is pretty tedious, and often language dependent

20

Finite state methods

• A common implementation of rules used to recognise abbreviations, for
example, is as regular expressions (or their equivalent finite state machine)

• Here is a machine which will accept time expressions like 2.16pm, 15:22,
4am, 11.05am. The labels on the arcs are the input symbols.

The arcs could have probabilities, and by adding the output symbols, the
machine becomes a finite state transducer, which can simultaneously

recognise and expand abbreviations (see Jurafsky and Martin)
Finite state machines are computationally efficient (fast, low memory)

21

From letters to sounds

• Once we have a sequence of fully spelled-out words, we next need to work
towards a sequence of phonemes

• Morphology (optional - not very helpful for English)

• Part-of-speech (POS) tagging

• The lexicon

• Post-lexical rules

• Letter-to-sound (LTS) rules

• Which will involve a very useful type of model called a “Classification and
Regression Tree (CART)”

22

Part-of-Speech (POS)

• Some words have multiple possible POS categories

• We must disambiguate the POS:

• without POS information, pronunciation might be ambiguous e.g. “lives”

• POS will also be used to predict the prosody later on

• POS tagging is the process of determining a single POS tag for each word in
the input; the method can be

• deterministic, or

• probabilistic

23

Penn treebank POS tag set

• CC Coordinating conjunction

• CD Cardinal number

• DT Determiner

• EX Existential there

• FW Foreign word

• IN Preposition or subordinating conjunction

• JJ Adjective

• JJR Adjective, comparative

• JJS Adjective, superlative

• LS List item marker

• MD Modal

• NN Noun, singular or mass

• NNS Noun, plural

• NNP Proper noun, singular

• NNPS Proper noun, plural

• PDT Predeterminer

• POS Possessive ending

• PRP Personal pronoun

• PRP$ Possessive pronoun

• RB Adverb

• RBR Adverb, comparative

• RBS Adverb, superlative

• RP Particle

• SYM Symbol

• TO to

• UH Interjection

• VB Verb, base form

• VBD Verb, past tense

• VBG Verb, gerund or present participle

• VBN Verb, past participle

• VBP Verb, non-3rd person singular present

• VBZ Verb, 3rd person singular present

• WDT Wh-determiner

• WP Wh-pronoun

• WP$ Possessive wh-pronoun

• WRB Wh-adverb

plus 9 tags for punctuation

24

Probabilistic POS tagging

• One of the simplest and most popular methods is to train models on labelled
data (i.e., already tagged, by hand), combining

• HMMs (Hidden Markov Models):

• where the observations are words and the models are the POS
classes (This will make more sense after the speech recognition part
of the course)

• N-grams

• The latest state-of-the-art taggers are extremely accurate. Festival’s tagger is
now somewhat dated, but performs well enough

25

Progress check

• Our TTS system is a pipeline, taking words and gradually transforming them
into speech. How far have we got?

text Dogs like to bark.

token (Dogs) (like) (to) (bark) (.)

POS NNS VBP TO VB .

26

The lexicon

• The lexicon entries have three parts:

• Head word

• POS

• Pronunciation (in terms of phonemes)

• The POS is sometimes necessary to distinguish homographs, e.g.:

head POS phonemes

lives NNS l ai v z

lives VBZ l I v z

27

Syllables and lexical stress

• The lexicon will usually also mark syllable structure and lexical stress

• present n (((p r eh z) 1) ((ax n t) 0))

• present v (((p r iy z) 0) ((eh n t) 1))

• In Festival, there are three steps to find the pronunciation of a word:

• Look up in main lexicon

• If not found, look up in addenda (e.g. domain specific additional lexicon)

• If not found, use letter-to-sound model

• The main lexicon is large and ordered to allow fast searching, the addenda
contains a small number of words added by hand, and the letter-to-sound
model will deal with the rest

28

Letter-to-sound

• If lexical lookup fails, we fall back on letter-to-sound rules

• Example:

• The letter c can be realised as /k/, /ch/, /s/, /sh/, /ts/ or /ε/ [deleted]

• We might write rules like:

• If the “c” is word-initial and followed by “i” then map to /s/

• If the “c” is word-initial and followed by “h” then map to /ch/

• If ...

• This approach works well for Spanish, but performs very poorly for English

• In general, we want an automatic method for constructing these “rules”

• The most popular form of model: a classification tree

29

Post-lexical rules

• The lexicon and letter-to-sound rules arrive at a pronunciation for each word as
it would be spoken in isolation, known as the “citation form”

• Now we need to apply cross word and phrasal effects such as:

• Vowel reduction

• Phrase-final devoicing

• r-insertion

• Since these effects are small in number, hand written rules work OK

• Festival has a mixture of

• hard-wired rules (compiled into the C++ code), and

• voice specific rules (implemented in Scheme which can be changed at
run-time)

30

Progress

text Dogs like to bark.

token (Dogs) (like) (to) (bark) (.)

POS NNS VBP TO VB .

Lex/lts /d aa g z/) /l ay k/ /t uw/ /b aa r k/

postlex /d aa g z/ /l ay k/ /t ax/ /b aa r k/

31

CART – classification and regression trees

• These are decision trees for predicting the value of either a

• Categorical variable (classification tree)

• Continuous variable (regression tree)

• We’ll consider only the categorical case, but the principles are the same for
continuous variables

• The nodes in the tree are questions about features which describe the
environment

• The tree is learned automatically from data

• Trees are human readable and editable (mostly)

• Concise and fast

• Automatically select predictors that are useful, ignores those that are not

32

Learning from data: the two main stages

• It’s very important to make a clear distinction between:

!
• Learning the model from data (“training”)

• we obtain some labelled training data

• we choose some form of model (e.g., classification tree)

• we fit the model to the training data (e.g., grow the tree)

!
• Using the model to make classifications, predictions, etc. (“testing”)

• we have some unlabelled test data

• we use the model to label the test data

33

Predictors and predictees

• Predictors: things whose value we know (think independent variables)

• Can be just about anything

• Continuously valued

• Discrete (categorical)

• Predictee: the thing whose value you want to predict (think dependant
variable)

• Letter-to-sound “rules” can be written as a classification tree

• The predictors used for letter to sound rules might include: the
surrounding context letters, position in the word, word boundary
information

34

• Here’s a fragment of a tree - we’ve already decided the letter is “c” :

Classification trees are equivalent to ordered rules

word initial ?

next letter is “i” ?

pronounce as /s/

yesno

yesno

35

Part of Festival’s LTS tree

• Here is a fragment of the LTS tree from Festival: letter “a” for British English

36

Learning a CART from data: prerequisites

• Before learning a CART model, we need to specify:

• The predictors (sometimes called features)

• The predictee

• All the possible questions we can ask about the predictors

!
• The list of possible questions can be determined automatically (e.g., ask

whether a categorical predictor is equal to each possible value it can take)

• The training algorithm will choose which questions to use, and where to put
then in the decision tree

37

Questions

• For discrete predictors, question are simply of the form:

• Is value of predictor equal to v ?

• Is value of predictor in the set {u,v,w}?

• The number of possible questions of the first type is much smaller than for the
second type

• For continuous predictors, questions are simply of the form:

• Is the value of predictor greater than v

• To reduce the space of possible questions, can try only a fixed number of v
values (e.g. 10). This is in effect quantising the continuous variable and then
treating it as discrete

38

Learning a CART from data: algorithm

• At the start, all data is placed in a single set at the root node of the tree

• A question is placed in the tree, and the data is split according to it: the data
is partitioned into two subsets, which descend the branches of the tree. This
procedure is then recursively applied

• At each iteration, we need to decide:

• Which question to put into the tree next?

• need to measure how well each question splits the data, i.e., how
coherent the resulting subsets are (e.g., measure variance for
continuous data or entropy for discrete data)

• Whether to stop growing the tree?

• some stopping criterion is required, such as a minimum number of
data points in a subset)

39

Learning a CART from data: pseudo code

• Function: partition()!

• Consider each possible question in turn!

• Choose the question that splits the data into the most
consistent two subsets!

• Place this question in the tree!

• Partition the data using question!

• Send the resulting subsets of data down the branches of
the tree!

• Recurse: for each subset, call partition()!

• To start the algorithm, we make a tree with only one node (the root), place all of the
data there, and call partition() on it

• This type of algorithm is called a greedy algorithm – at a given point during the
training procedure, a decision is made which gives the best outcome at that point,
with no regard to how it will affect future outcomes. There is no backtracking

40

Discrete predictee example

• The predictee is discrete and can take one of three values: red, green or blue

• Each training example has particular values for the predictors and a known
value for the predictee

• Here are three training examples:

41

Training data

• The training data set has a total of 5 examples for each of these classes

• Here is the distribution of the predictee values in the training set:

They are all equally likely, in other words:
The probability of each predictee value occurring in the

complete training set is 1/3 or about 0.33

42

Probability	

• In this simple example, the probability distribution of the training data
predictee value is:

• P(red) = 1/3

• P(green) = 1/3

• P(blue) = 1/3

• We will be coming back to probability in more depth in the second half of this
course.

43

Possible questions

• Does feature1 = “ah”?

• Does feature1 = “dh”?

• Does feature2 = ?

• Does feature2 = ?

• Does feature2 = ?

• Is feature3 > 0?

• Is feature3 > 100?

• Is feature3 > 200?

• Is feature4 > 1?

• etc.

44

Partitioning

• Try each yes/no question in turn.

• Here is what happens for one question we are trying:

45

• Low entropy means highly predictable.

• Here is what happens for two different questions we are trying, which each
give a different split of the data:

Entropy measures ‘purity’

In the second question (lower
figure), the total entropy is

lower, so this is a better split
of the data

46

Entropy more formally:

• Entropy is:

Entropy is zero when things are 100% predictable,
e.g., everything is blue

47

How big should the tree grow?

• We want to stop the tree-building algorithm at some point

• Need a criterion for when to stop

• When none of the remaining questions usefully split the data

• Limit the depth of the tree

• When the number of data points in a partition is too small

• Don’t simply want to continue until we run out of questions because:

• Not all questions usefully split the data (perhaps because not all
predictees are informative)

• Can’t reliably measure goodness of split for small data partitions

48

When can CART be used

• When there are a number of predictors, possibly of mixed types

• When we don’t know which are the most important ones

• When some predictors might not be useful

• When we can ask yes/no questions about the predictors

49

Prosody and intonation - in brief!

• Recap:

• We have processed the text into tokens and then into words

• We have determined a sequence of phonemes

• We now turn to suprasegmental aspects of synthesis.

• Not covering this in detail in this course, just need to mention

• phrase boundaries

• intonation events (e.g., pitch accents & breaks)

• realisation of intonation via the F0 contour

50

Describing intonation using ToBI

ToBI provides a stylised symbolic representation suitable for
hand-annotation of data, and for computation

51

Automatic phrase boundary prediction

• Task: predict boundary position and strength

• Equivalent task: predict a boundary strength after every word (some are zero)

• Predictee

• break strength

• Festival uses just 3 boundary strengths (instead of ToBI’s 5):
Major (BB [big break]), Minor (B [break]), No break (NB)

• Predictors

• contextual features of current and neighbouring syllables (similar to
intonational event prediction - see next slide)

• Models

• CART

• Markov model with N-gram

52

Automatic intonation event prediction: placement

• Step 1: placement

• Predictee

• placement (whether a syllable receives an accent)

• Predictors

• Syllable position in phrase

• Syllable context

• Lexical stress

• Lexical stress of neighbours

• Break strength of this word and neighbouring words

• POS tags

53

Automatic intonation event prediction: type

• Step 2: type

• Predictee

• accent type

• For ToBI, one of: L*, H*, L*+H, L+H*, H+L* or a boundary tone
L% or H% (using a CART as a classification tree)

• In parametric models, a parameterised representation of accent
height, duration, etc. (using a CART as a regression tree)

• Predictors

• again, a number of factors relating to the syllable in question and its
context

54

Automatic intonation event prediction: realisation

• Step 3: realisation

• The ToBI symbol must now be realised as actual F0 values.

• Typically predict F0 at 3 points per syllable

• It will not come as surprise that this prediction too can be done using a
model trained on data

• We’re now predicting continuous values

• Use a CART : this time as a regression tree

55

Waveform generation

56

Waveform generation

• Now we have got

• sequence of phonemes

• F0 and duration for all phonemes

• we didn’t discuss duration prediction in detail, but you can work out
for yourself the type of model and the predictees we could use

• All that remains is to

• concatenate the recorded speech units

• impose the required F0 and duration using signal processing

• This stage of the pipeline is called waveform generation

• the techniques will generally be language-independent

57

Concatenative synthesis

• What size are the units (pieces of pre-recorded speech) that we are going to
concatenate?

• Large

• Fewer joins per utterance

• but, more unit types means a larger inventory is needed

• Small

• Fewer unit types means a smaller inventory is needed

• but, more joins per utterance

58

Why are joins bad?

• We will hear them!

• Why?

• Mismatch between units

• Pitch

• Amplitude

• Natural variation in segment quality

• Co-articulation / assimilation effects

• Signal processing artefacts

• properties of the signal not present in the original speech

59

Why is a smaller inventory good?

• Easier and quick to construct and record

• Easier to store at run-time

• Quicker to access units

• Smaller set of possible unit type sequences for any given utterance to be
synthesised (possibly a unique sequence; e.g., phonemes, diphones)

60

Possible choices of unit size

• Sub-phone sized units (e.g. half phone)

• Phones

• Diphones (same size as phones)

• Demi-syllables

• Syllables

• Words

• Phrases

!
• We need to trade off: the number of joins, how noticeable they will be and the

inventory size

61

Phones?

• Phones (i.e. recorded instances of phonemes) are an obvious choice: but are
they a good unit for concatenative synthesis?

• Small inventory

• Unique unit sequence

• But

• Lots of joins

• Very context dependent

62

Joining phones

• Joins will be a phone boundaries

• Where there is a maximum amount of coarticulation

• The articulators are on the move from the configuration of the previous
phone to the next phone

• Articulator position depends on both the left and right phone

• Acoustic signal is determined by articulator positions

• Therefore acoustic signal is highly context dependent

• Phones are not suitable

63

Diphones

• Why are diphones a good idea?

• We have moved the concatenation points (joins) to the mid-phone position

• Diphones are the second half of one phone plus the first half of the following
phone

• There will still be one join per phone

time
64

Advantages of diphones

• Joins will be mid-phone

• The mid-point of a phones is relatively acoustically stable

• Further from phone edges means less context sensitive

• Still fairly small inventory

• approximately (number of phones)2

• For any given phone sequence: there is a unique diphone sequence

• Less context dependent than phones

• But still lots of joins, although in better positions than with phone units

65

Alternatives to diphones

• Diphones tend to be the standard unit for concatenative synthesis, but there
are alternatives:

• Smaller units

• e.g., AT&T’s Next Gen uses half phones

• Larger units

• syllables, half syllables

• Mixed inventory

• syllables, half syllables, diphones, affixes

66

Time-domain

• The inventory contains the waveform plus pitch-marks for each speech unit
(i.e., diphone)

Units have their original duration and F0, which will get
modified during waveform generation

The pitch-marks are needed by PSOLA-type algorithms

67

PSOLA (Pitch Synchronous OverLap and Add)

• The first method we consider for modifying F0 and duration is a time domain
version of PSOLA called TD-PSOLA.

• It operates directly on waveforms

68

How TD-PSOLA works

• Deal with individual pitch periods (each of which is essentially the impulse
response of the vocal tract)

!
!
!
!

• The pitch periods themselves are not modified

• To increase F0, periods are moved closer together; where they overlap, we
add the waveforms

• To decrease F0, periods are moved further apart

69

TD-PSOLA

• Decreasing F0:

70

TD-PSOLA

• Increasing F0:

Overlap and add
71

TD-PSOLA

• Increasing duration:

duplicate
72

TD-PSOLA for duration and F0 modification

• Modify duration by duplicating or deleting pitch periods

• Modify F0 by changing the spacing between pitch periods

• In practice, the pitch periods are windowed to give smooth joins

• we actually deal with two pitch periods, windowed

• We also have to compensate by adding or deleting pitch periods when
modifying F0, if duration is to be kept the same

73

Advantages of TD-PSOLA

• Incredibly simple

• Works in time-domain

• Computationally very fast

• No coding/decoding of waveform (no explicit source-filter separation), so
potentially very few artefacts

74

Problems with TD-PSOLA

• Overlap-add algorithm can add artefacts

• High F0 or duration modification factors sound bad (as you can discover for
yourself with Praat)

• Duration modification limited to whole pitch periods

• Needs very accurate and consistent pitch marking

• Cannot modify spectral shape to smooth joins

• Must use pseudo-pitch marks for unvoiced speech

• this can introduce periodic sounds - perceived as buzziness

75

Linear predictive synthesis

• An alternative to time-domain PSOLA for manipulating F0, duration and in
additional the spectral envelope (related to vocal tract shape)

• Overcomes some problems of TD-PSOLA

• Widely used

• the default method in Festival

• With a few tweaks, can sound very good

76

What is spectral mismatch?

• The spectrum of the two diphones either side of a boundary, will not (usually)
be the same

• because they were recorded separately

• This will be true, however carefully we construct our database

77

Working in another domain

• Need to hide this spectral mismatch

• Smooth the transition across the boundary

• Working in the time domain does not allow this

• We need:

• to manipulate F0 and duration independently

• an explicit representation of the spectral envelope in order to remove
mismatch across joins

78

How to remove spectral mismatch

• Interpolate in the frequency domain

Manipulate the spectral envelope to disguise discontinuity in the
vocal tract shape

79

Reminder: spectrum of speech

• Remember that

• overall spectral shape is due to the vocal tract configuration

• fine spectral detail (harmonics) is due to the source (vocal folds)

80

Spectral envelope: how do we represent it?

• What exactly is the representation for?

• So we can modify the spectral shape independently of F0 / duration

• If we separate the source and filter, we could interpolate just the filter part
(spectral shape), and manipulate F0 / duration independently

!
• How can we make this separation?

81

Reminder: the source-filter model

82

Linear prediction

• A simple form of filter

t = discrete time; p = filter order

83

Things we can do with linear prediction

• Because the filter represents only the vocal tract, we can use it to get a
smooth spectrum

• try this in Praat or Wavesurfer, by generating a spectrum using ‘LPC’ as
the analysis type

• It is possible to convert from the filter parameters to vocal tract area, and so
recover vocal tract shape from the acoustic signal

• applications in speech therapy and acoustic phonetics

• Filter coefficients are a compact and slowly-changing representation of
speech

• can be used for coding and compression (e.g., sending speech over
digital channels, like mobile phones)

84

Using LP for speech synthesis

• Building the system

• Record diphones

• Perform linear predictive analysis

• find the filter coefficients for each frame of speech

• Store the sequence of LP filter coefficients (LPCs) for each diphone in a
database

• Synthesising speech

• Select the sequence of speech units (e.g., diphones)

• Obtain the sequence of LPCs from the stored database

• Re-synthesise the waveform using a LP filter + source

85

Modifying F0 and duration

• Since we now have an explicit source-filter model, this is now trivial

!
• Modifying F0:

• Simply change the period of the voiced excitation signal

• Modifying duration:

• Simply change the duration of the excitation signal

86

Can we disguise the joins better now?

• One reason for doing LPC analysis was to make smoothing around the
concatenation points possible

• This is now simple too: we can smooth the filter coefficients, but leave the
excitation signal alone. Consider a single filter coefficient (analogy - think of a
formant frequency):

87

Pros & cons of linear prediction for synthesis

• Easy modification of pitch and duration

• Can smooth the spectral envelope over the joins

• Optionally, compressed storage of diphones

• Fast to compute

!
• Limited by source filter model

• Linear predictive filter is not perfect - it’s just an approximation

• Idealised excitation (e.g., either voiced or unvoiced, not mixed)

• Signal processing artefacts

• Can limit these by doing pitch-synchronous parameter update

88

How does TD-PSOLA separate source and filter

• Consider a single pitch period, as used by TD-PSOLA

!
!
!

• The shape of the waveform reflects the frequency response of the vocal tract.
Stretching it in time would be like stretching the vocal tract in length

• So TD-PSOLA tries to keep the individual pitch periods unmodified

• To modify pitch, it must then slide the pitch periods over one another, hence
“overlap-and-add”

89

Overcoming limitations of linear prediction

• We can overcome some of the limitations of LPC synthesis

• Multi-pulse LPC

• Replace the voiced excitation signal with multiple pulses per pitch period
(reduces the synthesis error)

• Residual excited LPC

• Replace the voiced excitation signal with the actual error computed
during LPC analysis (known as the residual), which leads to almost
perfect reproduction of the original signal

• Festival uses residual excited LPC (RELP) by default

• Near-perfect reconstruction is possible provided F0 and duration are not
modified too far from their original values

90

