Speech Processing

Undergraduate course code: LASC10061 Postgraduate course code: LASC11065

Slide pack 3 of 3: Automatic Speech Recognition

Speech recognition

- Feature extraction
 - Fourier analysis of waveforms
 - From how the ear works, to perceptually-motivated processing
 - De-correlation: the Cepstral transform and Mel Frequency Cepstral Coefficients (MFCCs)
- Comparing frames of speech
 - Distance measures and probability
- Whole word templates
- Dynamic time warping (DTW)
- Hidden Markov models (HMMs)
- Sub-word models
- Putting it all together
- Training HMMs
- Language models

Speech recognition - lecture 1 of 5

- frame-based analysis
- Fourier transform
- feature vectors
- Euclidean distance measure
- Dynamic Time Warping

Frame based analysis of speech

- We assume that the speech signal is statistically stationary over the duration of the window (i.e., its spectral properties are constant)
- For each frame of speech, we extract a vector of parameters typically 39 numbers that capture all the segmental information for that frame

Whole word templates

- We are going to work our way up to HMMs slowly. Let's start with a very simple problem: isolated word recognition using template matching.
- The scenario is as follows:
 - We have recorded a set of *reference* words, known as templates
 - Given a recording of an *unknown* word:
 - Match it against each *reference* word in turn
 - Find the closest match
 - Announce the result
- The key process is **finding the closest match**. The operation we must perform is: measure how similar two recorded words are (*reference* and *unknown*). The *reference* is sometimes called the *template*.

Parameterising the speech signal

- From now on, we will only be dealing with parameterised speech signals
- The waveform is represented as:
 - A sequence of frames: each frame is a vector of parameters

Working in the frequency domain

- For speech recognition, we want a description of the speech signal which:
 - Captures all the important information
 - Removes unwanted variability
 - Fundamental frequency not required (for many languages)
 - Speaker identity not required
 - Is fast to compute
- First, let's look at how we can build up any waveform by adding simple waveforms: Fourier analysis. This is how we transform a waveform to a spectrum

Making a square wave

• Can we make this

• by adding together waveforms like this?

Fourier analysis of a square wave

• Yes we can! At least we can approximate it. The approximation gets closer and closer the more waveforms we add in.

http://www.falstad.com/fourier/

Decomposing the square wave

 We could make a feature vector of the weights used for each sine wave component

Fourier transform

- The coefficients (weighting factors) of the components are a representation of the frequency contents of the waveform
- The Fourier transform computes these coefficients from the waveform
- We can vary the number of coefficients by varying the duration of the waveform being analysed
 - This varies the resolution of the frequency domain representation
- There is an inverse transform back to the time domain
- Terminology:
 - DFT: Discrete Fourier Transform
 - FFT: Fast Fourier Transform

FFT spectrum of a signal

• The FFT coefficients show the proportions of different frequencies present in the signal. We can plot them:

 This is the spectrum of the signal. For now, let's assume this is a suitable representation for doing speech recognition (we'll come back to this oversimplification a little later and fix it by replacing the FFT coefficients with MFCCs)

Trading off time and frequency resolution

- Using the FFT, we can vary the number of coefficients, to vary the frequency resolution. But there is a price to pay...
- The number of coefficients depends on the number of samples in the waveform being analysed
- Long window
 - Poor time resolution
 - Good frequency resolution
- Short window
 - Good time resolution
 - Poor frequency resolution
- Feature extraction for speech recognition must be a compromise
- Typically, frames of 25ms duration are used, spaced every 10ms

Measuring similarity

• We want a measure of the distance between two recorded words

 The distance between the two patterns is the sum of the local distances between corresponding frames

Linear time warping

- There are two operations involved in finding the distance between two sequences of frames
 - Find an alignment between the two sequences of frames
 - Add up the local distances between aligned pairs of frames
- The simplest alignment is to stretch the shorter pattern

Local distance measure

- Having aligned the two sequences, we need to compare individual frames
- Imaging that there are only two components in each vector we can draw the vectors on a 2-dimensional (x-y) plot like this:

What's wrong with our word recogniser?

- Time alignment of reference (template) and unknown word
 - linear stretch is not appropriate for speech
 - because some sounds are more 'stretchy' than others
- Local distance measure
 - currently just a geometrical distance
 - gives equal weight to all components in the vector
- We'll deal with the alignment problem first

Dynamic time warping

• Some speech sounds 'stretch' more than others, when we extend the duration of a word. We need a dynamic alignment which can deal with this

- There are many possible alignments
 - first, how do we **define** the correct alignment?
 - then, how do we **find** it?

Defining the correct alignment

- We define the correct alignment as:
 - the one that results in the smallest total distance between the unknown word and the reference
- This is appropriate for speech
 - it will lead to alignments of the most similar sounds in the reference and unknown words
- So, the problem now is finding that alignment amongst all the possible alignments.
 - a search problem!
- Search is a key concept in speech recognition it will turn up again

Some important terms

- When talking about matching patterns, we use the following terms
 - distance
 - cost
 - probability
 - likelihood
- Two similar patterns will have a small distance or cost.
- When we move on to HMMs later, these terms will be replaced by probabilities or likelihoods. High cost corresponds to low probability

Searching for the alignment

- The simplest search method is just to try every possible alignment
- This algorithm is called **exhaustive search**
- Will this work (i.e., will it always find the correct alignment)?
 - Yes
- How many alignments are there?
 - Too many
- Homework: find all the alignments between a sequence of 7 frames and a sequence of 9 frames (only if you have nothing better to do…)

A cunning plan

- So, there will generally be too many alignments for an exhaustive search. We'll have to be a bit more clever.
- Let's represent the problem visually:

Dynamic programming

- The path describes which frames of the unknown word are aligned with which frames of the reference
- The path cost is just the sum of the local distances along that particular path
- The problem is to
 - find the path through the grid with minimises the total cost of the path

Dynamic programming

• Consider these two paths:

 Only one of the two sub-paths A or B is part of the cheapest (=best) overall path passing through point (4,6)

The key to dynamic time warping

- Consider a point in the grid point (4,6) in the previous diagram
 - the cheapest overall path which passes through this point must contain the cheapest path into this point
 - this means that when two (or more) possible paths arrive at a point in the grid, we only need to consider the cheapest one
 - we can forget about the other one(s)
- In terms of the search problem
 - we have pruned some of the possible paths, reducing the search space
- This particular type of pruning is **very special**
 - <u>it will not introduce any errors</u>: the **only** paths that get pruned are ones that would **never** have 'won' anyway.

Dynamic time warping in action

- A simple DTW algorithm
- Pre-compute all the local distances between all possible pairs of frames in the reference and unknown words
- Store these distances at the points on the grid
- Start a path at (1,1)
- Repeat
 - Extend all possible paths forward one frame
 - Only keep best path into each grid point
- Until we reach the top right corner of the grid
- The best path arriving at that point is the winner and its cost is the overall lowest cost alignment between reference and unknown

Is DTW good enough for speech recognition?

- We can characterise the difficulty of a speech recognition task by the factors: speaker, vocabulary and conditions
- A typical application of DTW is:
 - Speaker-dependent (only works accurately for one particular person)
 - Small vocabulary
 - Isolated word recognition
- For example, voice-dialling on a mobile phone.
 - Typical error rates might be 1-2% for 50 place names, down to 0.5% for 10 digits

Problems with DTW

- Number of local distances summed is path dependent, since paths vary in their length
 - Solution: weight diagonal steps differently to horizontal or vertical ones
- Can get unreasonable alignments; solution is to impose some constraints
 - local (slope)
 - global (stay near the main diagonal of the grid)
- Time variability handled by dynamic programming: not speech specific
- Spectral variability handled by distance measure: not speech specific
- Only uses a single reference copy of each word
- Needs accurate endpointing of both reference and unknown words

Speech recognition - lecture 2 of 5

- probability distributions
- Gaussians
- MFCCs

Distance measures and probability distributions

- Need to improve the Euclidean distance measure
 - It does not reflect the distribution (spread) of the data
- Need a distance measure derived from data
 - i.e., learn from data
- Probability distributions
 - Measure the distribution of some training data
 - Use this distribution estimate the probability of the test data

What are (probability) distributions?

 Here are 2-dimensional feature vectors for a set of data. Each data point belongs to one class, either + or o

• the simple Euclidean distance measure will fail here

Learning from data

- We want to use our training data to estimate a probability distribution, but how do we represent a probability distribution?
- As a set of examples
 - e.g., the actual points
- Discrete
 - e.g., a histogram or scatter plot
- Parametric
 - e.g., a Gaussian (same as the "normal distribution" or the "bell curve" you may have encountered if you've done a statistics course)

Learning from data

- The Gaussian, or normal, distribution has just 2 parameters
 - mean and variance
- These represent the average value of the data, and the spread about that value
- If you know some statistics: variance = (standard deviation)²

The Gaussian distribution

• Univariate Gaussian:

What's so special about the Gaussian?

- Many convenient properties
 - e.g., multiply two random variables with Gaussian distributions and the result is a Gaussian distribution
- Central limit theorem
 - if we add up enough random variables, of whatever distribution, the distribution of the sum tends to be Gaussian
- Often a good approximation of observed data from the real world
- So from now on, when we talk about probability distributions of speech data, we will generally be thinking of Gaussian distributions.

How does using the Gaussian actually help

 Let's move up to two dimensions (the Gaussian can be extended to any number of dimensions) - it's now a multivariate Gaussian

Using Gaussians

• We can put Gaussians on our previous example. The large circles show two standard deviations away from the mean

Example 1: uniform distribution

• When the data is distributed uniformly in all dimensions, the Gaussian will be circular (spherical in 3 dimensions, ...)

Example 2: variance

• In general, the variance will not be the same in all dimensions, so the Gaussian will not be spherical:

 Now, the variance of each dimension must be calculated and stored individually – the number of parameters increases a bit

Example 3: covariance

• If the dimensions are correlated, then the Gaussian will be rotated:

 Now, even more parameters are needed: the covariances between every pair of dimensions – the number of parameters increases a lot

Why is covariance a problem?

- If we make the assumption that components of the observation vector are independent (i.e., not correlated), then we need fewer parameters
 - but why is having fewer parameters such a good thing?
- To understand that, we need to know how to estimate the parameters of the Gaussians: we need to derive the values of the mean and variance of our Gaussians from some training data
 - Need multiple examples of each class
 - Need a formula for the parameters in terms of the data
 - More parameters to estimate means that more data are required
- Deriving the re-estimation formulae from first principles is beyond the scope of this course, but we need to understand what they mean.

Estimating the parameters of the Gaussian

- There are many ways of deriving re-estimation formulae. The simplest and most common is:
 - Maximum likelihood, or simply 'ML'
- What the method does is to

adjust the model parameters to <u>maximise the</u> <u>likelihood</u> of the training data

 For our Gaussian, this means picking the mean and variance that makes the training data most probable

ML estimate of Gaussian parameters

- This result is simple enough:
 - The best estimate for the mean of the Gaussian is...
 - ...the mean of the training data
 - and the best estimate of the variance of the Gaussian is...
 - ...the variance of the training data
- This makes things pretty easy, provided that we have
 - training data
 - which are labelled with which class each observation belongs to

Probabilistic modelling

- Remember the two parts of the DTW
 - compute local distances
 - align the two sequences
- and the associated problems of
 - accounting for variability (temporal and spectral)
 - differing importance of each component of the feature vector
- We want to learn everything from data
 - one solution is to use a probabilistic model (sometimes called a stochastic model)

WAIT! We need to re-think the feature vector first.

- Given what we know about Gaussians, and in particular that
 - modelling covariance requires lots of additional parameters
- We must ask "Is the vector composed of the FFT coefficient values for one frame of speech a suitable feature vector for speech recognition?"
 - Does it capture the required information? **Yes**
 - Does it remove effects of F0 and other unwanted variability? No, the harmonics of F0 are still present.
 - Is it fast to compute? Yes
 - Are the components of the feature vector uncorrelated? No, they are highly correlated!

A closer look at the ear

- The ear does more than a simple frequency analysis it's not just doing something like an FFT
 - it performs various non-linear transformations on the signal
- Some facts about the human auditory system:
 - The loudest tolerable sound has an intensity 1 million million (10¹²) times the lowest intensity sound we can hear
 - We can perceive frequencies from about 20Hz to 16kHz
 - Range decreases with age
 - Sensitivity varies with frequency
 - Most sensitive over frequencies found in speech
 - Frequency discrimination decreases at higher frequencies

Perceptually motivated analysis

- The most useful properties of human hearing that we can apply to automatic speech recognition are:
 - frequency range is limited (say, to 8kHz for speech)
 - frequency discrimination decreases as frequency increases
 - amplitude scale is non-linear
- and we do this by
 - limiting the sampling rate of the digitised speech to 16kHz
 - warping the frequency scale
 - applying some non-linear compression to the amplitude

Warping the frequency scale

- How do we warp the frequency scale?
- The cochlea in the ear converts from the time domain to the frequency domain using a bank of filters. We can do the same:

• The centres of the filters are spaced on a non-linear scale, which reflects our knowledge of the human auditory system (e.g., the Mel scale)

The Mel scale

• Perceptual experiments reveal the frequency scale used in the human auditory system. A close approximation to this is the Mel scale:

Is the set of Mel-scale filterbank outputs a good representation for recognition?

- Does it capture the required information?
 - Yes, captures overall spectral shape
 - Yes, uses non-linear frequency scale
 - Yes, we can apply amplitude compression to the filterbank outputs
- Does it remove F0 effects?
 - Yes, it smoothes the harmonics away
- But, there's still one problem:
 - adjacent outputs of the filterbank are highly correlated

Why is correlation a problem?

- Our representation of the speech signal is a vector of numbers for each frame
- Probability distributions of correlated data require extra parameters to describe the amount of correlation (covariance)
- Statistical independence between components of the vector is a Good Thing
- The last step is therefore to transform the filterbank outputs:
 - compress the dynamic range by taking the logarithm
 - reduce the correlation by taking a cosine transform of the log filterbank outputs

What's a cosine transform?

- It's a bit like another Fourier transform
 - it captures the shape of the spectrum in other words, the spectral envelope
 - the degree of detail which is captured can be controlled by the number of coefficients we use - and we wish to limit the amount of detail so that
 - only the important properties of the spectral envelope are retained (e.g., formants)
 - unnecessary fine detail is discarded (e.g., effects of F0)
- These are called Mel frequency cepstral coefficients (MFCCs).
- Typically, the first 13 coefficients of the cosine transform are retained.
- Cepstrum is an anagram of spectrum

The feature extraction process from waveform to MFCCs

- Take frames of the time domain signal, apply a window
 - 25 ms duration @ 16kHz sampling rate = 400 samples
- Convert to frequency domain
 - take the FFT of each windowed frame
- Perceptual frequency scale warping, smooth away harmonics of F0
 - Mel-scale filterbank, typically 22 filters
- Decorrelate
 - cosine transform, typically retaining first 13 coefficients
- We have reduced the number of parameters needed to represent one frame of 16kHz speech from 400 to 13, by discarding unwanted information

Speech recognition - lecture 3 of 5

- generative models
- from DTW to HMMs

Generative models

• We have a model for each **class** (e.g., word) we want to recognise

- For an unknown word to be recognised (**classified**), first obtain the sequence of feature vectors for the incoming speech (*feature extraction*)
- Use each model in turn to generate this sequence
 - During generation, also compute the **probability** that the model generated the observation sequence
- Pick the most probable model

Generative models

- This is a powerful framework for classification
 - need a model for each **class** (e.g., word or phoneme)
 - model randomly generates observations (e.g., sequences of MFCC vectors)
 - model can compute the **probability** that it generated a particular given observation sequence
- The models themselves are **not classifiers**
 - in other words, they do not directly perform the task of recognition
 - rather, they are used to compute the probability that an observation sequence for an unknown word could have been generated by that model
 - given the probabilities for different models, the classification decision can be made (by choosing the most probable model)

Types of generative model

- The type of model we are looking for should
 - be able to generate all possible observations (so that it can always assign a non-zero probability to any particular given sequence)
 - generate observations from its **own class** with a **high** probability
 - generate observations from **other classes** with a **low** probability
 - be learnable from data
- A probability distribution, such as the Gaussian, has these properties

Can we do speech recognition yet?

- What are the classes we are trying to recognise?
 - Words?
 - Phonemes?
 - Something smaller?
- Is estimating a single Gaussian for each class going to work?

Back to DTW

- In DTW, we were matching the stored sequence of feature vectors for a reference word (template) with the incoming sequence for an unknown word
- We are going to replace the stored sequences of feature vectors (i.e., exemplars) of the reference words with Gaussian probability distributions (i.e., models), trained on multiple examples
- One question is, "How many Gaussians do we need to model our word?"
- Or perhaps, "Are Gaussians alone a sufficient model?"
- The missing link seems to be that
 - a Gaussian can generate a single observation (i.e., a feature vector)
 - but how do we arrange these into a **sequence**

From DTW to Hidden Markov Models

- So far we have covered
 - Dynamic time warping
 - Distance measures
- Improving the distance measure lead us to
 - Probability distributions
 - In particular: the Gaussian probability density function (pdf)
- We then introduced the concept of
 - Generative models

• Now we can tie this all together...

The Gaussian as a generative model

• We can generate a sequence of observations using a Gaussian probability density function simply by repeatedly generating individual observations

- The observations have a Gaussian distribution
- The distribution is constant it doesn't vary with time (technically, we say that the observations are *independent and identically distributed*)

Going the other way: given an observation, compute the probability

- For speech recognition, we are given the observation and need to know the probability that a particular Gaussian generated it.
- We can easily work this out:

Views of probability

- There are two ways to look at probability
- <u>Classical or Frequentist</u> (what you learn at school)
 - Count things
 - Repeat experiments multiple times
 - Probability is the fraction of the time that a certain outcome is reached
- <u>Bayesian</u>
 - Degree of belief/certainty, perhaps expressed as a pdf (probability density function)
 - Our degree of certainty can be changed by observing data
 - we combine prior belief with incoming evidence

Bayesian view of Gaussian generative model

- This is the viewpoint that we will adopt
- The model computes the probability (degree of certainty) that it generated a particular observation
- This computation is easy for Gaussians

• Then, classification is as simple as choosing the most probable model

Some simple probability

- Before going further we need just a little probability theory
- Imagine two independent events: X: It will rain tomorrow Y: I'll be wearing blue socks tomorrow
- Random variables are written in upper case: X and Y
- The probability of X taking the value x is written P(X=x)
- Or we can write P(X), which means the probability distribution of X
- The probability of both events occurring is computed by multiplying

$$P(X,Y) = P(X)P(Y)$$

• ...because they are **independent**. Independence makes the calculation simple.

Generating sequences

- Our speech signal has been parameterised as a discrete sequence of observations
- A single Gaussian can generate any number of observations, one after the other

$$\mathbf{O} = \mathbf{o}_1, \mathbf{o}_2, \mathbf{o}_3, \dots, \mathbf{o}_N$$

- We are going to assume these observations are statistically conditionally independent. That is if o₁ and o₂ were generated from the same Gaussian then
 - the value of o₂ does not depend on the value of o₁, given that we know the parameters of the Gaussian
- This is called conditional independence

Conditional independence

- We know the parameters of the Gaussian that generated o₂
- Therefore we know the pdf of o₂. This expresses our (Bayesian) beliefs about the sorts of values we might expect o₂ to take
- Knowing the value of o₁ does not change our beliefs about o₂ at all
- This makes the model simpler and the probability calculation easier:

$$P(\mathbf{O}) = P(\mathbf{o}_1)P(\mathbf{o}_2)P(\mathbf{o}_3)\dots P(\mathbf{o}_N)$$

- But is this a reasonable assumption?
 - (not really, but it makes the model *much simpler* and anyway we'll try to mitigate any problems this causes later on)

What about duration?

- How many observations will each Gaussian emit?
 - when do we move from one Gaussian to the next?
- We need to model **duration**

Finite state machines

- We need some temporal constraints to
 - 1. use the Gaussians in the correct order (!)
 - 2. model duration

- Transitions have probabilities
- States contain the Gaussian pdfs.

Generative Markov model

- The model now generates sequences of observations
- Duration of each state controlled by self-transition probability
- Each state emits observations with a Gaussian distribution

What is Markov about the model?

- Markov = "memoryless"
- Applied to our model, this means:
 - the probability of an observation depends only on the current state of the model and not on past or future states or observations
 - the probability of arriving in a particular state at time t depends only on which state we were in at time t-1

• These two limitations on our model make it *much* simpler to compute with.
Duration in Markov models

- The self transition on each state controls the distribution.
- High self transition probability → it is likely that the model will remain in a state for longer
- Low self transition probability → it is likely that the model will spend less time in a state
- The probability of remaining in a state for n frames depends on the self transition probability p multiplied by itself n-1 times. p is always less than 1
- The distribution looks like this:

Example

• Before looking in more detail at HMMs, an example:

Example

Let's ignore the transition probabilities, for simplicity. The PDF of the Gaussian is:

$$p(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

• Model A:

Most probable state sequence is 1,1,2,3,3,3Emission probabilities 0.18, 0.16, 0.13, 0.20, 0.20, 0.20 Total probability = 0.000030

• Model B:

Most probable state sequence is 1,1,2,2,2,3Emission probabilities 0.31, 0.15,0.10,0.10,0.10,0.19 Total probability = 0.000009

• Note: we actually computed probability density, not probability, but it's OK

Multiple paths

- For a given observation sequence, there are generally multiple paths (i.e., state sequences) through the model
 - it can generate the same observation sequence in more than one way
- The probability of each path will generally be different
- Therefore, the probability of a model generating a particular observation sequence is actually computed as the **sum over all possible paths**. This is called the total probability or the forward probability.
- We saw in DTW how many paths there can be (i.e., too many!) so we can make an approximation:
 - only the most likely path is evaluated
- A path represents a particular alignment between states of the model and observations: we call this the **state sequence**

What is hidden about the model?

- Because there are multiple paths which lead to the same observation sequence:
 - for any given observation sequence, the actual state sequence is not observable
 - so we say that the state sequence is **hidden**
- We can use dynamic programming (the same algorithm as DTW) to find the most likely path. More on this later...

Hidden Markov Model

- We can now specify our model fully
- We have:
 - states, transitions, and observation probability density functions
- We will now adopt a useful convention (used in HTK) of dummy start and end states

Relating this to the assessed practical

- The task is to:
 - Build an isolated digit recogniser
 - Test it
 - Improve it
- The main part of the practical is to make a speaker-dependent, isolated word recogniser.
- You then go on and make as many improvements as time allows:
 - multi-speaker, speaker-independent, connected-digit, anything else you can think of, ...

Data

- We will need some training data
- Quantity?
 - 7 examples of each token
- Labelling?
 - Using wavesurfer
- Parameterisation?
 - MFCCs
- Language?
 - English, as this makes speaker-independent easier (because you can use data from other students)

Models

- We need to specify our models:
 - How many states?
 - What transitions?
- In HTK this is done by providing a template or *prototype* model
- You are provided with some prototypes, which you can edit if you need to.

Labelling the data

- We are doing isolated word recognition, so we will label at the word level
- The label set is: zero, one, two, ..., nine
- Important: there will be silence between the words in your recording. We don't want to train models on that, so we must label it as something else: use the label 'junk'

- It is very important to divide the data into **training** and **testing** sets
- You cannot test models on the same data they were trained on that only tests the models' capacity to 'memorise' data
- We want to test the **generalisation** of models to new data

Language model

- Even for isolated word recognition, HTK needs a language model we'll see why later. We'll have a very trivial model, which allows sentences to be composed of exactly one digit; all the digits have equal probability.
- You may try connected digit recognition with a small modification to the language model

Testing the models

- Measuring the performance on unseen data
- You can experiment with the models at this stage:
 - Using your own speech
 - On a new speaker of the same gender
 - On a speaker of a different gender
 - Many experiments are possible

The HTK toolkit

- We are using version 3 of the HMM toolkit from Cambridge University
- The names of the programs in the toolkit start with H
- HCopy parameterises the data
- HInit initialises the models
- HRest trains the models ('re-estimation')
- HVite performs recognition using the Viterbi algorithm (i.e., dynamic programming)
- Scripts are provided to make the running of these programs easier
 - you don't need to change any HTK programs
 - you will need to modify the scripts, in order to conduct your experiments

General options for HTK tools

- Command line options to the HTK tools are single letters. Upper case letters apply to all the tools, such as
 - **-T 1** gives tracing information
 - -S <filename> provides a script file (a list of files to process)
 - -C <config file> specifies a configuration file (usually called CONFIG)

An example

- Some conventions used in the tutorial sheet:
 - **bash \$** represents the prompt. Don't type it
 - <filename> means fill in a filename here (don't type the < > part)
 - \ means command continues onto the next line

```
bash $ HCopy –T 1 \
```

```
-C resources/CONFIG_for_coding \
```

wav/train_data.wav mfcc/train_data.mfcc

- The filename endings depend on the type of file:
 - file.wav waveform
 - **file.mfcc** MFCC coefficients
 - file.lab text labels
 - file.rec recogniser output labels

Speech recognition - lecture 4 of 5

- conditional probability
- Bayes' rules
- priors and posteriors
- the Viterbi algorithm implemented as token passing
- sub-word models
- language models

Conditional probability

- So far, we have made lots of independence assumptions
- What happens when events are not independent?
 - for example, predict someone's height, given their gender
- We can express this in a Bayesian way: what is the probability that a person's height H is equal to the value h, given that their gender G is equal to g?
 - The notation for conditional probability is P(H=h | G=g)
 - or simply P(h|g)
- Our HMM also computes a conditional probability: what is the probability of a sequence of observations, given a particular word model?
 - We write that as P(O|W)

Bayes' rule

- In speech recognition, what we actually want to know is the probability of a word, given the observation sequence: P(W|O)
- This is a problem, because we can only compute P(O|W) with the HMMs
- Fortunately there is a law of probability that says:
 - P(O,W) = P(O|W) P(W)
- and so by symmetry:
 - P(O,W) = P(W|O) P(O)
- Putting these together gives us Bayes' rule: $P(W|\mathbf{O}) = \frac{P(\mathbf{O}|W)P(W)}{P(\mathbf{O})}$

Bayes' rule and speech recognition

• Note: W can be a single word, or a sequence of words (or any units). This formula works in all cases.

Interpreting Bayes' rule

- There are 3 terms on the right hand side of Bayes' rule as used for speech recognition
- P(O|W) the **likelihood** of the observations, computed by the HMM
- P(W) the **prior** probability of the word (or word sequence)
- P(O) the **prior** probability of the observations.
 For any single observation sequence, this is constant, so can be ignored
- We need to compute the first two terms in order to evaluate P(W|O)

Bayes' rule

• There is no need to evaluate P(O) because it is constant for any given utterance we are recognising

$$P(W|\mathbf{O}) = \frac{P(\mathbf{O}|W)P(W)}{P(\mathbf{O})}$$
$$P(W|\mathbf{O}) \propto P(\mathbf{O}|W)P(W)$$

- The process of speech recognition can now be stated as:
 - find the **most likely** word sequence
 - in other words, find the value of W that maximises P(W|O)

The prior probability

- The term P(W) is called the **prior** probability of the word sequence.
- Prior means that it can be computed before any observations have been made.
- In Bayesian terms:
 - it expresses our prior beliefs about what word sequences are likely
- In other words, it is our model of language
- We'll be looking at ways of computing this term later.

The posterior probability

- The term P(W|O) is called the **posterior** probability of the word sequence.
- Posterior means that it is computed after the observations have been made
- In Bayesian terms:
 - it expresses our **revised** beliefs about W, now that we have received new information in O

The Viterbi algorithm

- In DTW: many possible alignments between two sequences
- HMMs: many possible alignments between HMM states and observations
 - we call this alignment the **state sequence**
 - it's the counterpart of the **path** in DTW
- By definition, an HMM computes P(O|W) by adding up the total (forward) probability over all possible state sequences that could have generated O
- But we usually make an approximation: only the probability of the single most likely state sequence is computed
- We are assuming that the probability of the most likely path is a good approximation (or at least proportional to) the total probability. This turns out to be quite a good assumption

Numerical issues

- As we saw last time, even with a trivial example the probabilities can get VERY small indeed.
 - because we are multiplying together lots of numbers (probabilities and probability densities) that are less than 1
- Problem: computers can only represent numbers with a certain precision (just like having a fixed number of decimal places on a pocket calculator)
- Result: "underflow"
- Solution: work in log probabilities
 - these are what you will see in HTK output

- $\log_{10} 100 = 2$
 - $\log_{10} 10 = 1$
- $\log_{10} 1 = 0$
- $\log_{10} 0.1 = -1$
- $\log_{10} 0.01 = -2$
- $\log_{10} 0.000001 = -6$
- $\log_{10} 0.00000361 \approx -6.442$

The Viterbi criterion

• We have already seen this in DTW. Here is the Viterbi criterion for HMMs

The most likely complete path passing through a particular state at a particular time must contain the most likely path arriving at that state at that time

Concepts in token passing

- Remember:
 - We are searching for a path through the model. During the search, we consider many partial paths: some are extended, others are abandoned.
- Tokens
 - Represent partial paths
 - Hold a (log) probability
 - Have a record of their path so far
- Token passing
 - Extends partial paths forward in time
 - Tokens move from state to state, along the arcs in the HMM

Starting and ending probabilities

- An HMM consists of states (containing observation pdfs) and transitions
- We need to specify the probability of starting (and of ending) in each state

• We can represent this as a simple matrix. For example:

0.0	0.7	0.3	0.0	0.0
0.0	0.6	0.4	0.0	0.0
0.0	0.0	0.7	0.2	0.1
0.0	0.0	0.0	0.8	0.2
0.0	0.0	0.0	0.0	0.0

Token passing in action (generative view)

 We need some initial conditions: there is a partial path (token) in the start state, with probability=1

 At each time step (frame), we move the token along an arc, and then generate an observation

Token passing in action

• At the second step, there are two arcs leaving state 2. We send copies of the token along both arcs

• and each token then generates the second observation:

Token passing is a parallel search

- At a given time step (frame), each token generates the same observation.
 - e.g., at time t=2, observation o₂ is generated

- Each token is exploring a different path through the model.
- Since there is generally more than one token "alive" at any given instant, this means that multiple paths are all being explored in parallel

Token passing as recognition

- It is a generative model: an observation is generated as a token enters or reenters a state.
- For recognition, what we actually do is calculate the probability that the state in question would generate the given observation
- We add this log probability to the log probability total stored in the token
- We also add the transition log probabilities to this score as we move from state to state

Viterbi criterion for token passing

• Whenever two, or more, tokens arrive in a state at the same time, we only keep the most likely one:

• Which is analogous to two paths arriving at the same point in the DTW grid

- Even with the Viterbi algorithm, recognition can still be too computationally expensive (i.e., too slow and/or uses too much memory)
- It is usual to do additional pruning. This involves discarding tokens whose probability has fallen below some defined level
- How do we define this level?
 - Relative to the best token (i.e. best partial path at this time)
 - Beam search
- Pruning makes the search faster, but it is now possible to prune the path that would have gone on to "win", so error rates may increase
- It may be acceptable to slightly increase the error rate in return for a speed up in computation by a factor of 10 or 100

Performance evaluation

• Standard measure is word error rate on a test set. For connected speech: three types of errors:

• Where N is the number of words in the reference transcription
Interpreting results

- It is easy to get very high percent correct, by making lots of random insertions.
- Accuracy is a better measure, since it take the number of insertion errors into account.
- Accuracy can be negative when there are a lot of insertions
- The word error rate is defined as:
 - WER (%) = 100 Accuracy

• The alignment between the reference transcriptions and the recogniser output is determined by dynamic programming

Continuous speech

- Things we would like our recogniser to work with:
 - A larger vocabulary
 - Continuous speech (rather than isolated words)
 - New (unseen) words
- What changes do we have to make?

Larger vocabulary: sub-word units

- Let's say that a word model needs 10 training examples.
 - Small vocabulary: it is practical to collect training data for every word
 - Larger vocabulary: this is no longer practical
- How do we train models for words we have no training data for?
- Use sub-word models
 - Typically phonemes
 - Can write the pronunciation dictionary by hand (just a mapping from words to phoneme strings)
 - Models of words will be built up by joining together models of phonemes

Language model: first attempt

- We will start with a very simple language model.
 - e.g., for our digit recogniser:

A useful property of HMMs

- Now we come to a very important property of HMMs
 - They can be joined together to make larger HMMs
- Consider the word "cat" with pronunciation /k ae t/

- The model for the word "cat" is simply made by joining the models of the constituent phones /k/ /ae/ and /t/
- Because the result is just another HMM, we can use all the same training and recognition techniques.

From HMMs of phones to HMMs of utterances

Token passing for connected models

- Now we can see why token passing is such a useful view of Viterbi search
 - The algorithm for connected word recognition is exactly the same as for isolated words
- This is because we have joined our words together with arcs, just like the internal HMM arcs
- The arcs that join words are the language model and can have probabilities too.

Back to Bayes

• Remember we are trying to compute:

$$P(W|\mathbf{O}) = \frac{P(\mathbf{O}|W)P(W)}{P(\mathbf{O})}$$

- P(W) is the probability of the word sequence W and is computed by the language model
- First, let's look at a very simple form of P(W): models where P(W) is either 0 or some constant non-zero value
 - We might call these non-probabilistic models
 - Word sequences are either allowed, or not allowed.

Finite state networks

- A natural way to express constraints like this is a finite state network
 - e.g., for our isolated digit recogniser:

• We can simply write this down by hand

Another finite state example: voice dialling

• Again, we can write this down by hand – no need to train on data

Word-pair models

- Writing these networks by hand will quickly become tedious for larger tasks.
- One alternative is a word pair model:
- For each word in the vocabulary, we just list all the allowed following words:

word	allowed followers
the	cat, hat
cat	in, on, sat
sat	in, on

• We could learn this from data, or write it by hand

Word-pair finite state model

- The word-pair model can be represented by a finite state network
- Here is a fragment

What do we want from a language model?

- Intuition: as we add more pairs to the word-pair model, it becomes weaker.
- In the limit:
 - All pairs are allowed
 - Therefore all word sequences are allowed
 - The language model (LM) then does nothing useful
- We want our LM to **discriminate** between different word sequences
- Remember, we are trying to compute the P(W) term
- Probabilistic models

Probabilistic word-pairs

• Here's part of a finite state probabilistic word-pair model:

- If any word can be followed by any other word, and all arcs have probabilities, this is a bigram language model
 - Details can be found in the readings

Speech recognition - lecture 5 of 5

• training HMMs

Training HMMs

- Recap: we already know how to estimate parameters of a Gaussian PDF
- Existing concept: maximum likelihood (ML) estimation
- Problem in extending this to HMM training: state sequence is hidden
- Solution: an iterative training algorithm
- New concept: **expectation-maximisation** (EM)
- We'll start with the simpler case: Viterbi training (as used in HInit)
 - using the single most likely state sequence
- Then EM training using the Baum-Welch algorithm (as used in HRest)
- We'll assume isolated word data & whole word models. Connected speech is left for the ASR course next semester

Estimating the parameters of a Gaussian

- We already saw that it's easy to get ML estimates for these parameters from training data O={0₁,0₂,...,0_N}. We can state (*a proof is beyond our scope*):
 - ML estimate of the mean is: the mean of the training data:

$$\widehat{\mu} = \frac{1}{N} \sum_{i=1}^{N} o_i$$

• ML estimate of the variance is: the variance of the training data:

$$\hat{\sigma}^2 = \frac{1}{N} \sum_{i=1}^{N} (o_i - \hat{\mu})^2$$

The training problem

- The Hidden Markov model is a generative model
- States generate observations with distributions according to their probability density function (typically a Gaussian)
- But the state sequence is hidden
 - we say "hidden" because there are many possible state sequences that can generate the same observation sequence
- We can estimate parameters of each Gaussian only if we have some observations that <u>we know were generated by that Gaussian</u>
- Catch-22
 - we need to know which state generated which observation!

Two simple training methods

- We have a seemingly impossible task, because the state sequence is hidden
- A first approximation is to consider only a single state sequence (just like we do during recognition) - the state sequence is no longer hidden
- Uniform segmentation
 - A one-step solution
- Viterbi training
 - An iterative method
- We'll focus on estimating the observation densities, and ignore the transition probabilities

Uniform segmentation: alignment

- Consider a model with 3 states and a single training example with 6 frames
- Segmentation: align each observation with exactly one state the simplest thing is to divide the observations as uniformly as we can amongst the states:

Uniform segmentation: parameter estimation

- The parameters of the Gaussian for each state are now computed from the observations aligned with that state
 - no point repeating this procedure because we'd get the same outcome every time

New concept: iterative methods

- There is no simple solution for the ML estimate of the parameters of our HMM
- Clearly, a uniform segmentation is sub-optimal
- We will have to use an iterative method
 - Take a model
 - Somehow increase the likelihood of the data given the model
 - Repeat until likelihood doesn't increase any further
- In this way, we can get iteratively closer and closer to the "best" parameters for our model
- We define "best" as those parameters that maximise the likelihood of the training data – that is, the ML estimate

Viterbi training

- An iterative method
- Can we find a better alignment than uniform segmentation?
 - Of course we can: the Viterbi algorithm finds the most likely alignment of states and observations
- So, given a model, we can
 - align the observations with the states
 - use this alignment to re-estimate the Gaussian means and variances
 - and so get better estimates of the Gaussian means and variances

Viterbi training

- Take a model
- Align the observations to states
 - Important: note that the alignment we find depends on the model parameters
- For each state
 - Take the observations aligned to it
 - Compute their mean and variance
 - Update the parameters of the Gaussian to be that mean and variance
- Iterate

Viterbi training: alignment

• Find the most likely alignment of states and observations

Viterbi training: parameter update

• Update parameters:

Viterbi training: iterated alignment

• With the new model parameters, find the most likely alignment of states and observations:

Viterbi training: iterated parameter update

• Update parameters again

A better method

- So far, we have only considered the single, most likely, state sequence
 - What about all the other state sequences?
- We will now take a look at the standard training algorithm for HMMs, without any mathematical derivation (*that's left for the ASR course, but if you have the mathematical ability you might want to look at a textbook now*)
- We know by now:
 - There are many state sequences that can generate any given observation sequence
 - In other words, the state sequence is a hidden variable
- and we also know:
 - Each of these state sequences has an **associated probability**

Models with hidden variables

- Our model has an observed variable (the observation sequence) and a hidden variable (the state sequence)
- If we knew the values of the hidden variable, we could do simple ML estimation (that is what we just did in Viterbi training)
- A common solution for models with hidden variables is called Expectation-Maximisation
- The idea is to:
 - Average over all possible values of the hidden variables, using the current model parameters (that's the **Expectation** bit)
 - Update the model parameters to maximise training data likelihood (that's the **Maximisation** bit)

Back to Viterbi training for a moment

- The observation sequence $O = \{o_1, o_2, \dots, o_N\}$ is aligned with the states
 - Here, each observation aligns with exactly one state
- For a particular state s, our estimate of the mean is the mean of the observations aligned with that state:

$$\widehat{\mu}_s = \frac{1}{M} \sum_{i=1}^N o_i P(i)$$

- Where P(i) = 1 if the observation *i* was aligned with state s
- And P(*i*) = 0 otherwise
- And M is a normalising factor

Consider all state sequences

- We could consider all state sequences and weight each one by the probability that it generated the observation sequence
- Previously, for a particular state s we had this:

$$\hat{\mu}_s = \frac{1}{M} \sum_{i=1}^N o_i P(i)$$

• which might become:

$$\hat{\mu}_s = \frac{1}{M} \sum_{i=1}^N o_i P(\text{of being in state } s \text{ at frame } i)$$

• We have weighted each observation in the sum (i.e., the computation of the mean) by the probability that this state (s) generated it

Expectation-Maximisation

- Now we have an iterative algorithm to estimate the parameters of our HMM
- There are two phases to each iteration:
 - **E step**: compute the expectation ("averages"), given the current model parameters and the training data
 - **M step**: update the model parameters
- The algorithm is iterative and goes: E step, M step, E step, M step, ...
- The EM algorithm guarantees to increase (in fact, *not decrease*) the likelihood of the training data each iteration, until convergence
- The increases tend to get smaller and smaller as the algorithm runs

EM for HMMs

- The EM algorithm as applied to HMMs is called the **Baum-Welch algorithm**
- The E step consists of computing expectations such as the expected probability of being in each state at each time
- The M step updates the parameters (means and variances of the Gaussians, transition probabilities)

• We are not going to cover the update formulae for the transition probabilities

What is convergence: when does training stop?

- The EM algorithm only guarantees to incrementally improve the likelihood of the training data
 - this likelihood converges to some value as training proceeds
 - training stops when the improvement per iteration becomes small
- But, EM cannot guarantee to increase the likelihood of the test data
- So, there is no guarantee of good performance
 - We must engineer good performance into the system
 - typically, by ensuring that the training data are representative of the sort of test data we expect to see.

The complete speech recogniser

- Parameterisation of speech
- Acoustic models
- Dictionary (only when using sub-word units not the focus of this course)
- Language model
- Architecture
- Search
- Performance evaluation
- Integration with other systems
Two views

- Two different views of speech recognition
 - Flowchart
 - Generative model
 - Recogniser as probabilistic generator of observations
 - Utterance model generates words
 - Word model generates phones
 - Phone model generates observations
- The second view fits nicely with our Bayesian formulation

Parameterisation

- Sampling: must use high enough sample rate to capture all important frequencies
- Frame based analysis:
 - · assume short-term stationarity
 - choose a frame duration (25 msec) and frame spacing (10 msec) to suit speech
- Smooth away F0 and apply perceptual weighting: Mel-scale filterbank
- Amplitude compression: take logs
- Reduce dimensionality & decorrelate: cosine transform
- The result: MFCCs

Acoustic models

- Hidden Markov models
- Assume observations are independent samples from Gaussian distributions
- Any state can generate any observation
 - state sequence is hidden
- Left-to-right model topology for speech

Language model

- Very simplistic models used in ASR
 - N-grams
- Trained from data (not covered in this course)
- Potentially very large number of parameters
 - Real systems use a mixture of 3- 2- and 1-grams (a backed-off model)
 - e.g. typical backed-off trigram model for Wall Street Journal task takes 100+ Mb of storage and contains:
 - 20k unigram
 - 5 million bigrams
 - 6.7 million trigrams

Architecture

- Need to implement the recogniser
- Elegant implementation for HMMs with finite state LMs
 - We can compile together the language model, pronunciation models and hidden Markov models into one big finite state network
 - ...and use token passing
- Problems with this approach:
 - The compiled network will get very large for big language models
 - Only works for time-synchronous search (more about this in the ASR course)

A flow chart

• If you like that sort of thing...

• The LM, lexicon and phone models are constraints on the search space

A unifying view

- Bayes' formula allowed us to write down a probability we <u>need</u> to compute in terms of things we <u>can</u> compute
- This lead to an implementation in which we compiled together our models at sentence, word and phone levels.
- The result was a single model
 - More importantly, a single generative model
- So, rather than think of a flowchart, think in terms of a generative model of speech

The generative model view

Search

- With all our models compiled into a single network, the problem becomes one of performing a search for the most likely word sequence
- The Viterbi criterion is the key
 - It is applied right down to the HMM state level
- Is it enough?
 - Can we make the search faster?
 - For large vocabulary systems with trigram language models, the search will still be slow unless we do quite a lot of additional pruning

Pruning

- Without pruning, there is always one token in every state of the model
 - Many tokens will have low likelihoods
 - We can discard some tokens
 - This reduces the amount of computation
 - Recognition is faster
- Common pruning method
 - beam search
- There is always a risk of discarding the correct word sequence (pruning error)