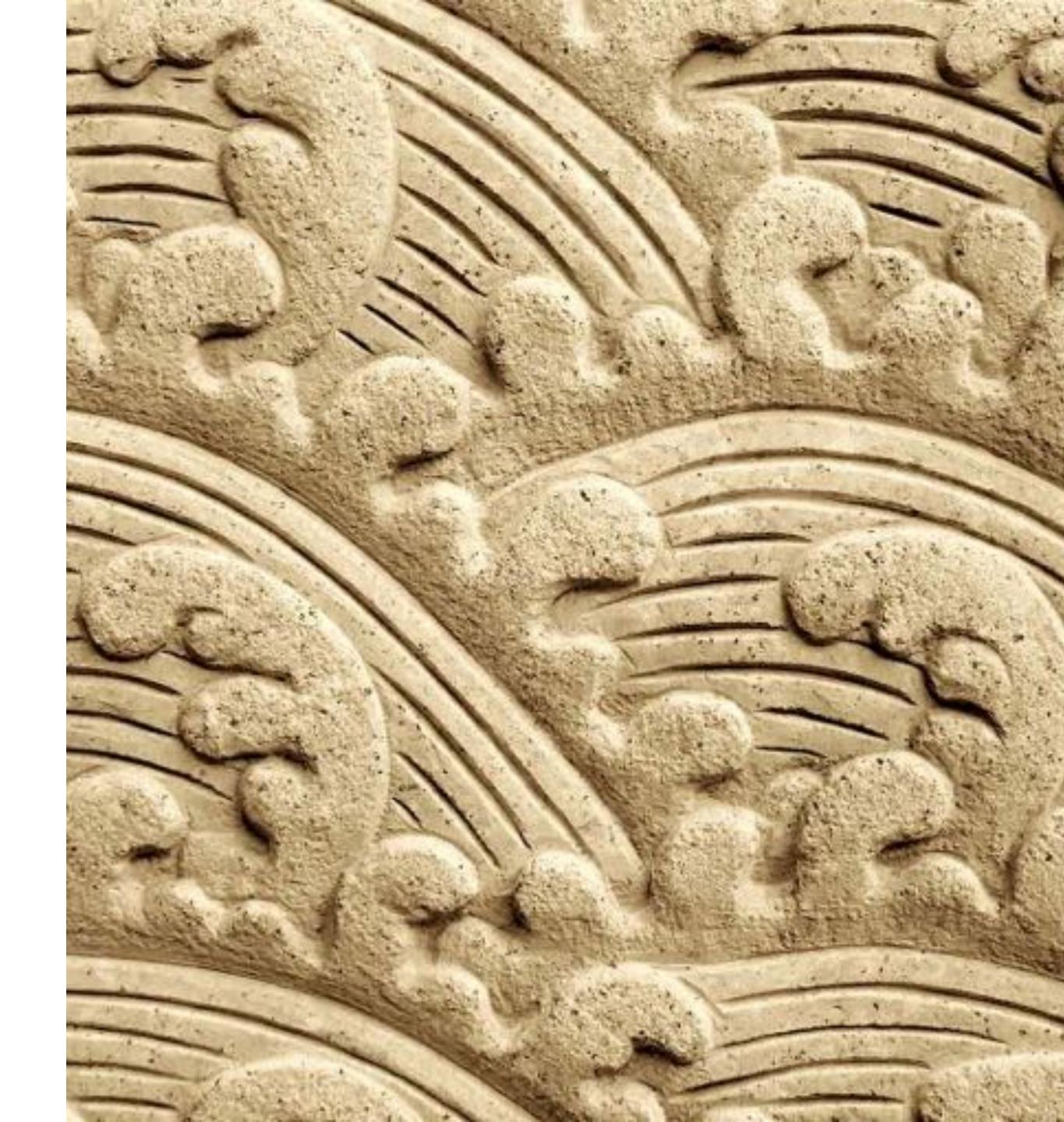
Speech Processing

Simon King University of Edinburgh



Module 7

Pattern matching

Orientation

• We're on a journey towards HMMs

• Pattern matching

• Extracting **features** from speech

• Probabilistic generative modelling

What we are learning along the way

Dynamic programming
(in the form of Dynamic Time Warping)

The interaction between

- choice of model
- choice of features

Dynamic programming
(in the form of the Viterbi algorithm)

What you should already know

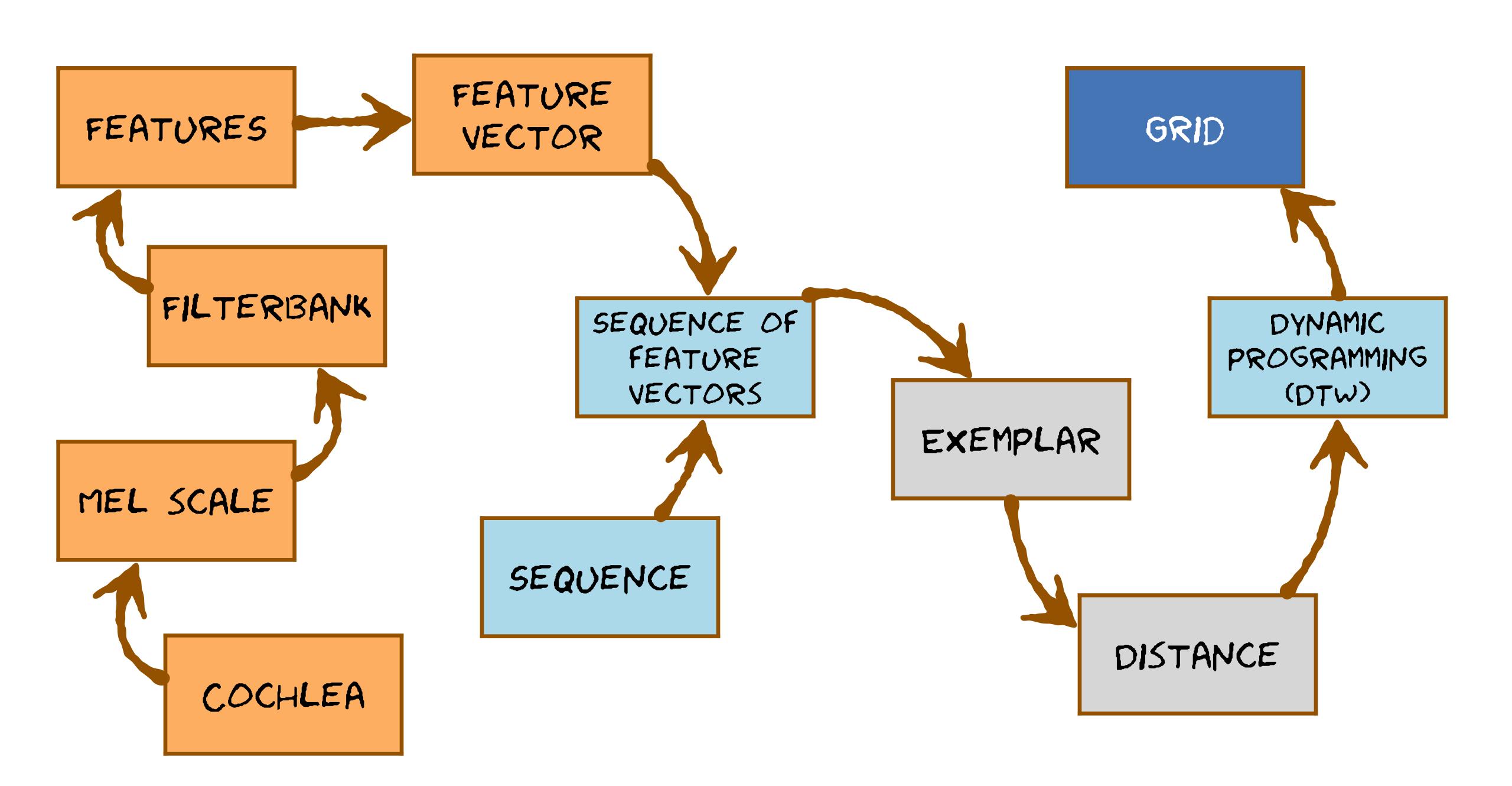
- Why the **waveform** is not good for pattern recognition
- Concept of a **feature vector**
- Let's start as simple as possible: whole word templates
 - But we already have to deal with sequences of different lengths

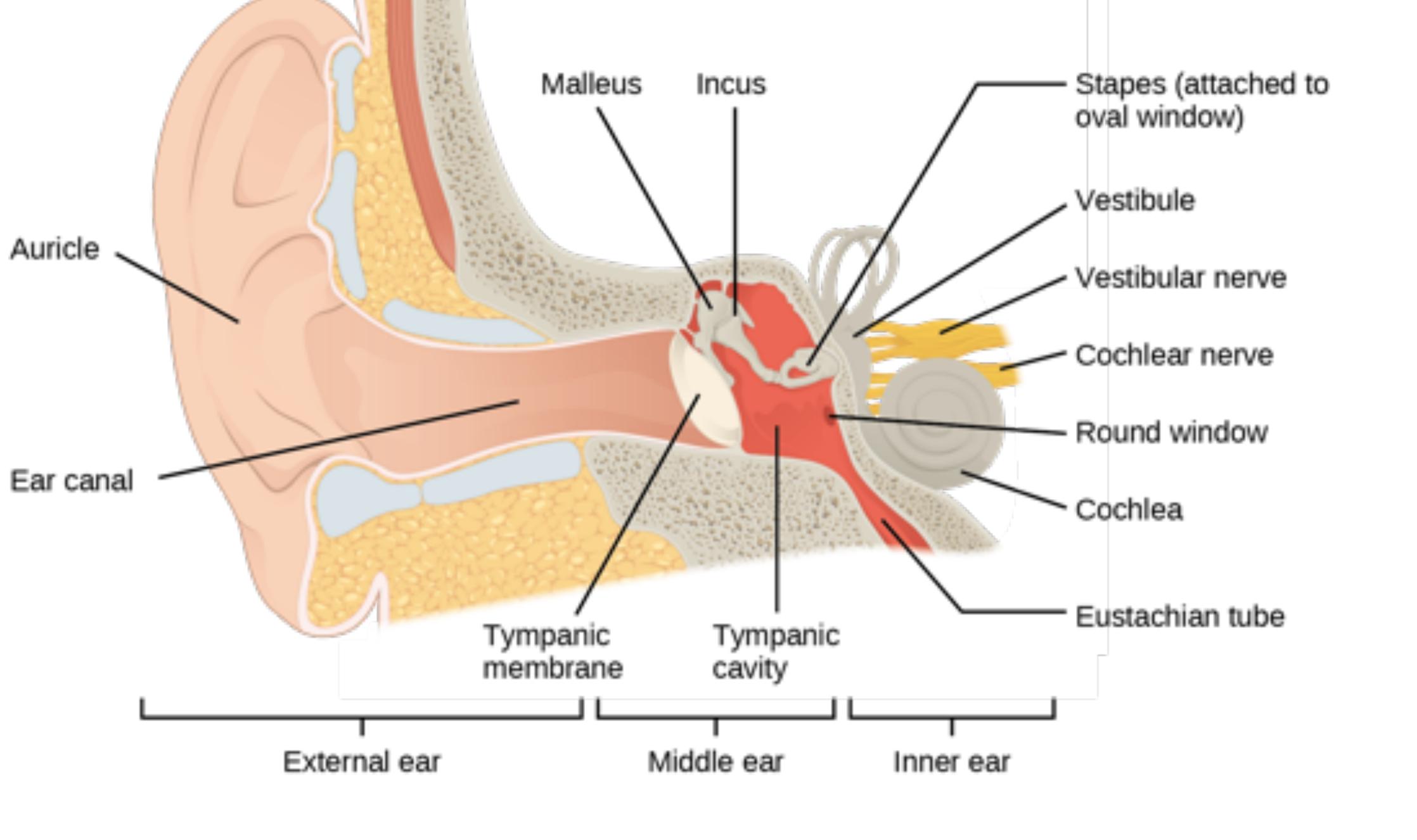
Source and filter are combined But we only want the **filter**

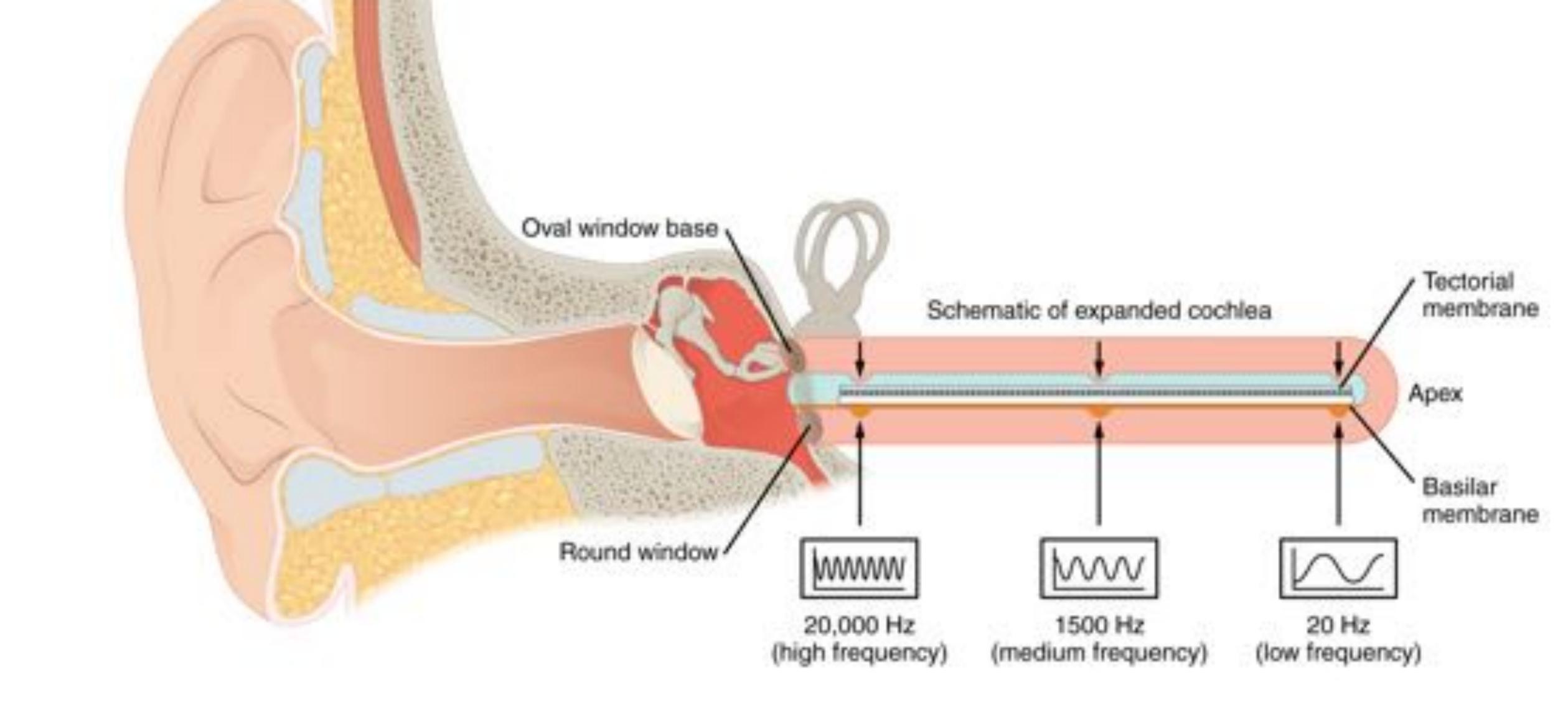
Speech waveforms change over time
Use short-term analysis
Extract features from frames of speech

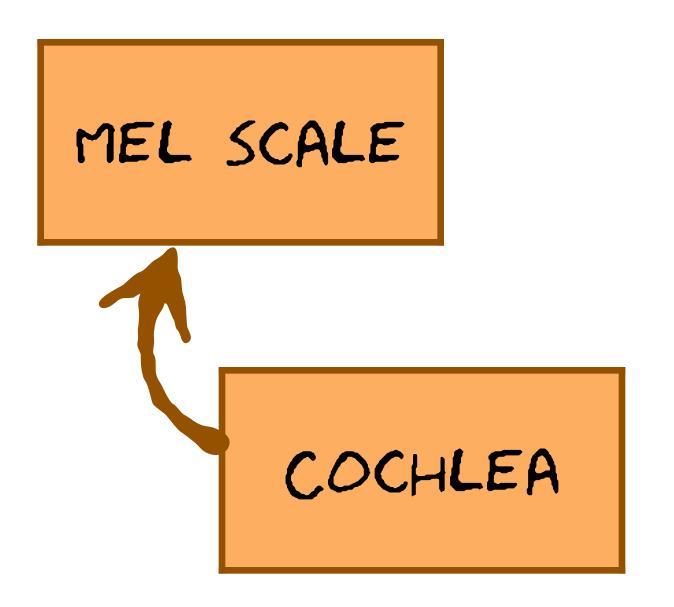
Finding an alignment between two sequences

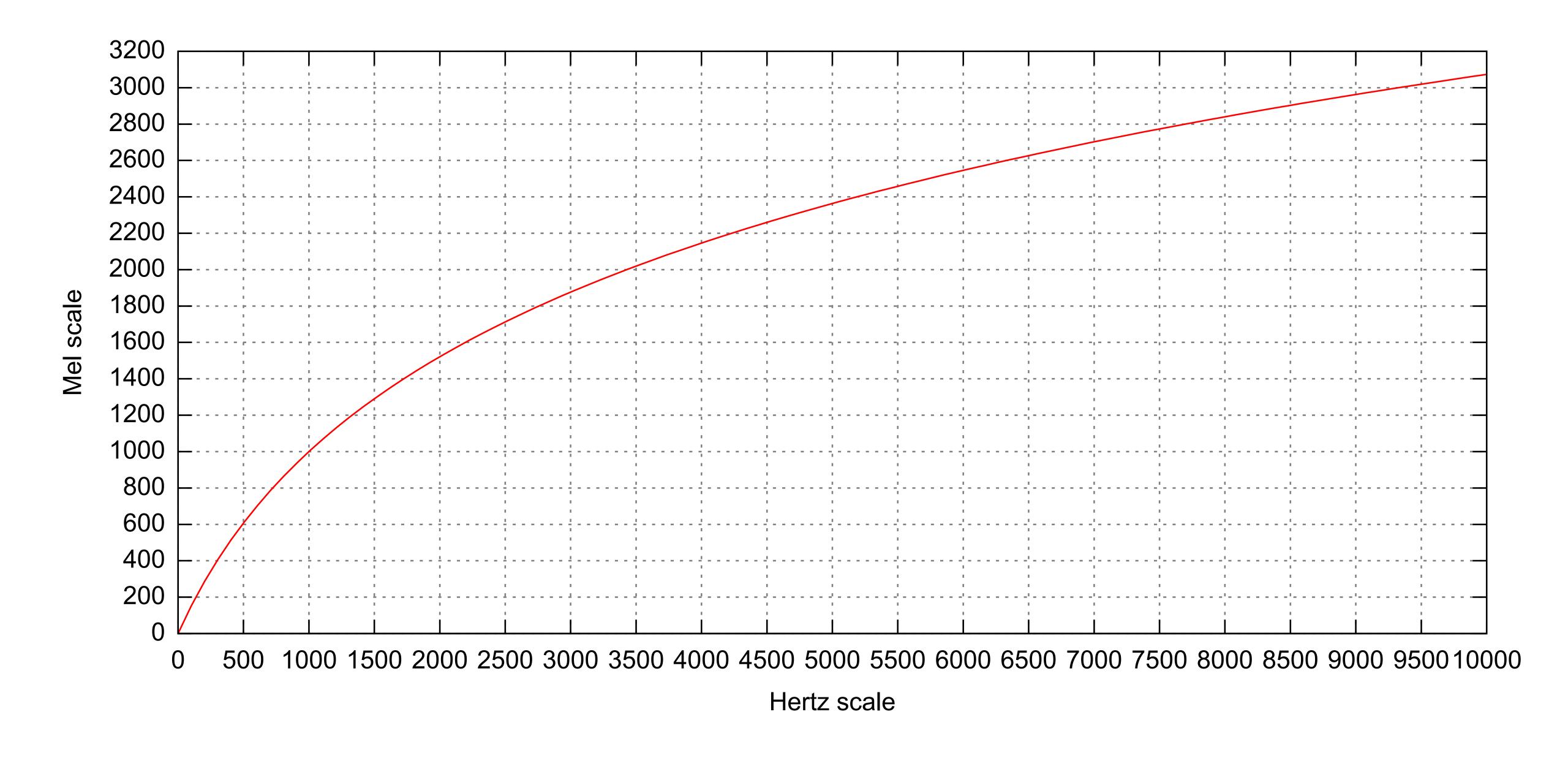
- linear time warping
- non-linear ('dynamic') time warping

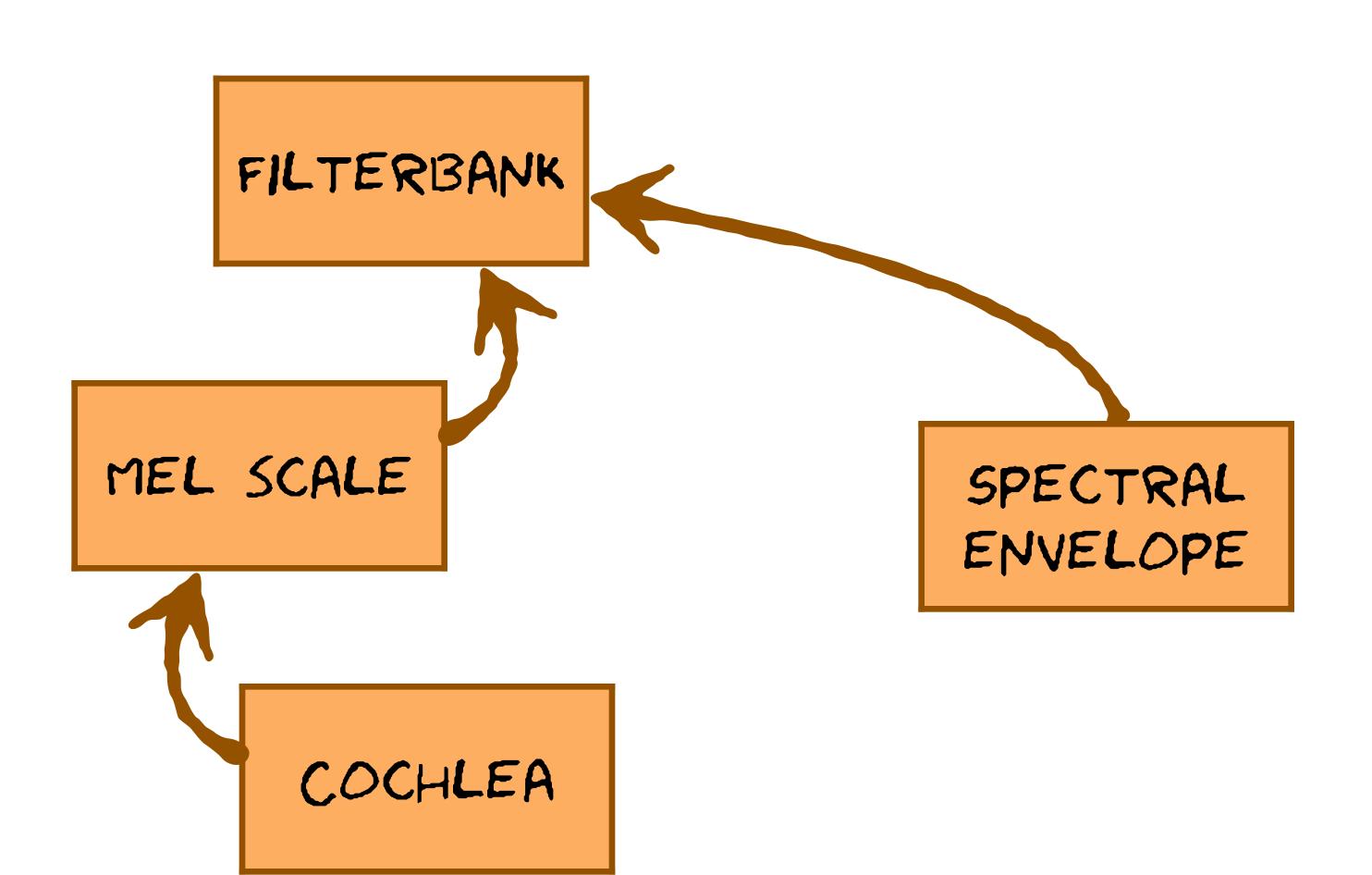


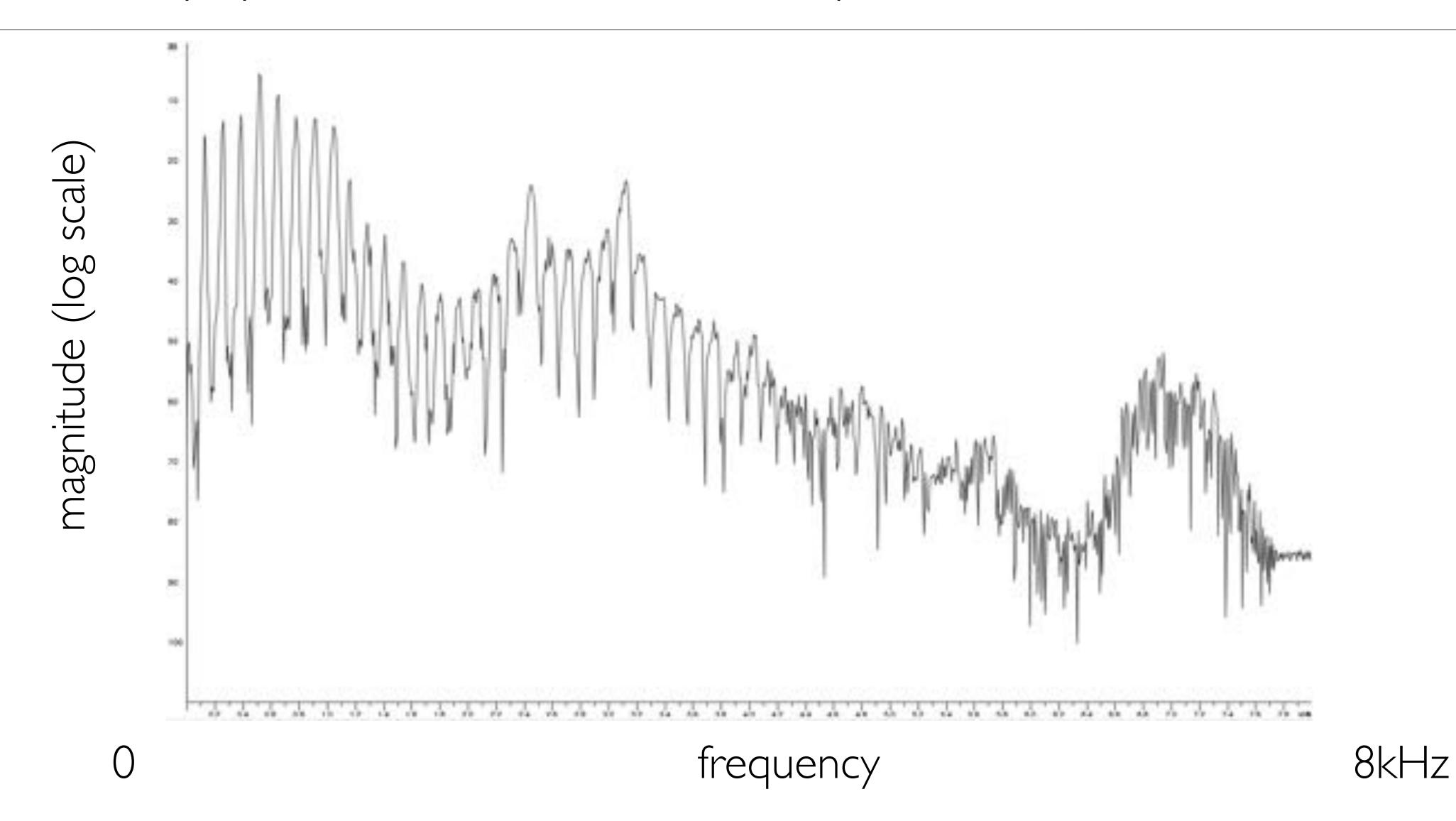


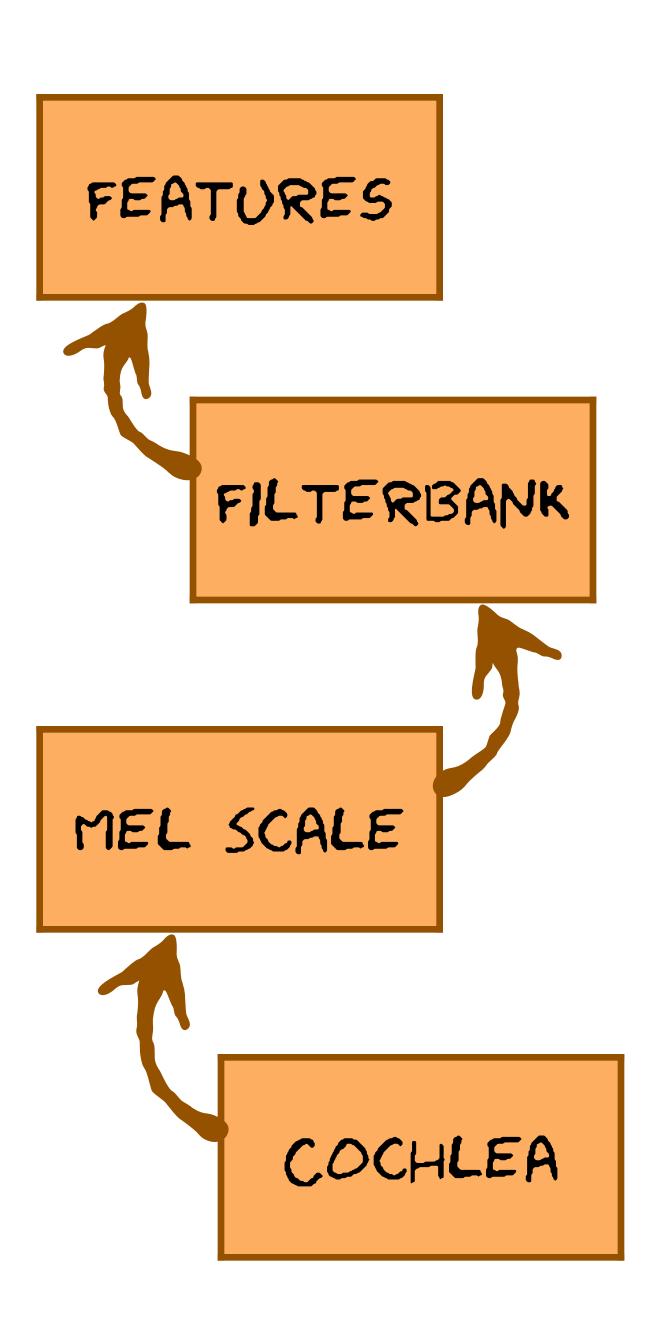




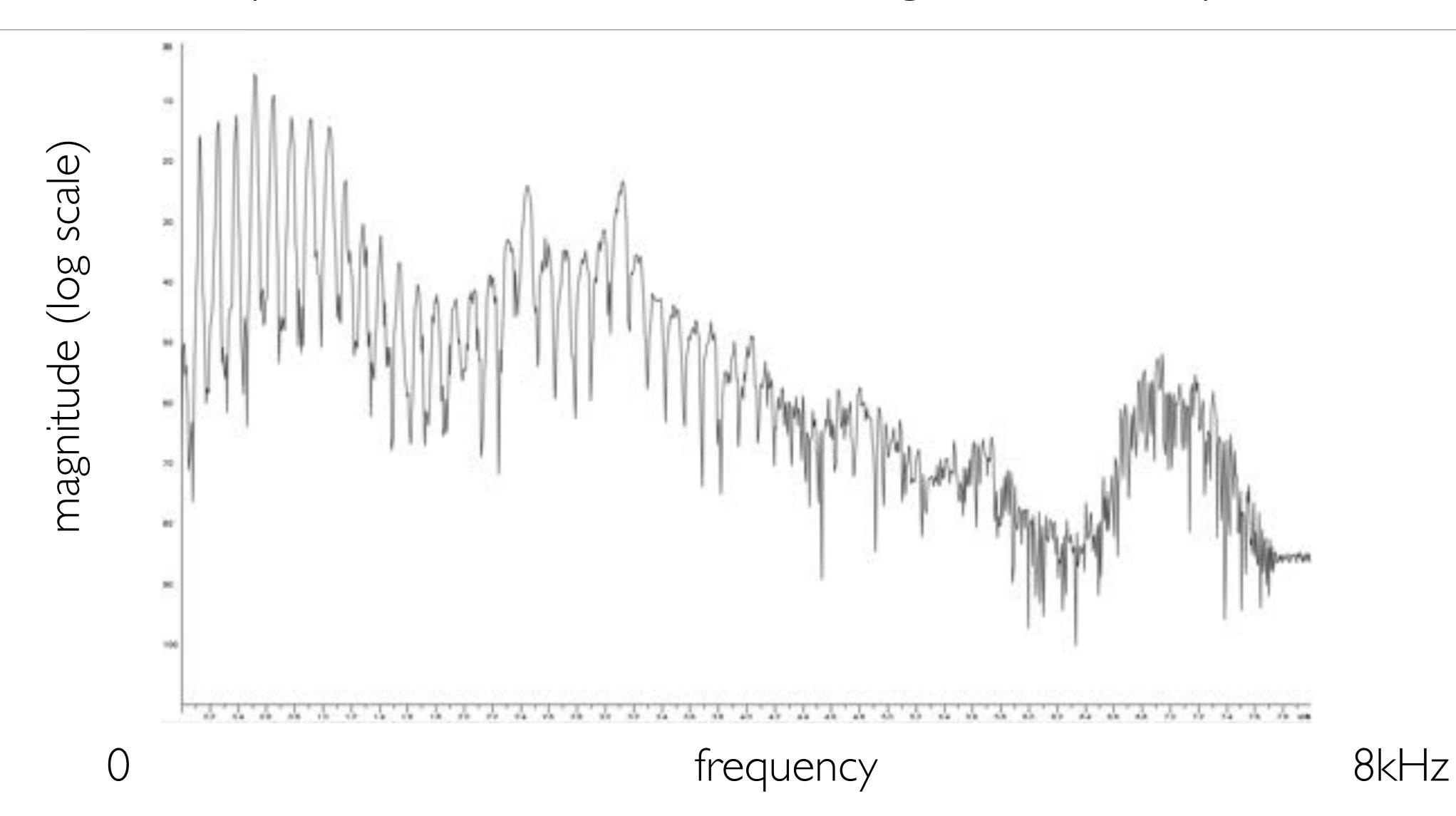


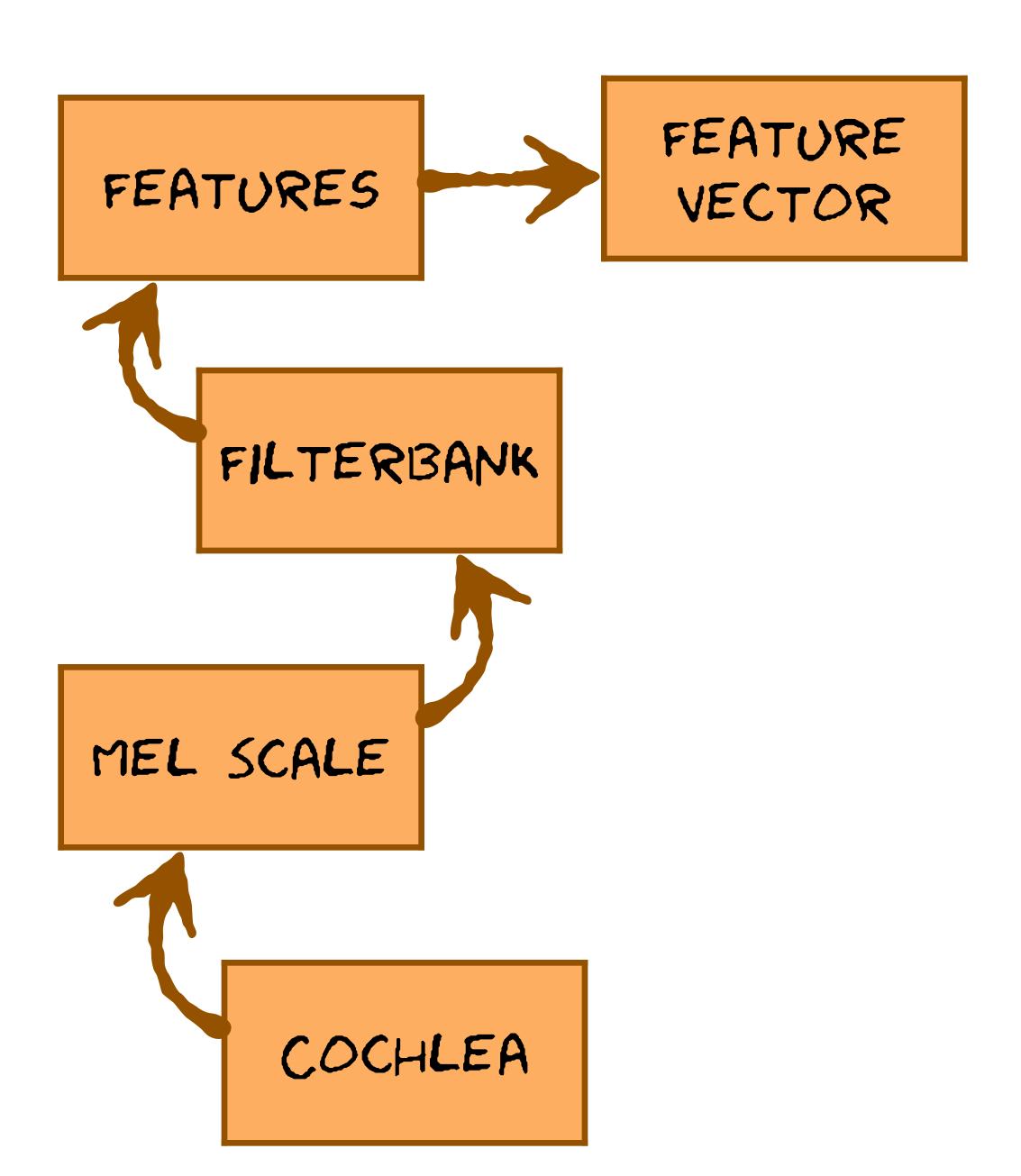




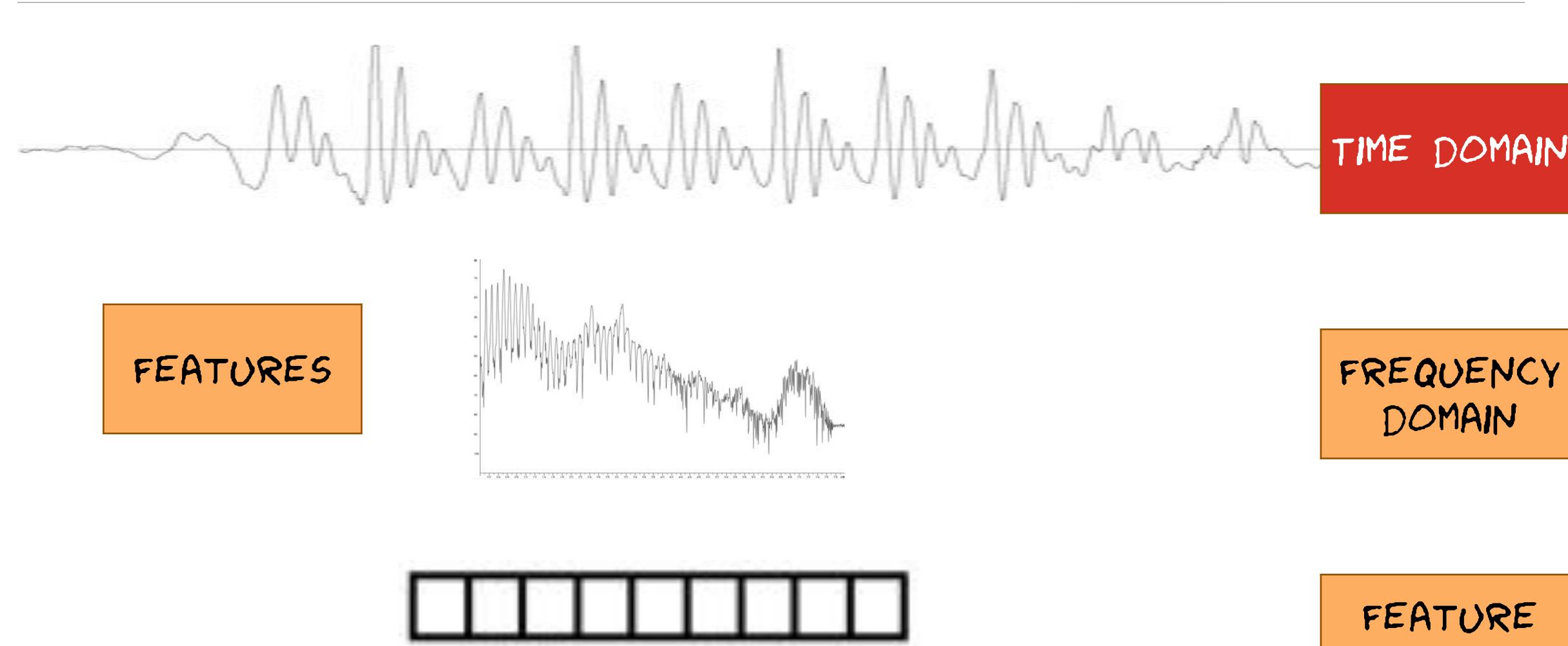


Each filter's output is a useful feature for doing Automatic Speech Recognition

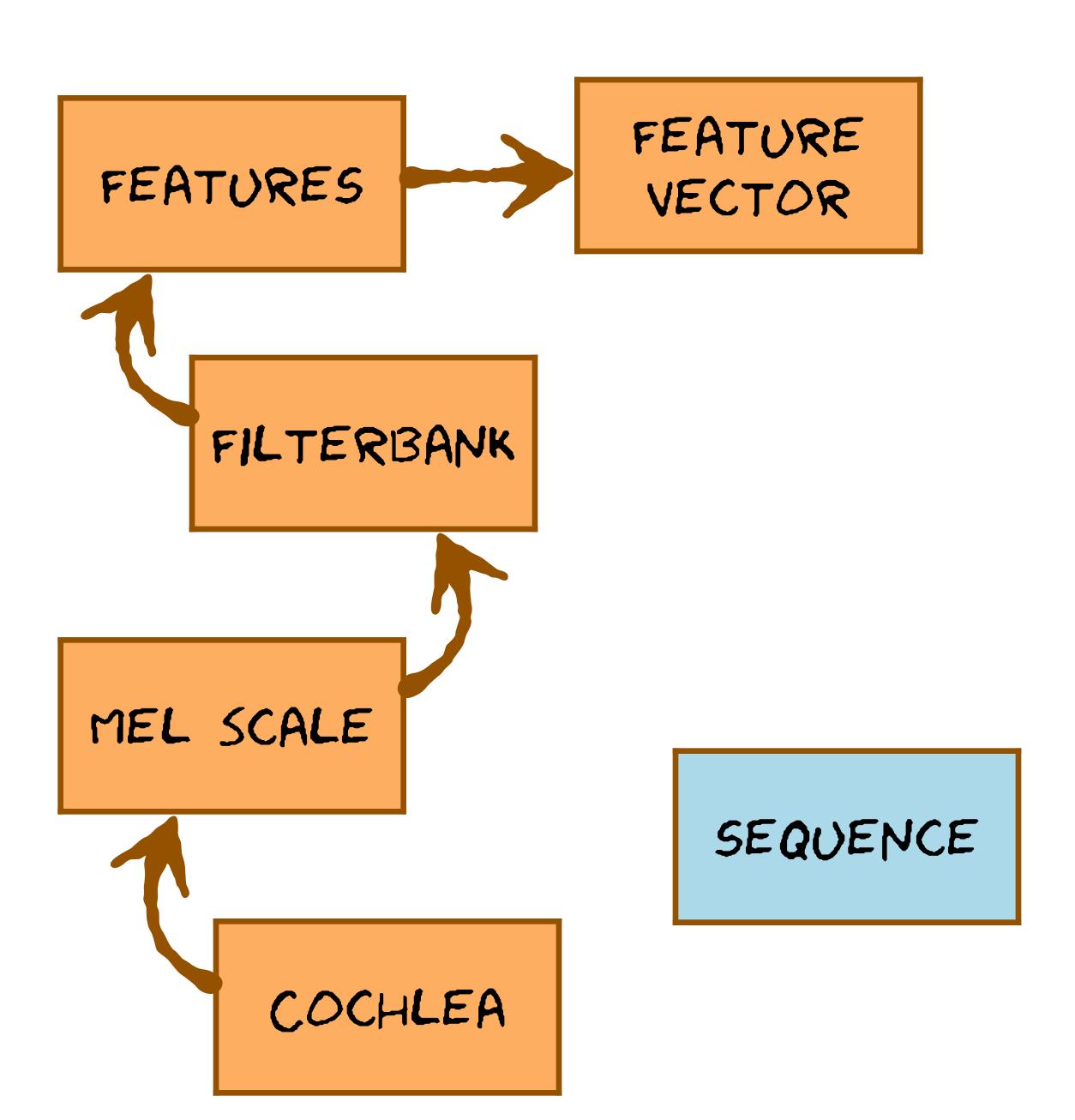




Filterbank features for one frame are speech are stored in a single vector



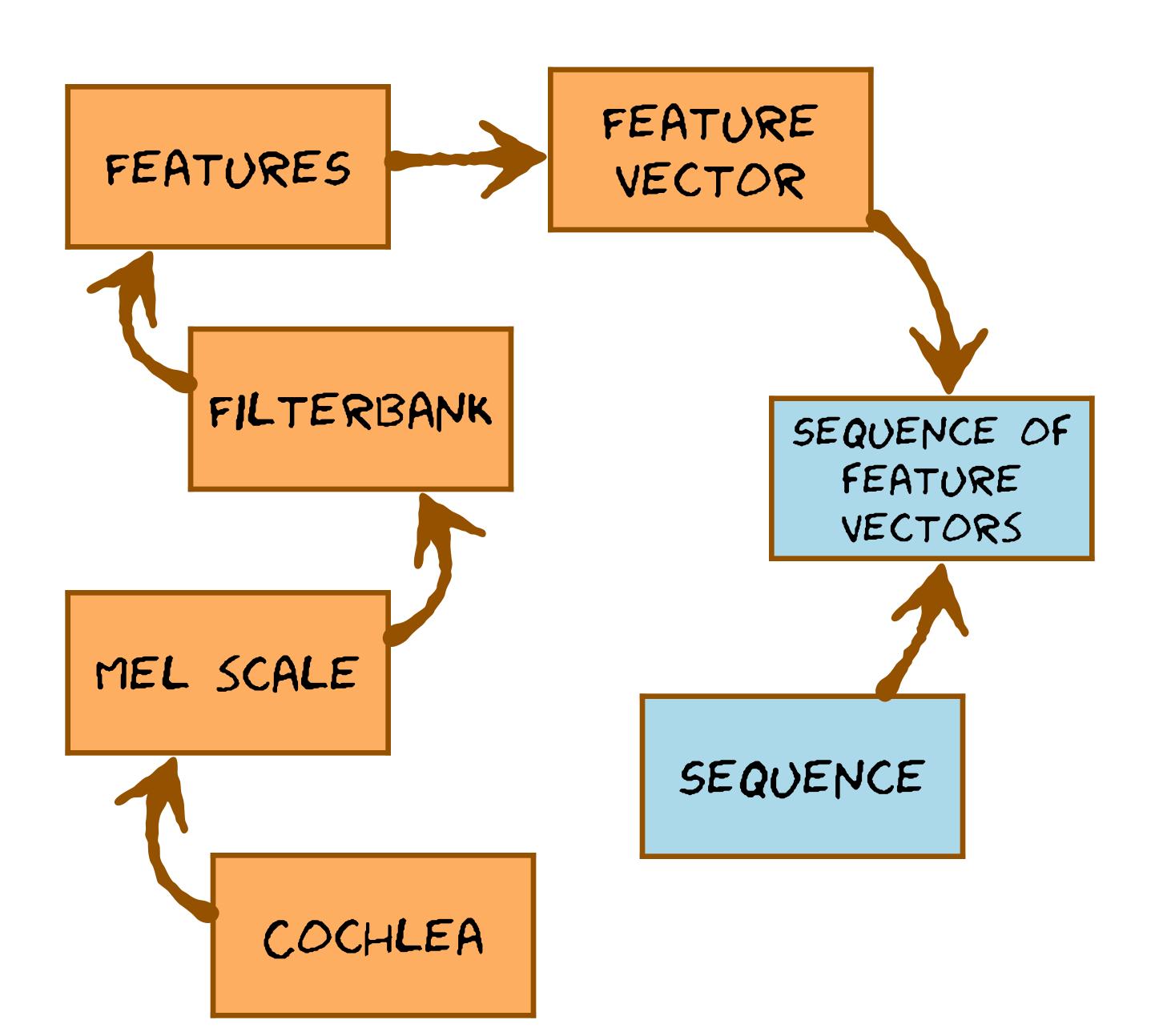
VECTOR



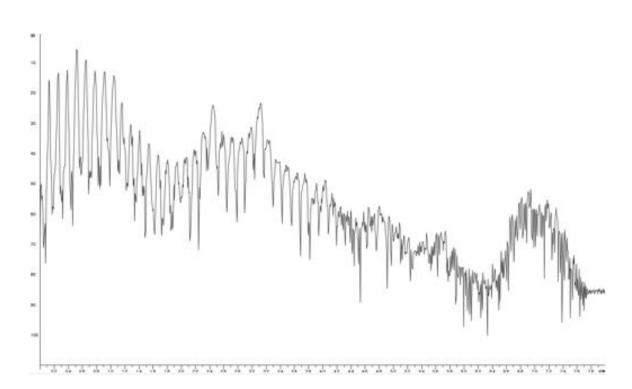
SEQUENCE

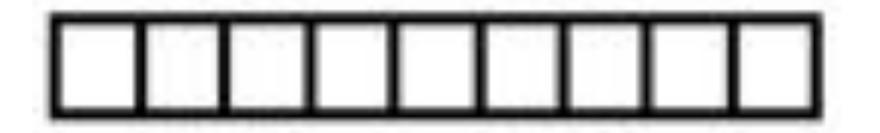
Sequences are everywhere in language

- We've already seen
 - a waveform is a sequence of samples
 - a waveform can be analysed as a sequence of overlapping analysis frames
 - a sentence is a sequence of words
 - a spoken word is a sequence of **phones**
 - a written word is a sequence of letters
- Now we have
 - from each frame we extract a feature vector
 - · so a waveform becomes a sequence of feature vectors

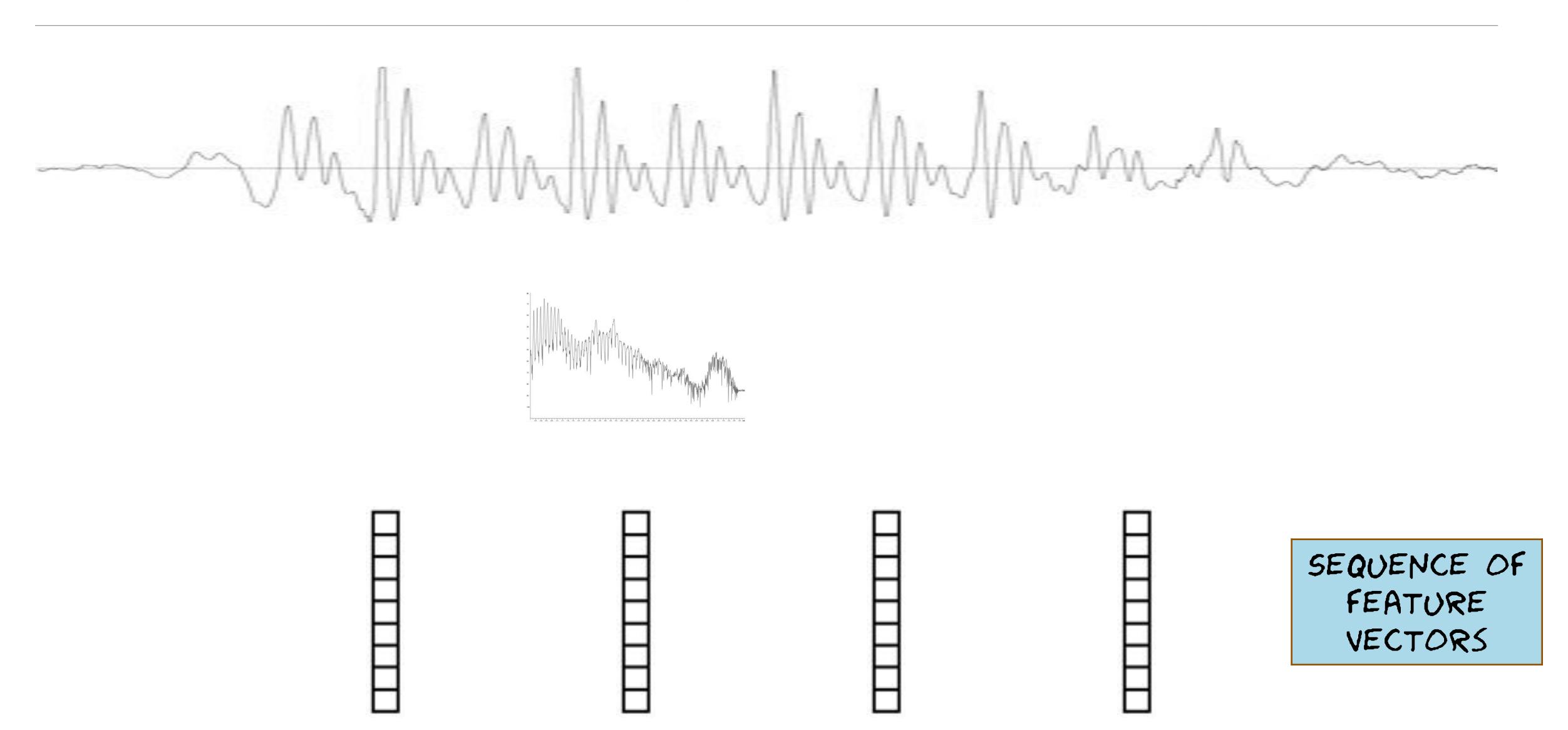


Filterbank features for one frame are speech are stored in a single vector

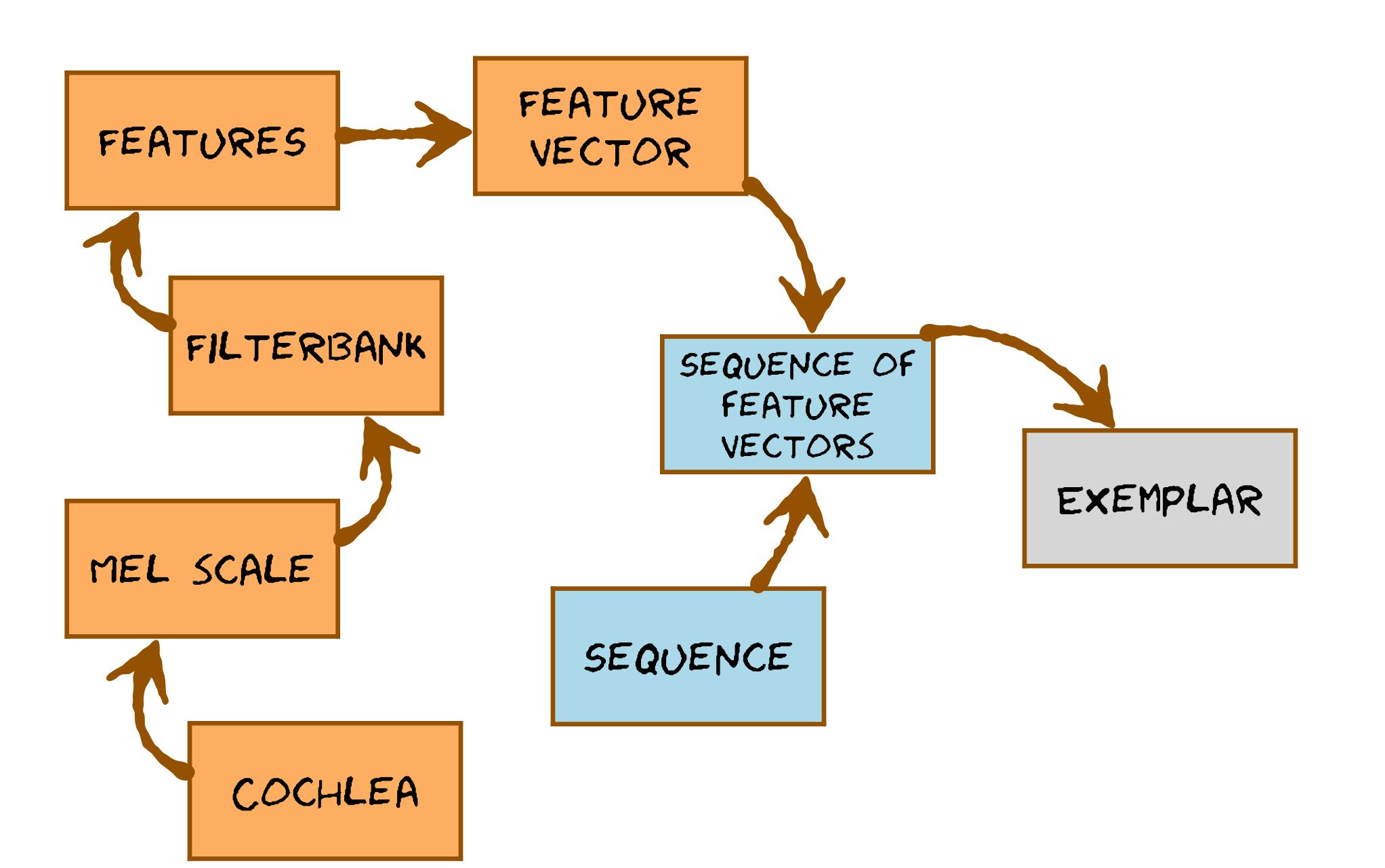


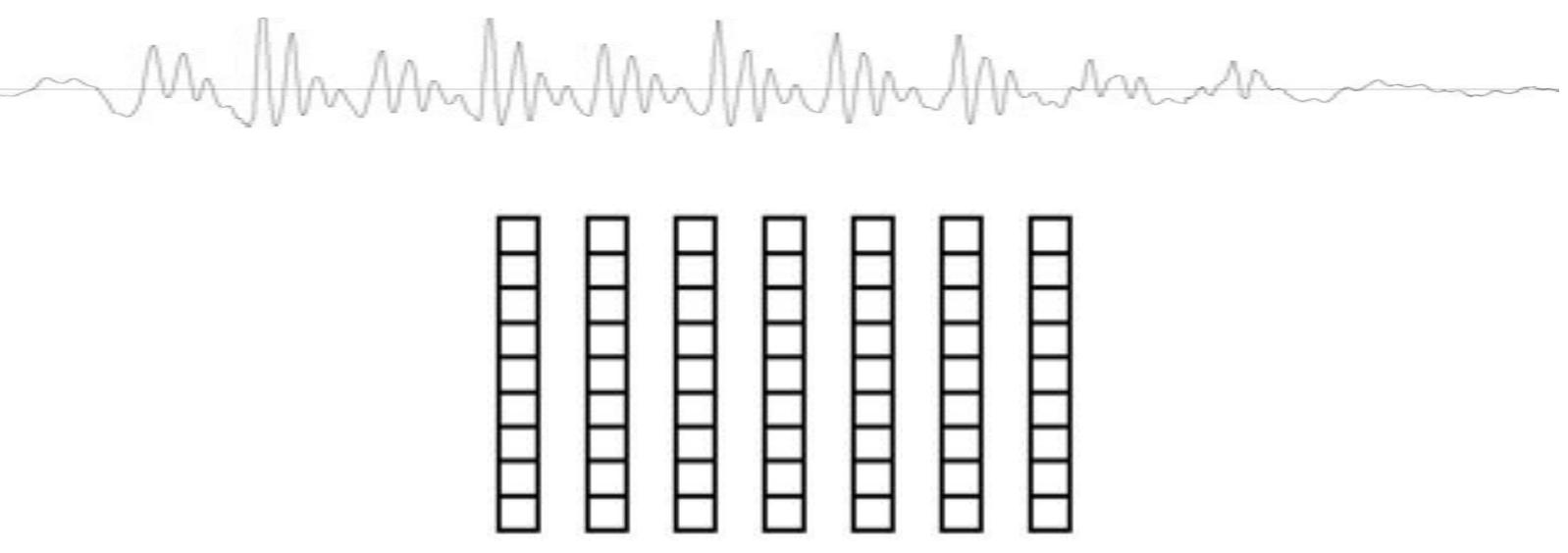


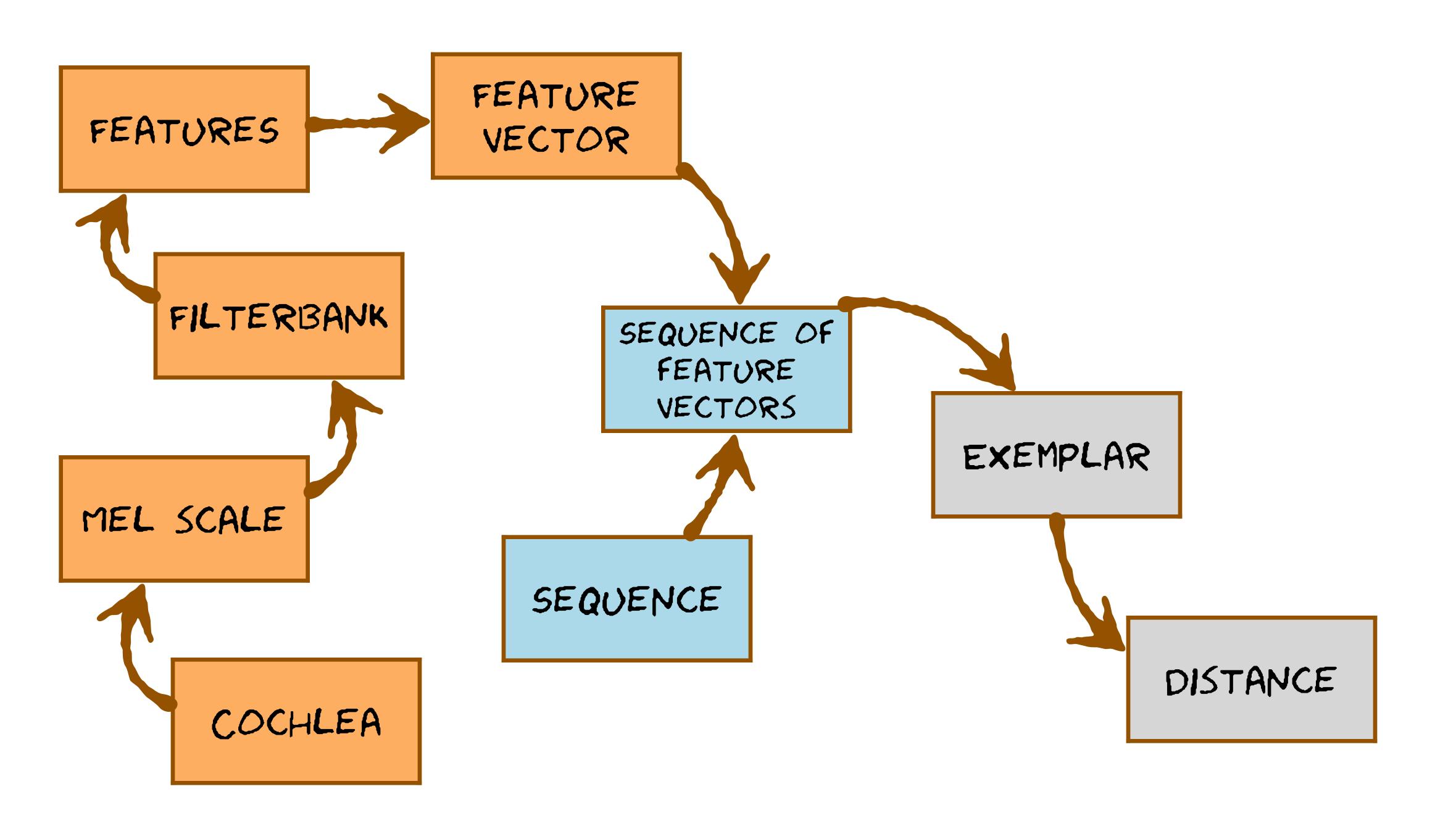
Filterbank features for automatic speech recognition

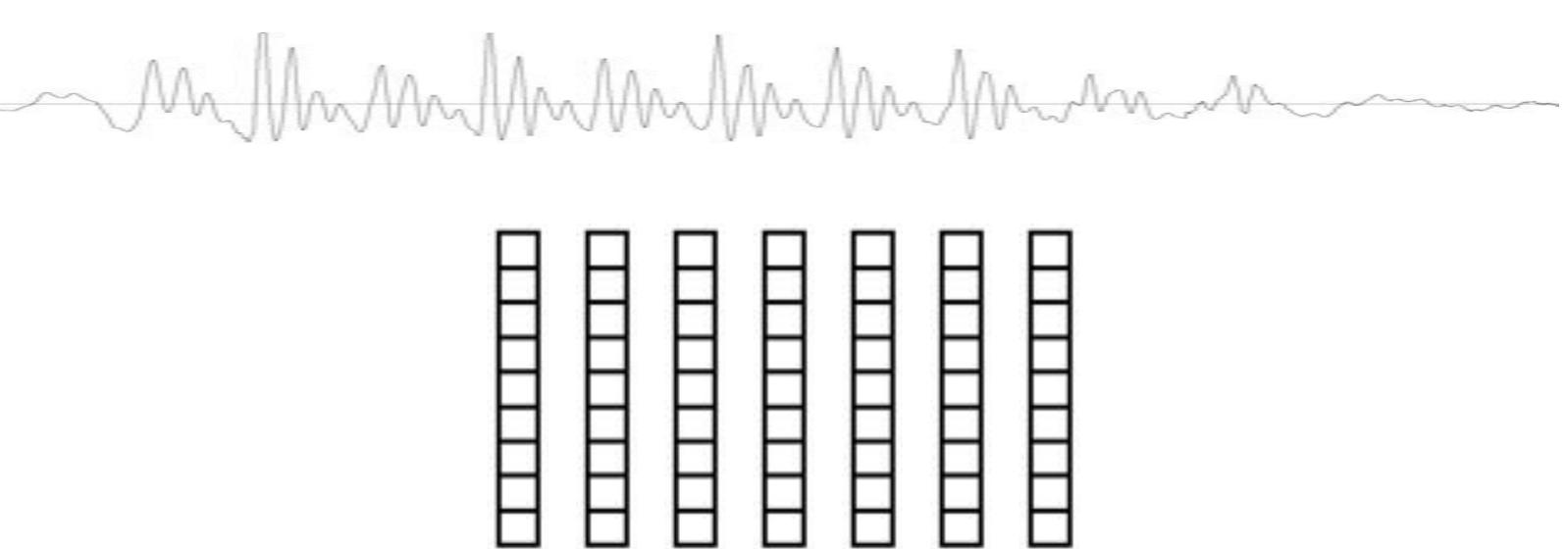


Filterbank features for automatic speech recognition

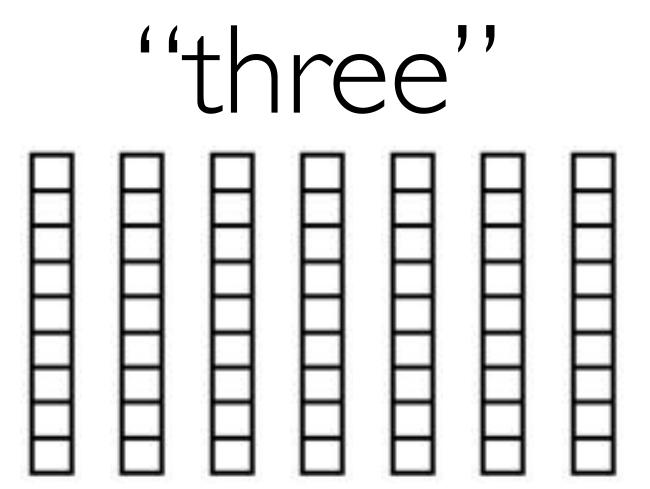




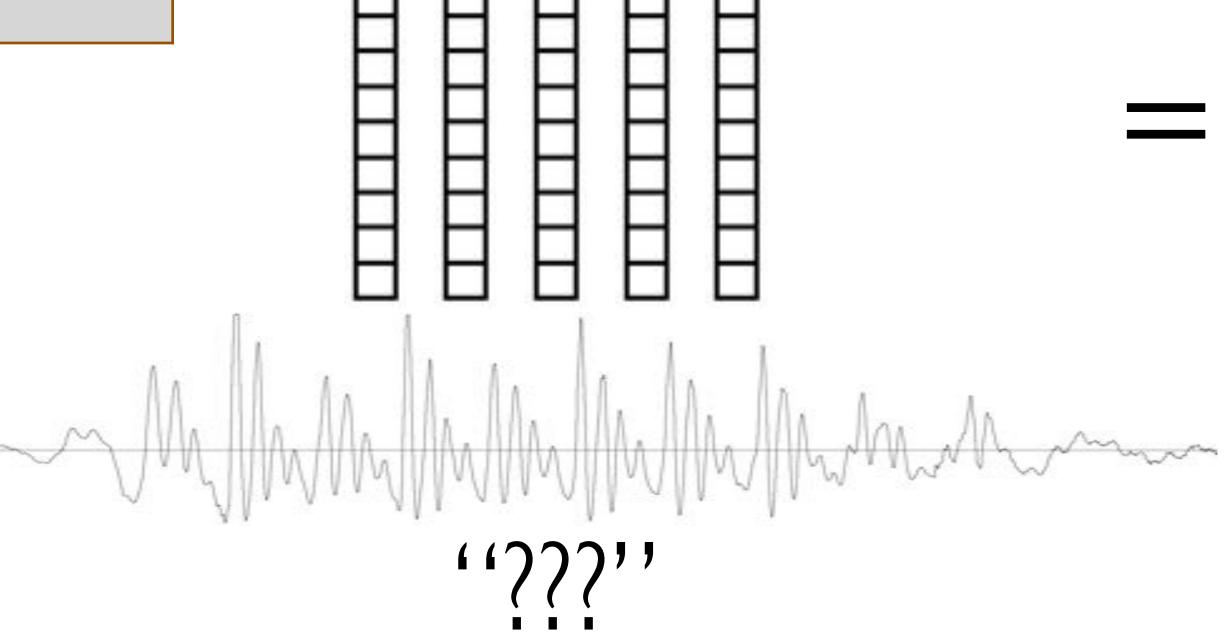




EXEMPLAR

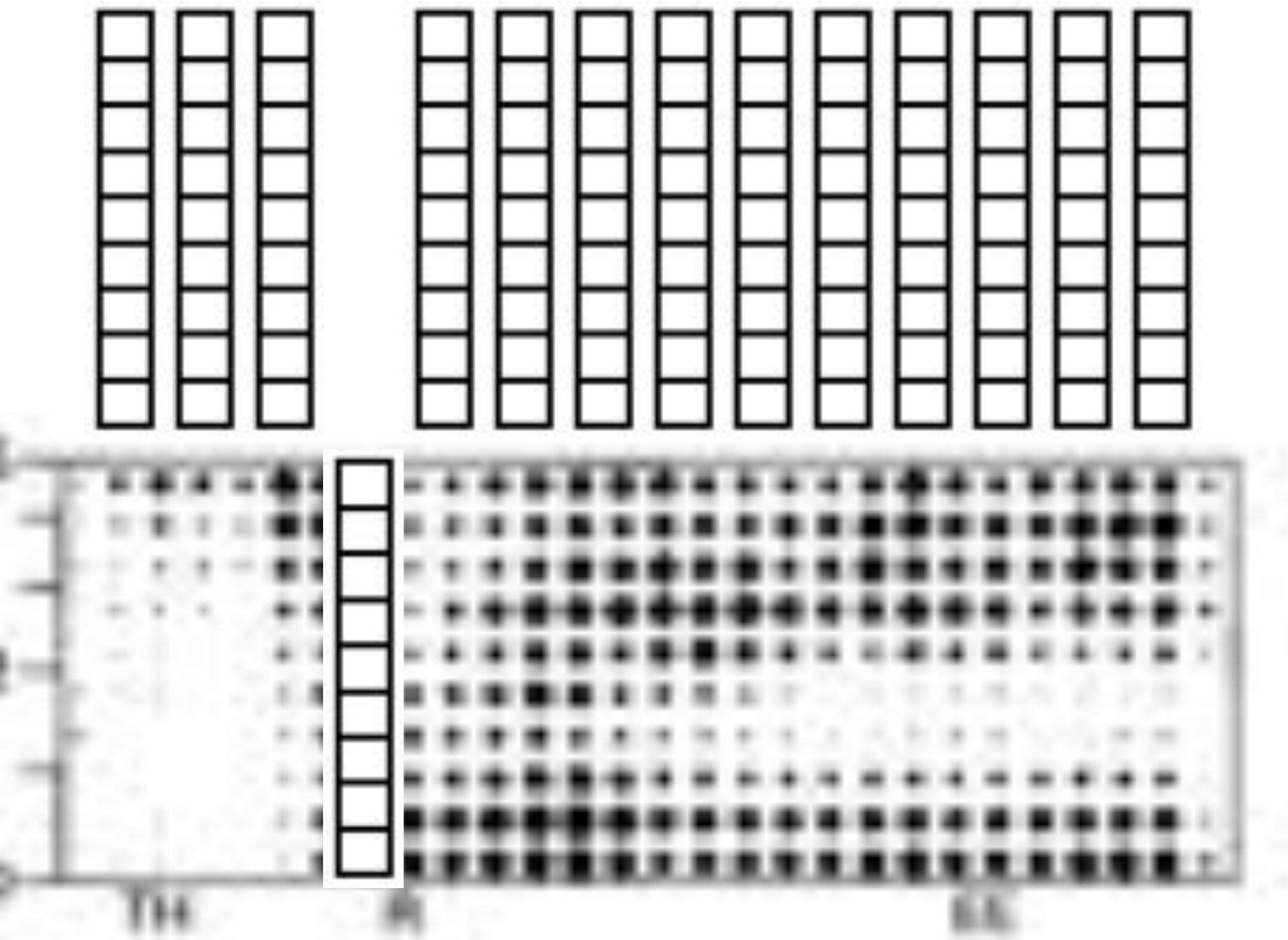


DISTANCE

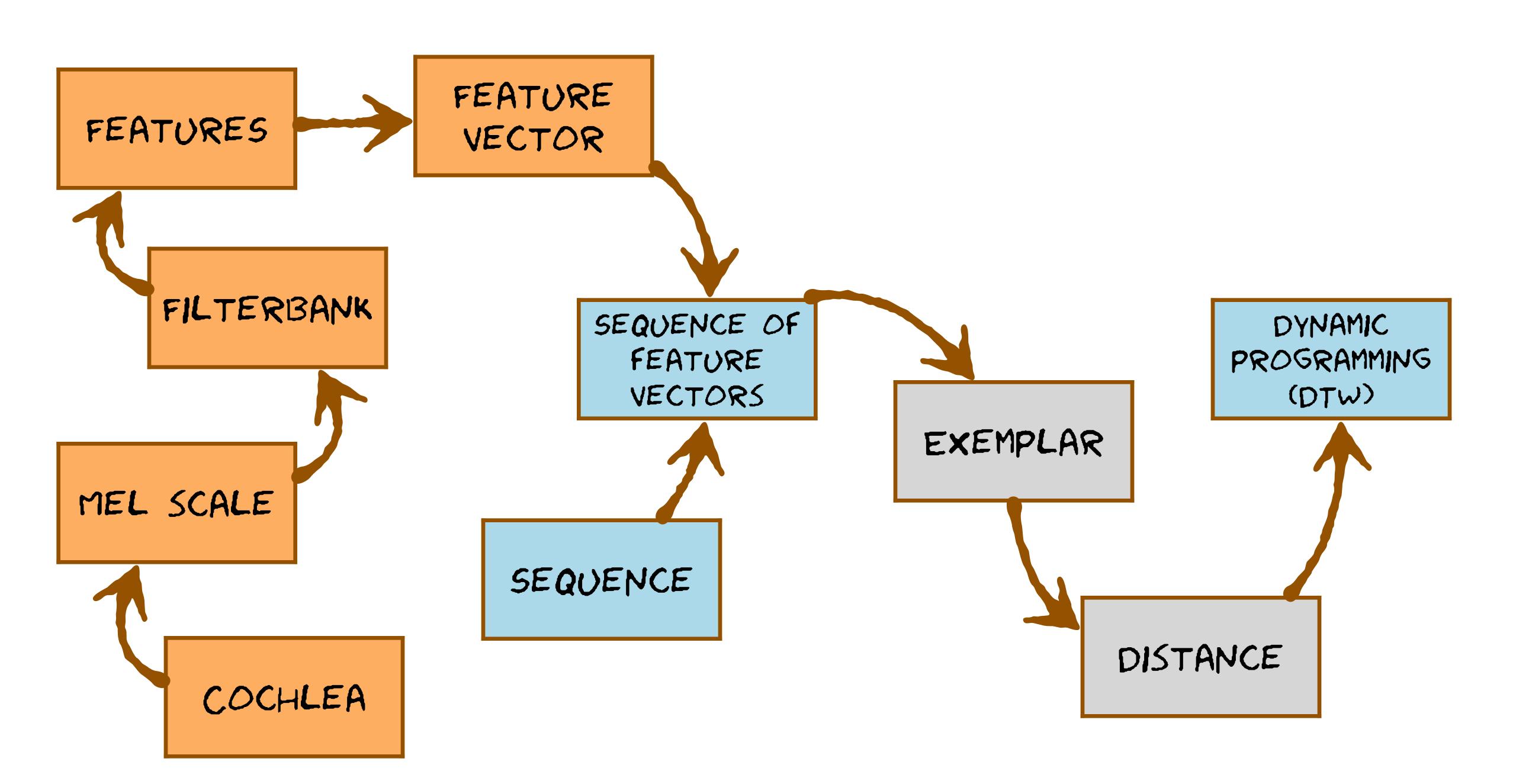


global distance

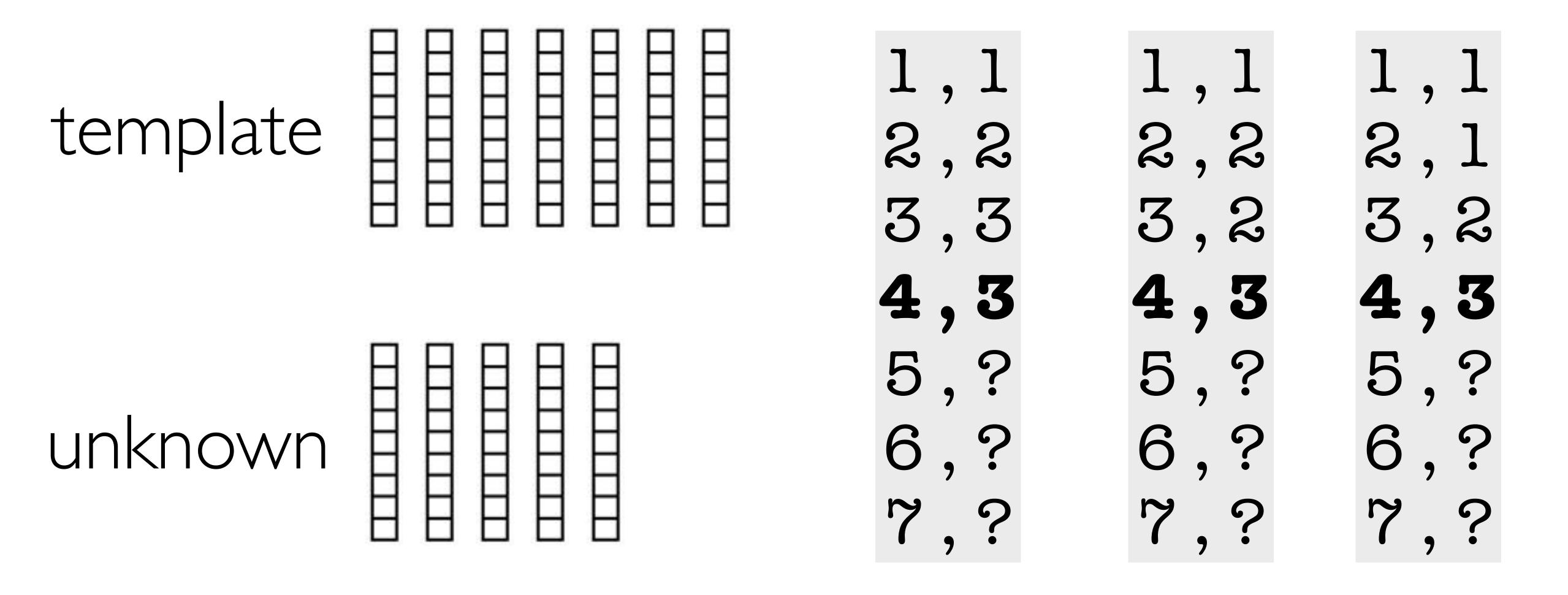
— Jocal distances



EXEMPLAR



Pattern matching by Dynamic Time Warping



Dynamic Time Warping is a form of Dynamic Programming

• Understanding Dynamic Programming, as an algorithm

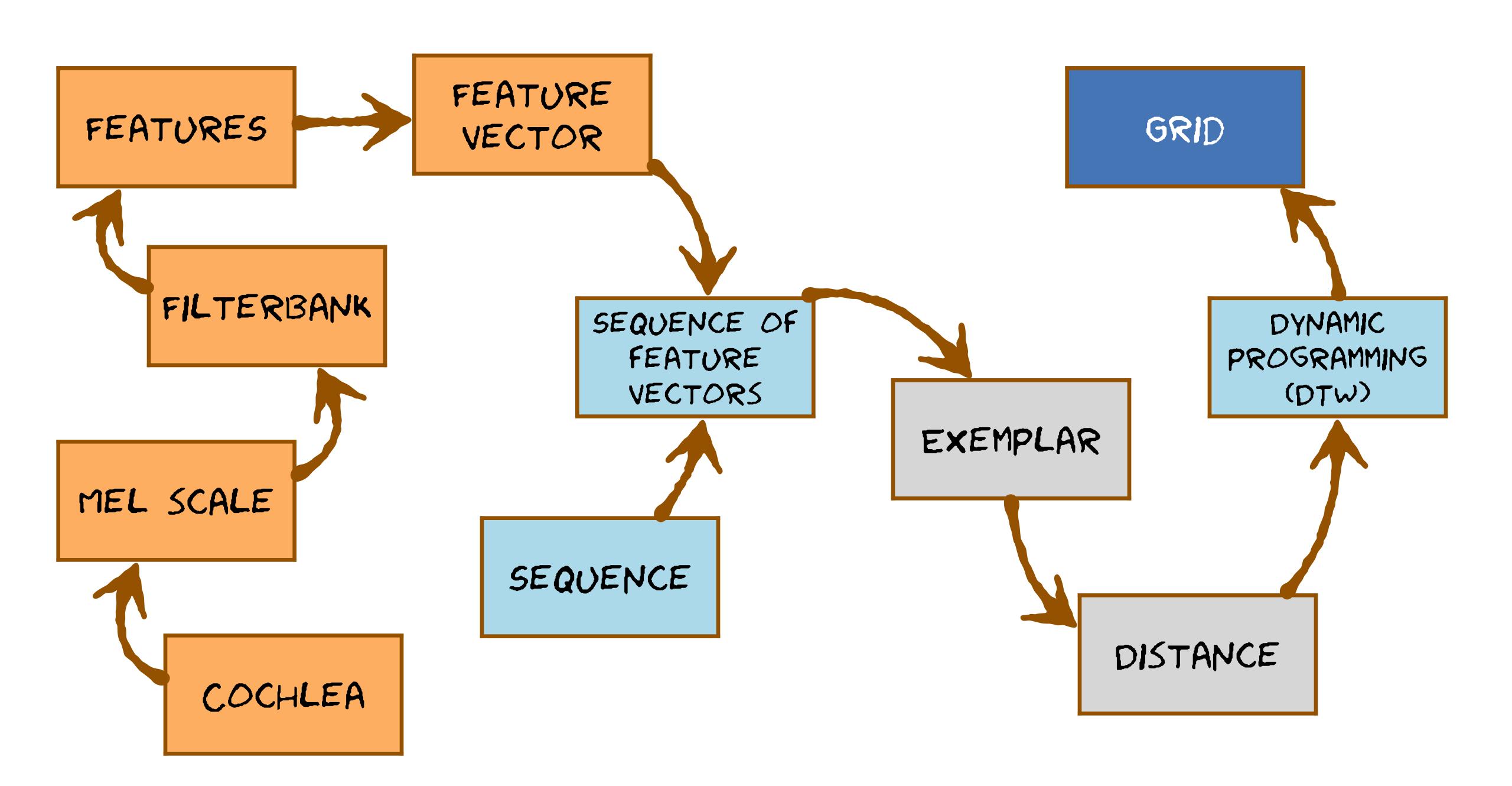
Getting harder

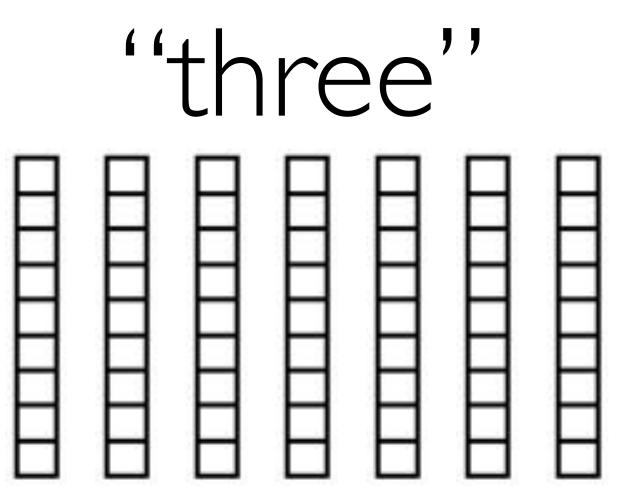
• Being able to see that Dynamic Programming can be applied to a particular problem

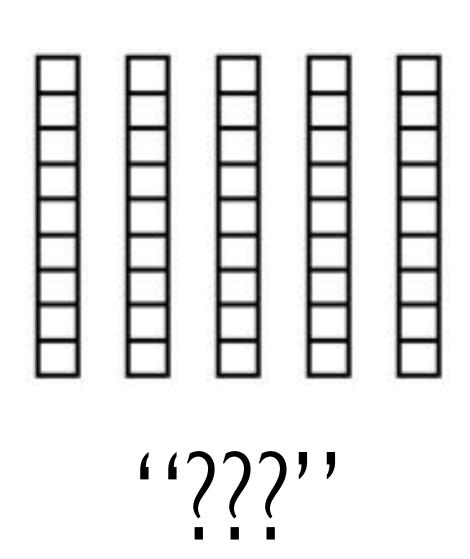
Really quite difficult

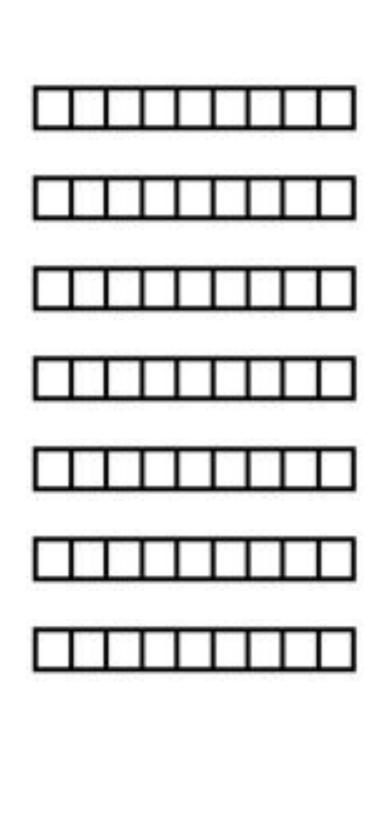
• Devising a suitable data structure for that problem

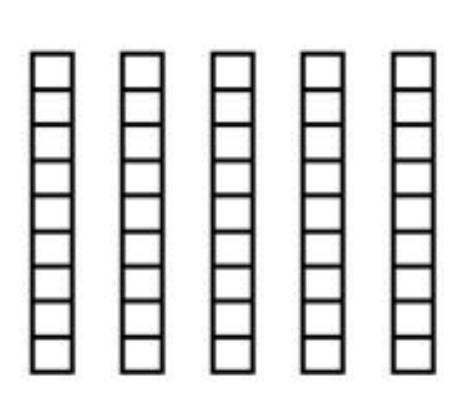
My brain hurts

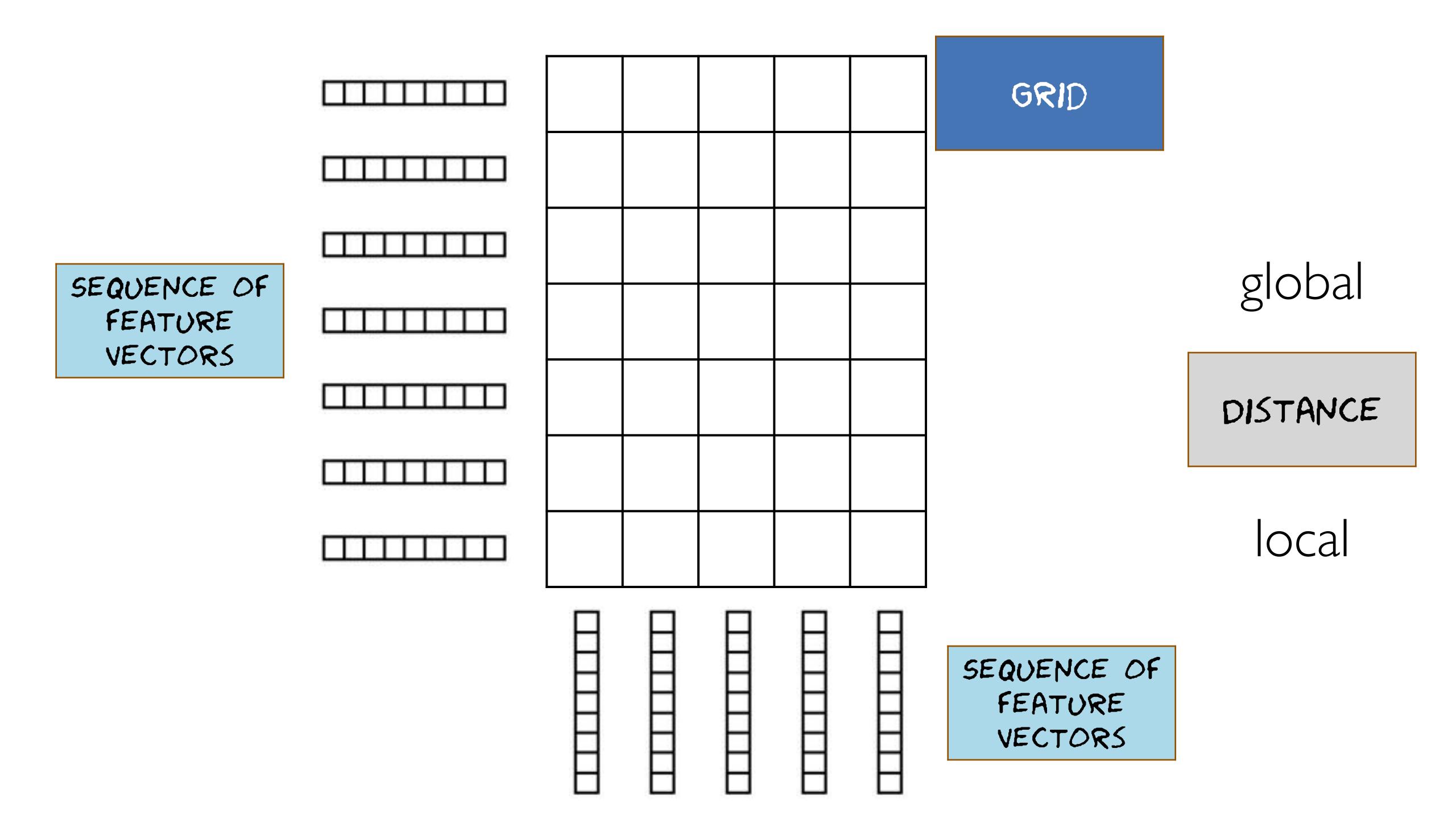










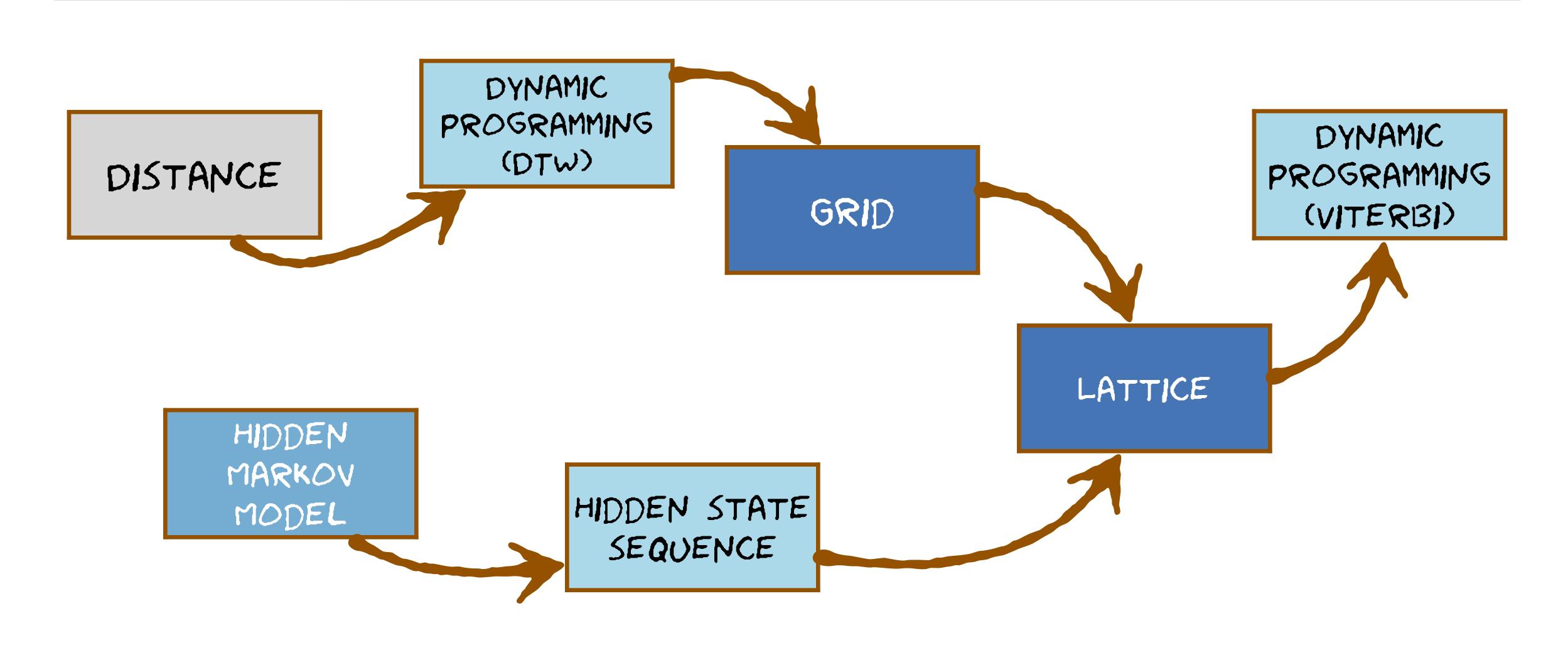


ППППП			
ППППП			

DYNAMIC PROGRAMMING (DTW)

DYNAMIC PROGRAMMING (DTW)

What you can learn next



What next?

- DTW, and especially the local distance measure doesn't account for variability
 - so we'll replace it with a probabilistic model

- That model will use Gaussian probability density functions
 - to make these simpler, we will first try to remove covariance from our
 features
 - time for some feature engineering!

HMMs in Module 9

MFCCs in Module 8