Speech Processing

Simon King University of Edinburgh

additional class slides for 2020-21

Module 9

Connected speech & HMM training

Orientation

- <u>Hidden Markov Models (HMMs)</u>
 - Motivated from pattern matching
 - Finite state network
 - Gaussian probability density functions
 - A probabilistic **generative** model

What you should already know

- Account for variability using probability density functions (pdfs)
- Use a finite state machine to specify the sequence in which to use the pdfs
- The model is a **generative** model
- The state sequence is unknown to us
 = "hidden" from us

so now we call the acoustic features "**observations**"

- state sequence = alignment between the model's states and the observations
- many possible state sequences can generate the same observation sequence
- Viterbi algorithm only finds the single most likely state sequence

Problem I: word sequences

- So far, we have described only isolated word models
- Each model emits an observation sequence
- We assumed that we need to compute separately for each model:
 - the probability that this model emitted the given observation sequence
- and then we would compare those across all our models, choosing the most probable
- <u>This fails to</u>
 - account for prior probability of each word
 - work for word sequences

N-GRAMS

Solution for word sequences: utterance model (language model)

Problem 2: large vocabulary

- Need to handle an arbitrary vocabulary, defined in advance
- Training data may not contain examples of all words
 - so, cannot use whole word models
 - must create word models from models of smaller units: phonemes • essentially the same solution we used for concatenative speech synthesis

SUB-WORD UNIT

N-GRAMS

Solution for large vocabulary: word model (dictionary)

Large-vocabulary connected speech recognition (LVCSR)

- We simply create a generative model of a complete utterance
- There is a hierarchy of models
 - **1.** a generative model of an utterance that <u>emits a word sequence</u>
 - 2. a generative model of each word that <u>emits a phoneme sequence</u>
 - **3.** generative model of each phoneme <u>emits an observation sequence</u>

(In the assignment, we are using whole word models, which directly emit observations. There are no sub-word models.)

COMPOSITION ("COMPILING")

Combining models of different linguistic units

- If all of the generative models are finite state
- then it is trivial to combine them into a single finite state model
 - called "compiling" in HTK, or "composition" in finite-state model terminology
- <u>Terminology</u>:
 - Utterance model = language model
 - Word model = pronunciation dictionary
 - Sub-word model = **acoustic model**

Composing finite state models

Compiling the recognition graph (it's just one big HMM)

Pruning

Prior, likelihood, posterior

P(W)**Prior** probability of word sequence W

P(O)

P(W|O)after we have observed O

 $P(O \mid W)$

Likelihood of observation sequence O being generated by model of word sequence W

$P(W|O) = \frac{P(U|W) P(W)}{P(O)}$

Prior probability of observation sequence O

Posterior probability of word sequence W,

The hidden state sequence means we have several non-trivial problems

- Computing probability of a sequence of observations, given a model
 - Forward algorithm gives total probability (a sum)
 - Viterbi algorithm approximates that sum with a max
- Estimating the <u>parameters of the model</u>, given an observation sequence • Forward-Backward algorithm - effectively "aligns" observations with states

Key properties of the HMM

• State sequence is hidden

1	

Key properties of the HMM

- Markov = memoryless

• = The future is independent of the past, given the present ("the present" = the state)

1	

Key properties of the HMM

- Observations are conditionally independent, given the state
- = Probability of each observation depends only on current state

1	

Computations needed for HMMs

- Approximately computing the probability of a sequence of observations • by assuming the model used the single most likely state sequence
- Finding that sequence **exactly** and efficiently
- Viterbi algorithm

1	

Computations needed for HMMs

- Exactly computing the probability of a sequence of observations
 - by considering all possible state sequences
- Forward algorithm

1	

Computations needed for HMMs

- Find the probability that a particular state emitted a given observation = the probability of being in that state at the given time = state occupancy probability
- Forward-Backward algorithm = **Baum-Welch** algorithm

1	

The Baum-Welch algorithm

- We're going to develop it starting from simpler training methods
 - uniform segmentation
 - Viterbi training
- These simpler methods make a 'hard' alignment between observations and states
 - they only consider one possible state sequence an approximation
- We could describe Baum-Welch as using a 'soft' or probabilistic alignment
 - it considers all possible state sequences the correct thing to do

Before Baum-Welch: two simpler training methods

1	

Using multiple observation sequences (i.e., multiple training examples)

	\square	

From one alignment to all alignments

(alignment is the same thing as state sequence)

1	

State occupancy probability

How much should each observation contribute to estimating each state's Gaussian pdf parameters (mean & variance)?

State occupancy probability = probability of being in a particular state at a particular time

model

time (frames)

What next?

• <u>Speech Synthesis</u>

Automatic Speech Recognition