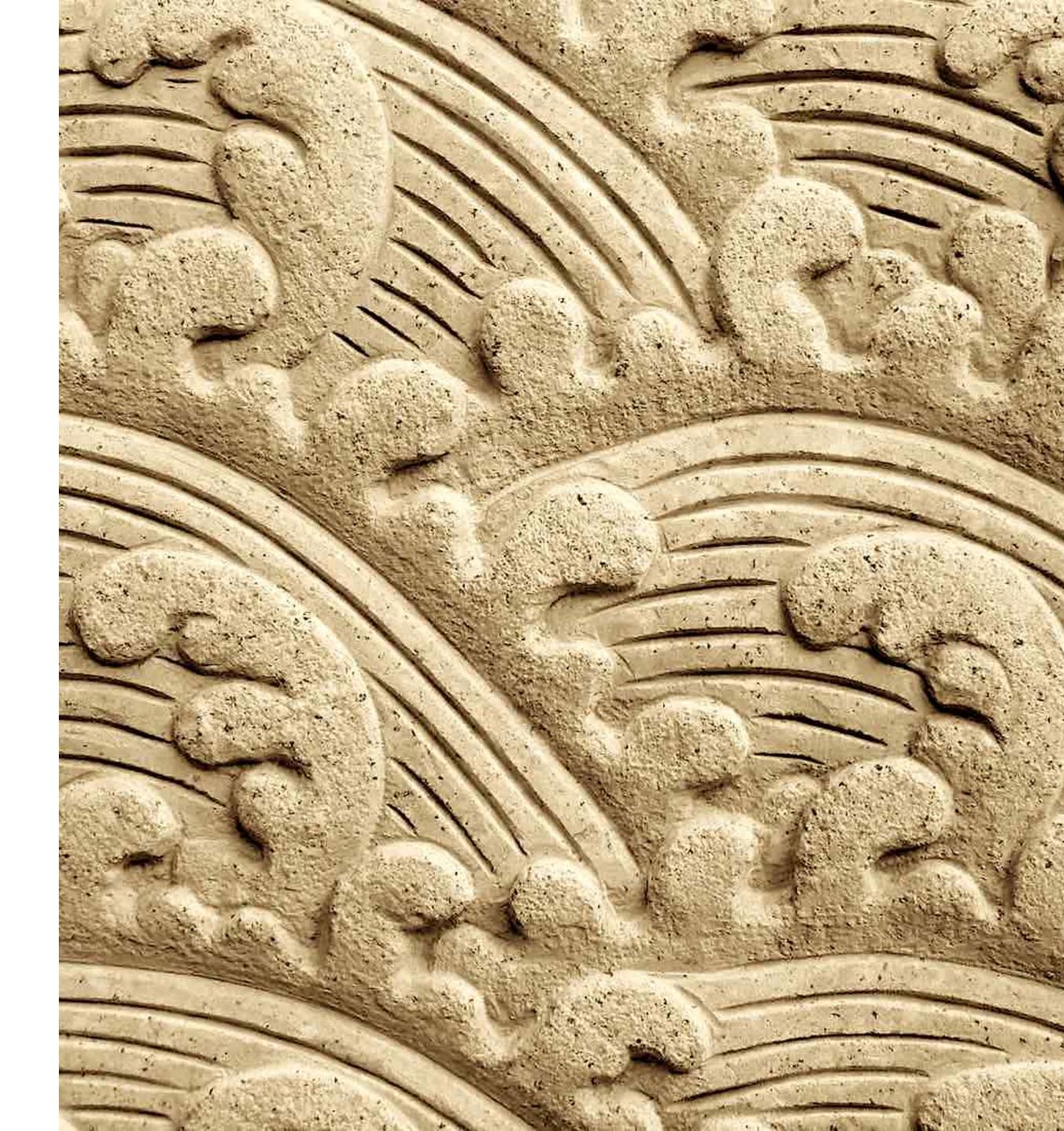
Speech Processing

Simon King University of Edinburgh

additional class slides for 2020-21



Module 8

The Hidden Markov Model

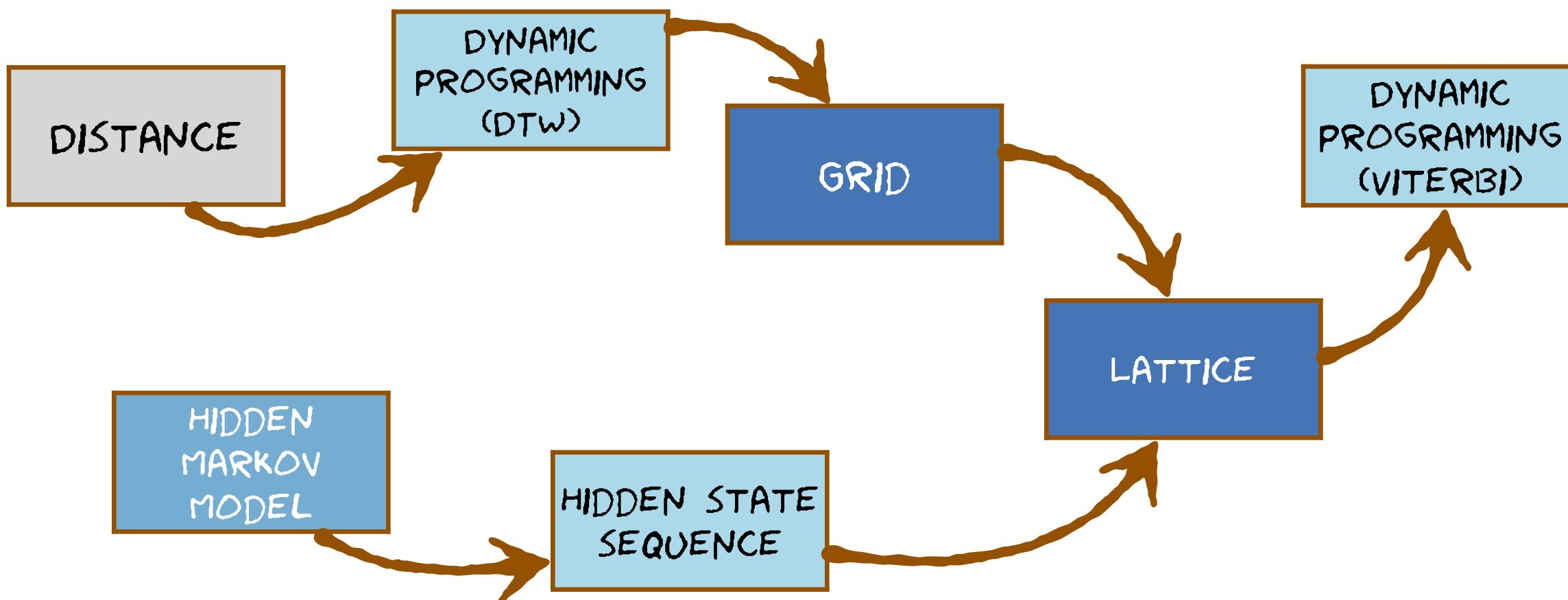
Orientation

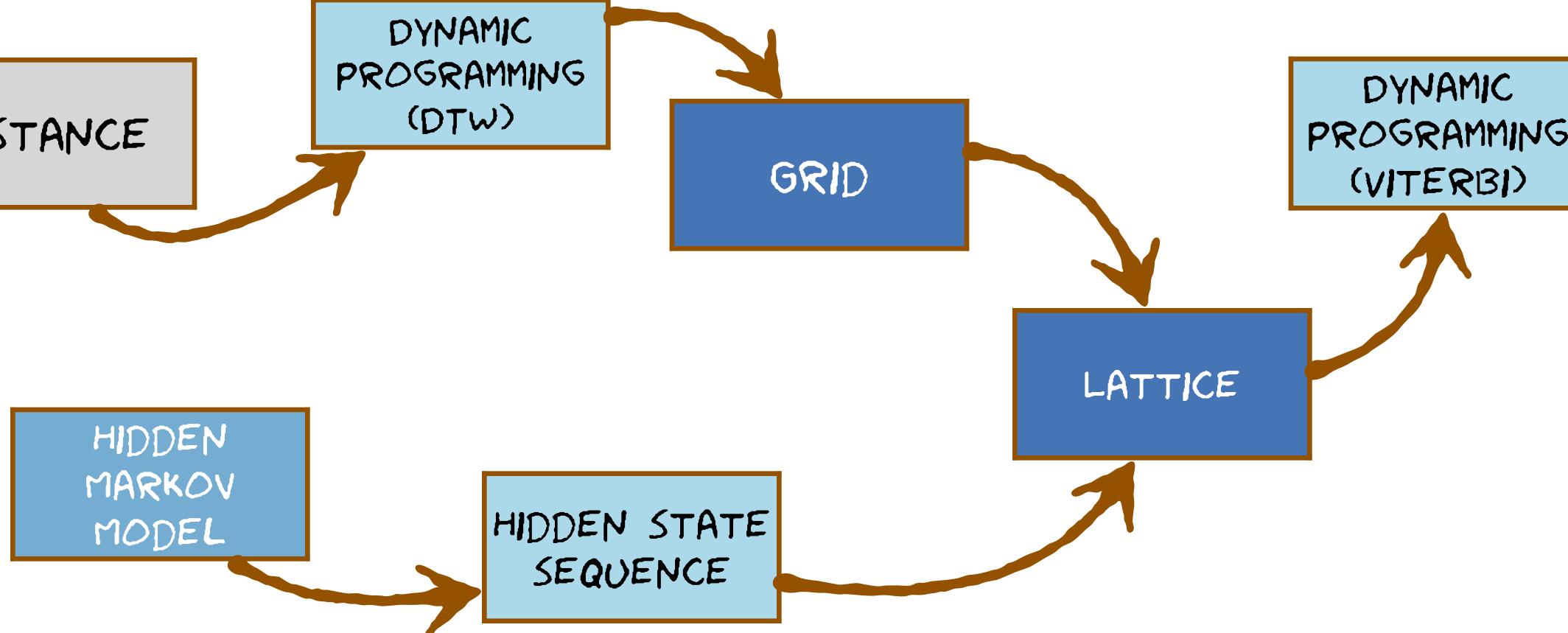
- <u>We've arrived at HMMs</u>
- Pattern matching

• Extracting **features** from speech

Probabilistic generative modelling

Orientation: from Dynamic Time Warping to the Hidden Markov Model

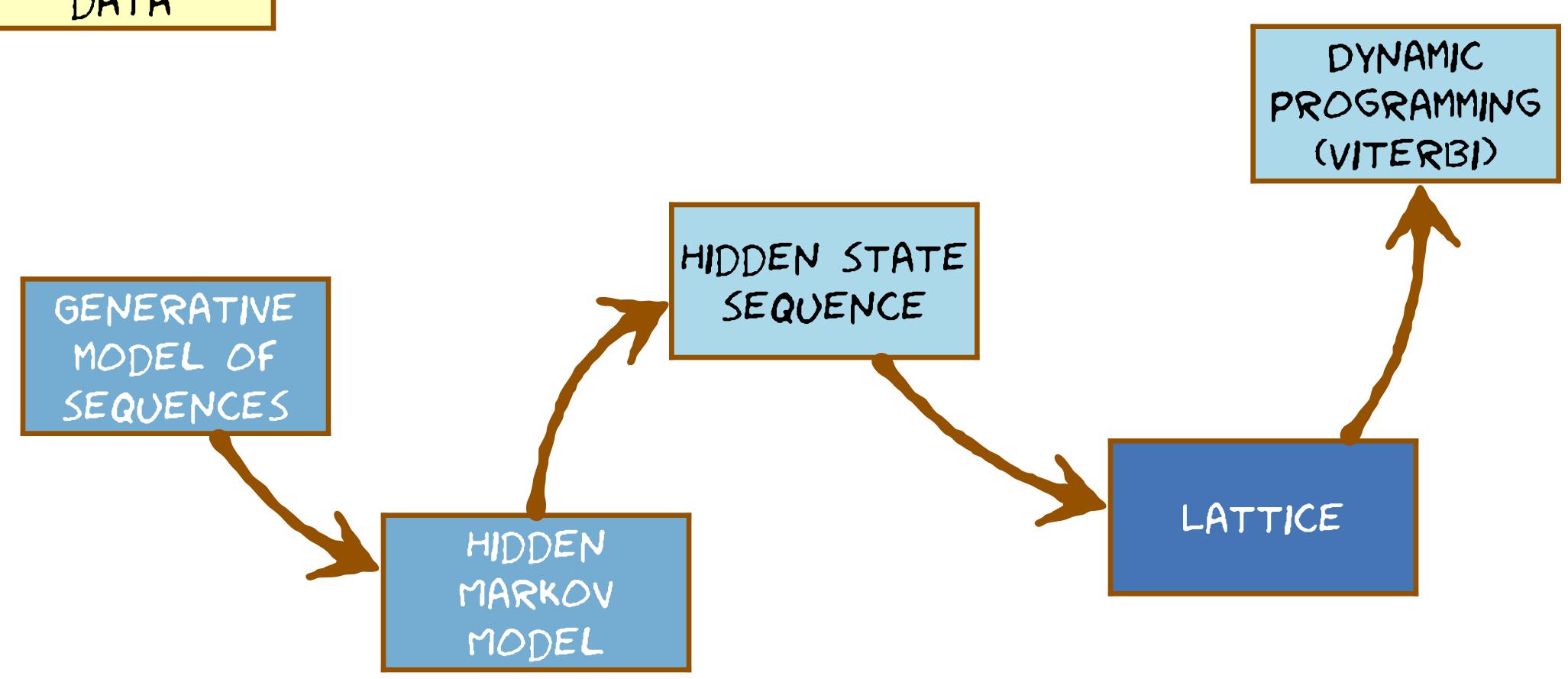




What you should already know

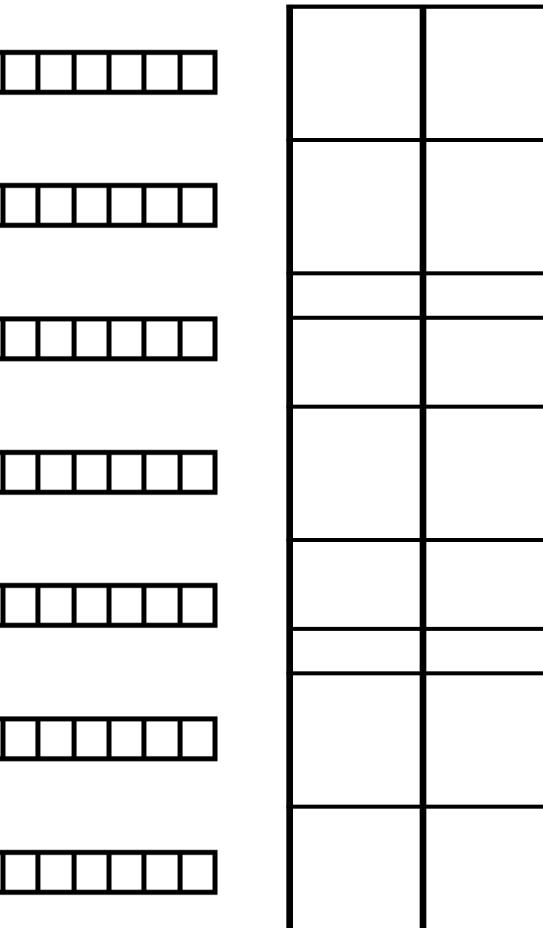
- a single template (as in DTW) cannot capture the natural variability of speech
 - an old-fashioned solution was to store multiple templates
- a much better solution is to capture variability using **statistics**
 - essentially: mean & variance

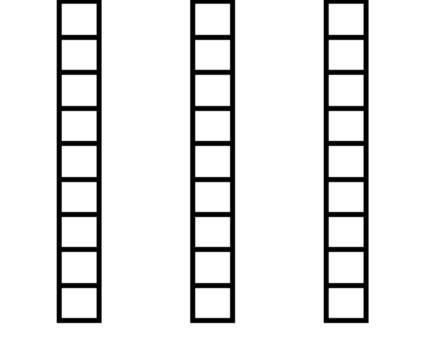
FITTING A GAUSSIAN TO DATA



GENERATIVE MODEL OF SEQUENCES

Recap: the multivariate Gaussian as a generative model

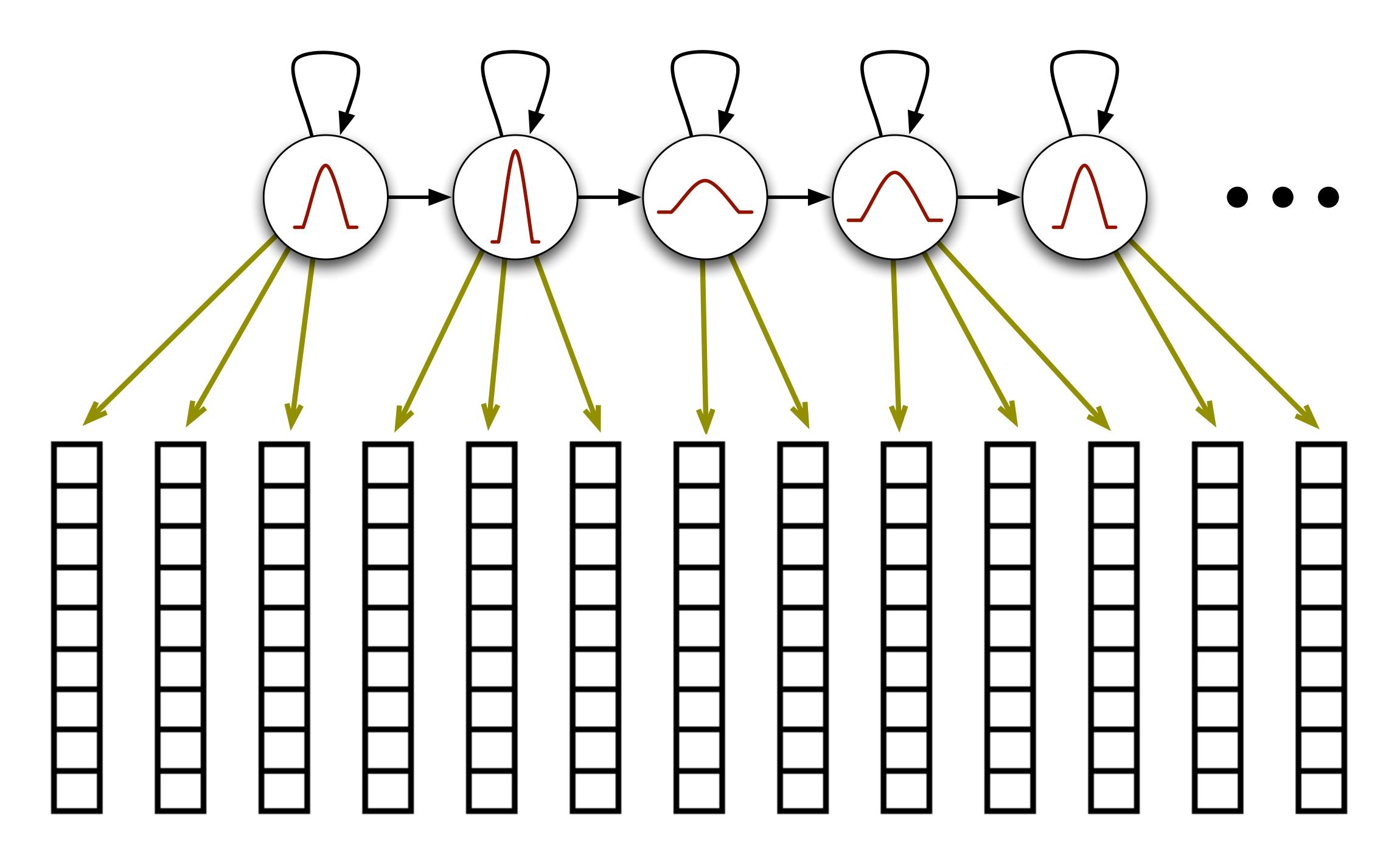


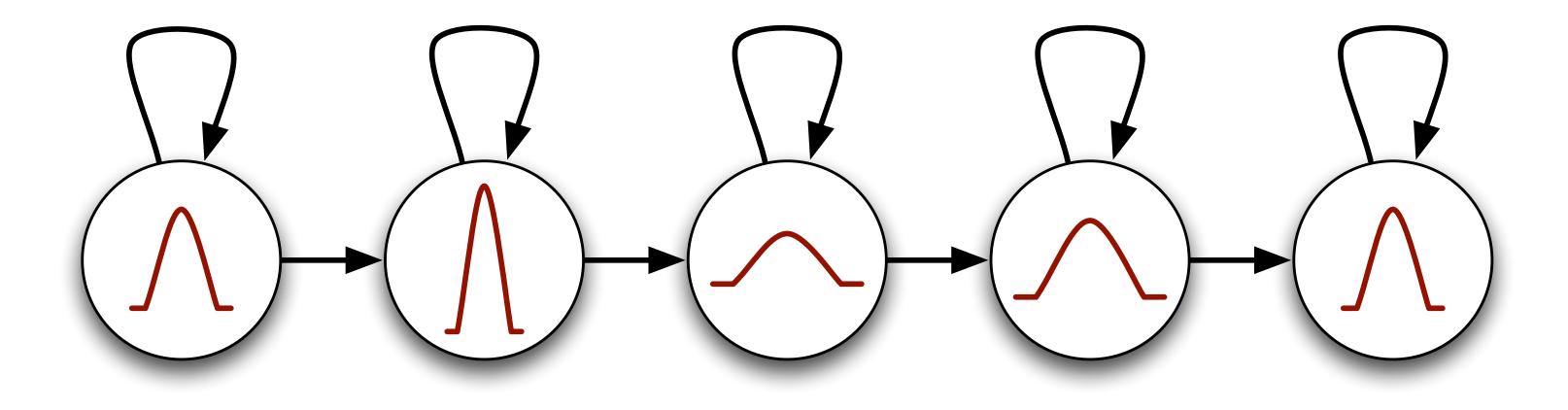


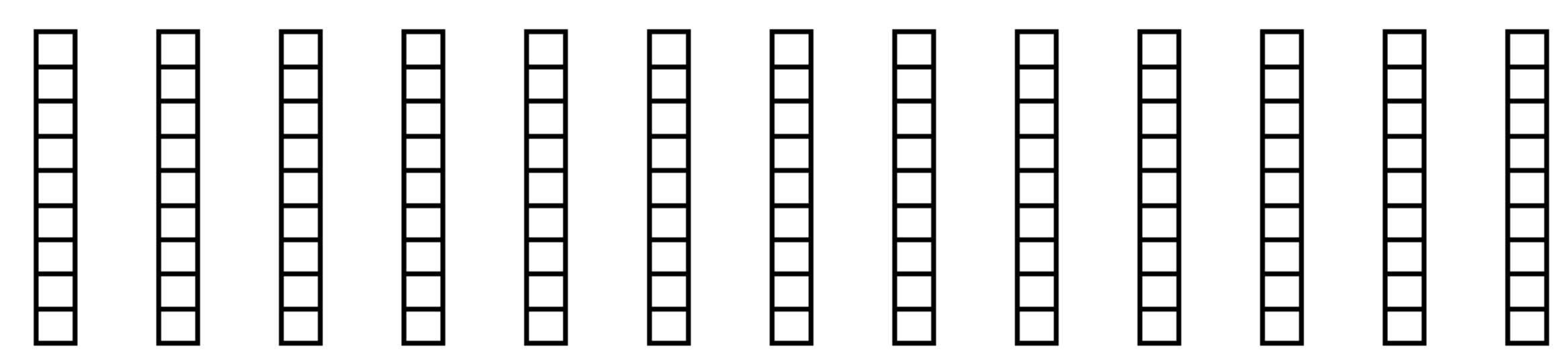
DYNAMIC PROGRAMMING (DTW)

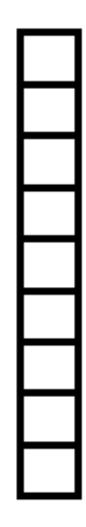
HIDDEN Markov Model

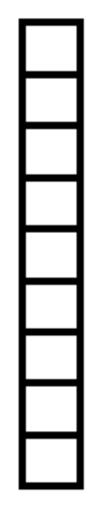
GENERATIVE MODEL OF SEQUENCES





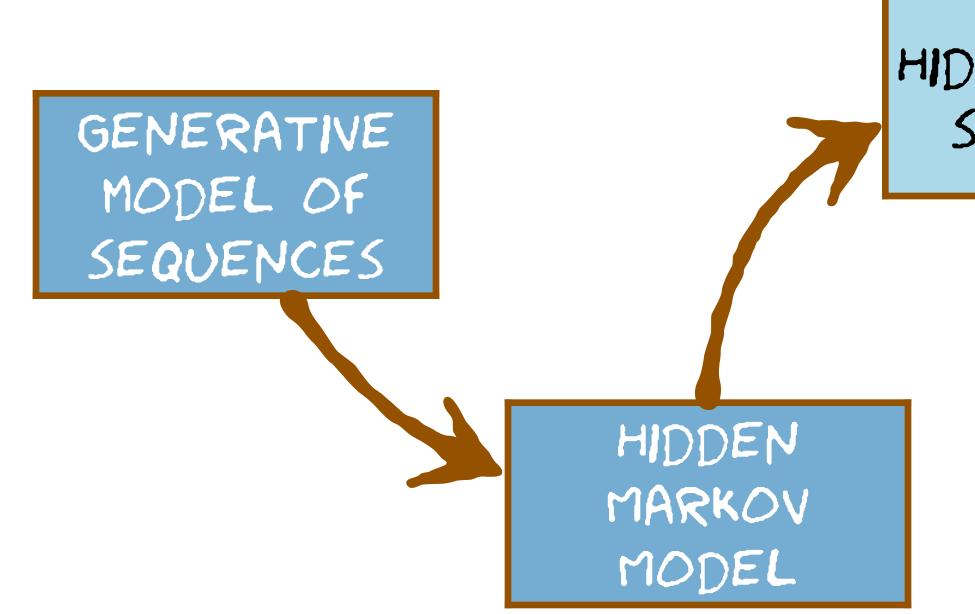




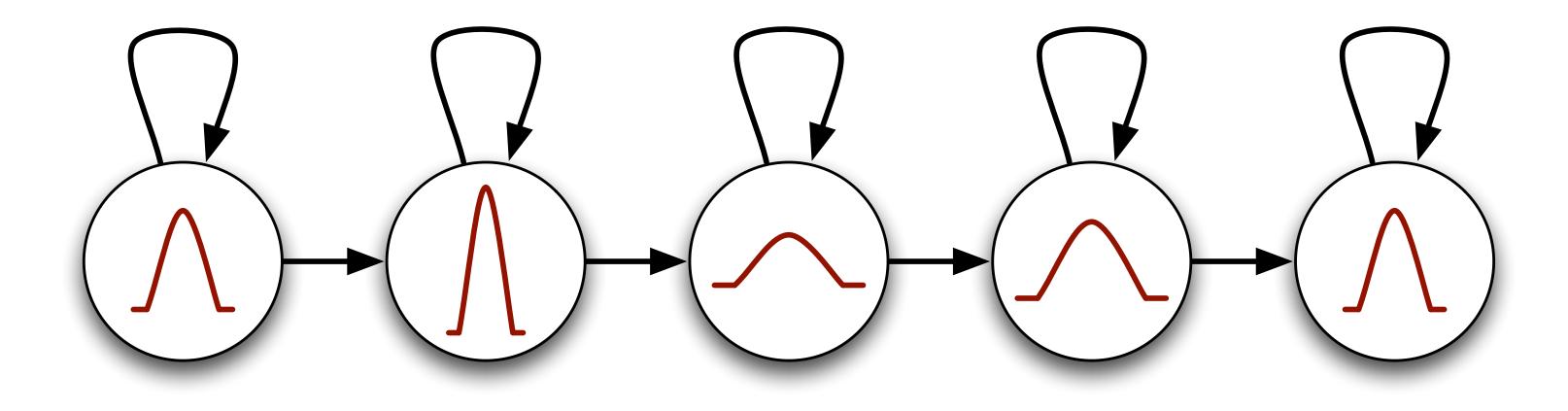


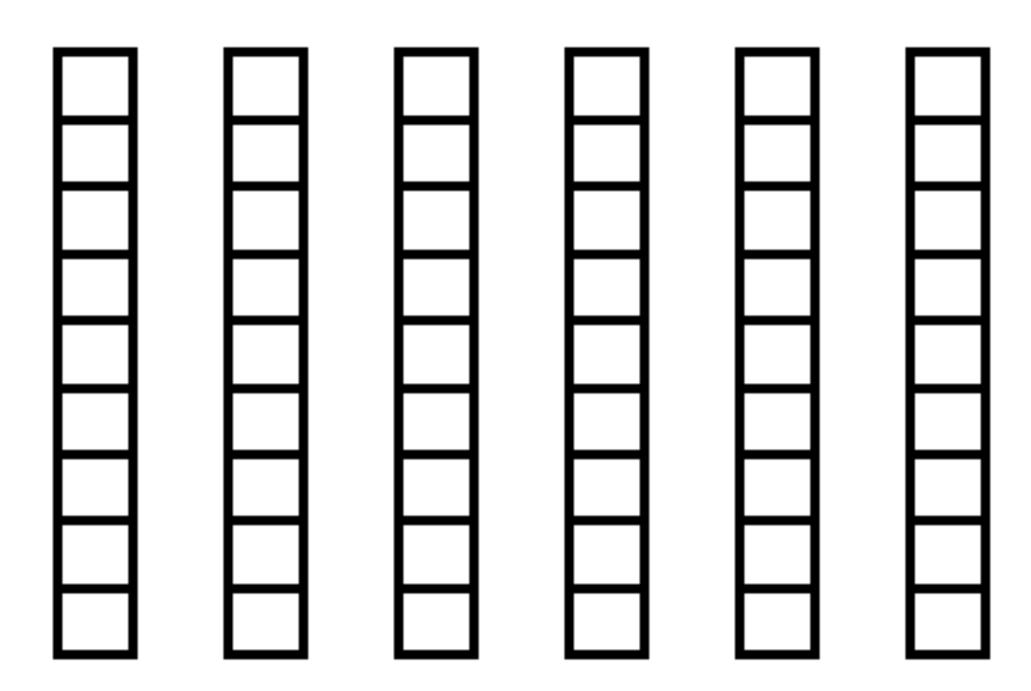
OOOOOOOOOOOOOOOOOOO

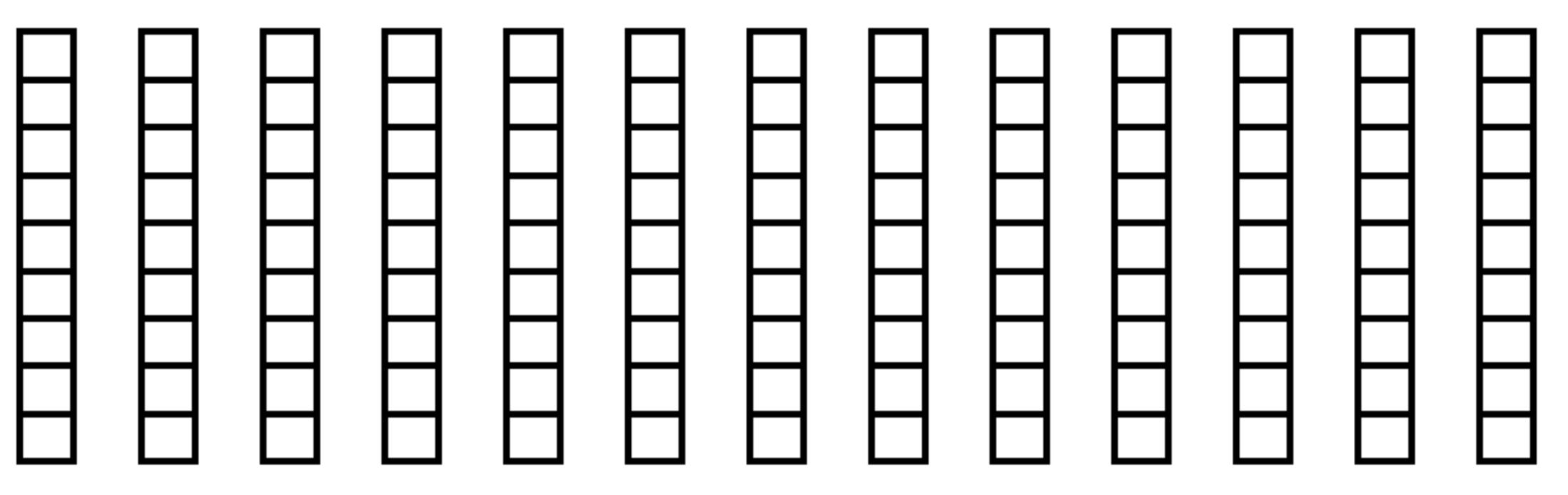
		L
		Ľ
		Ľ
		Ľ
		Ľ
		Ľ
		Ľ
		[
		Ľ



HIDDEN STATE SEQUENCE



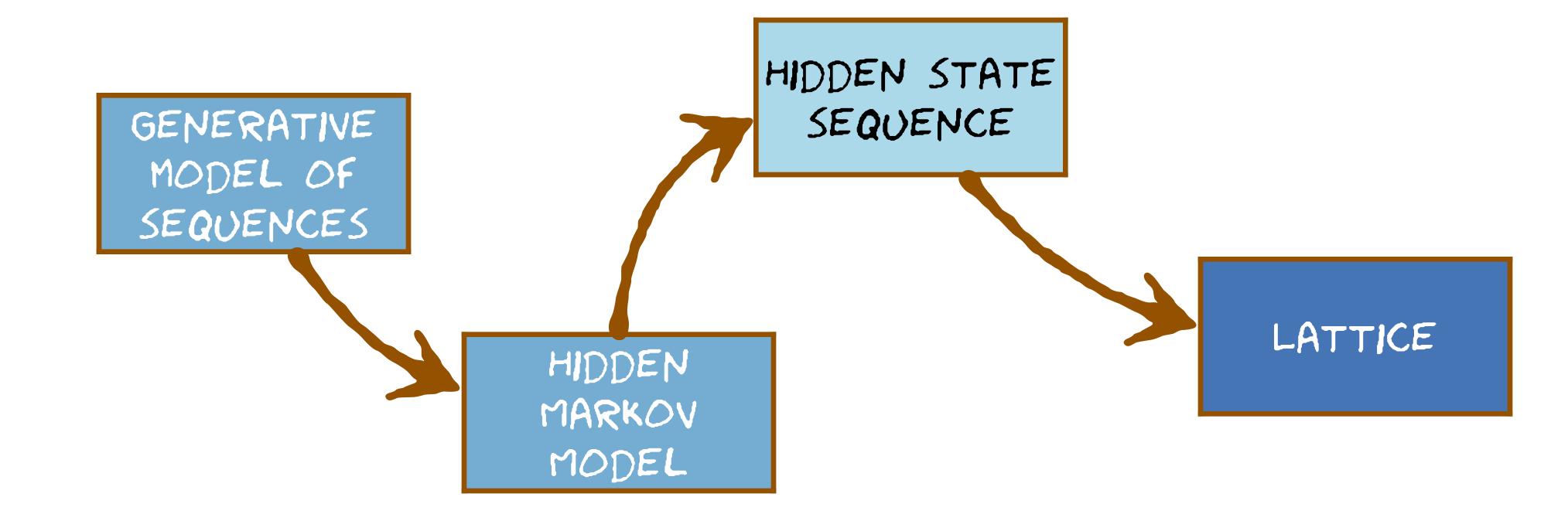


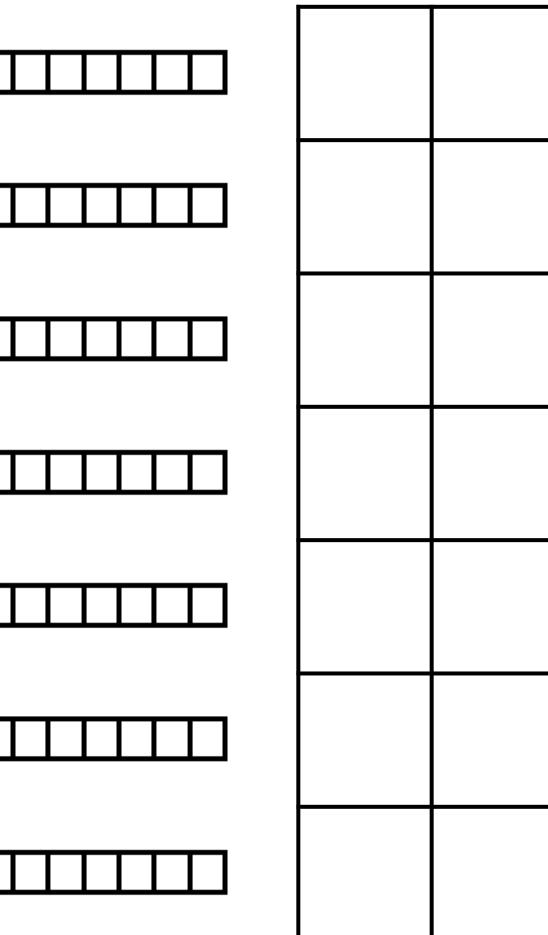


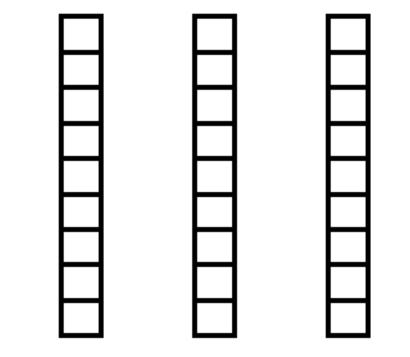
Hidden state sequence

P(O|model)

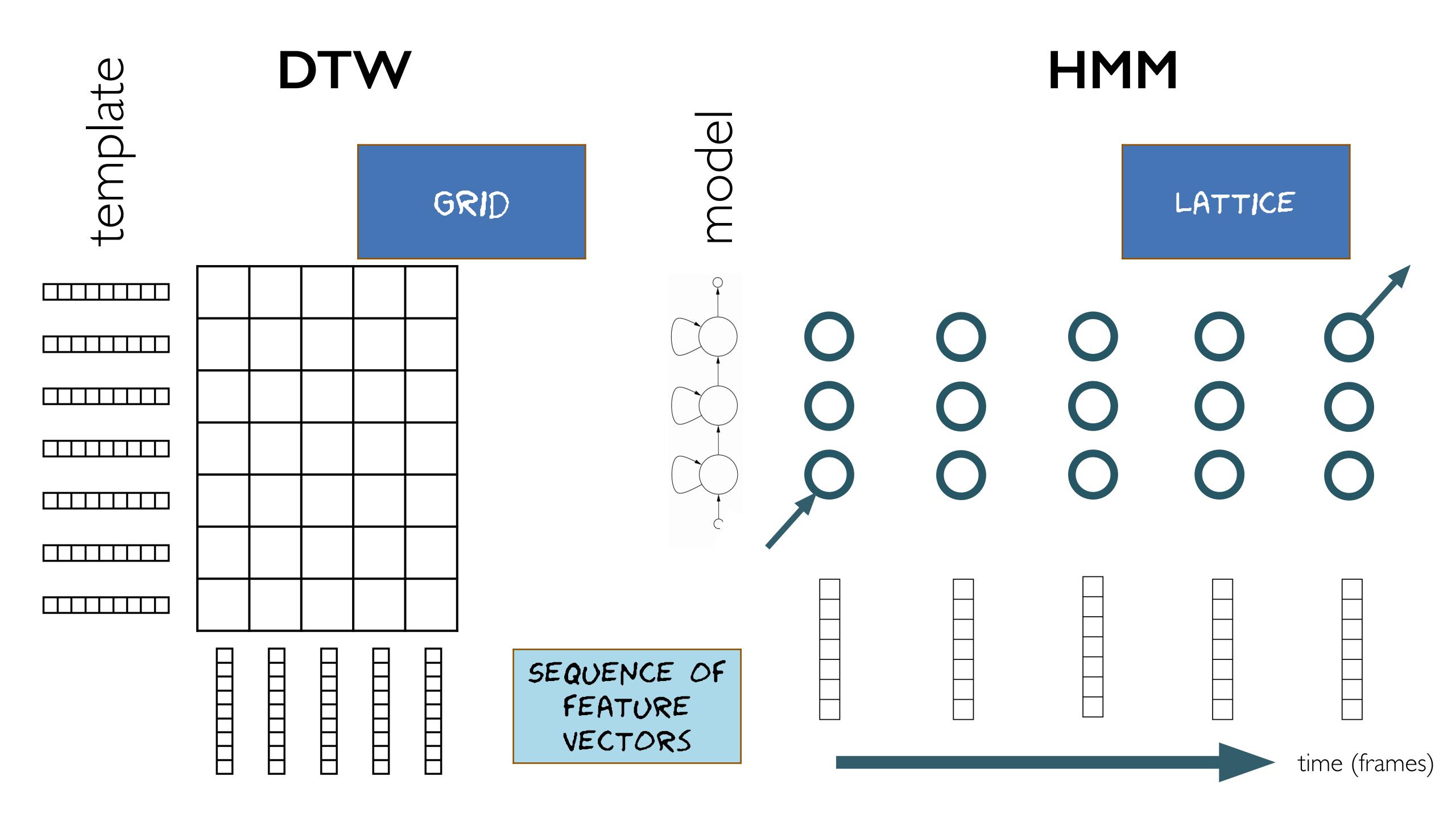
$P(\mathbf{O}, Q | \text{model})$

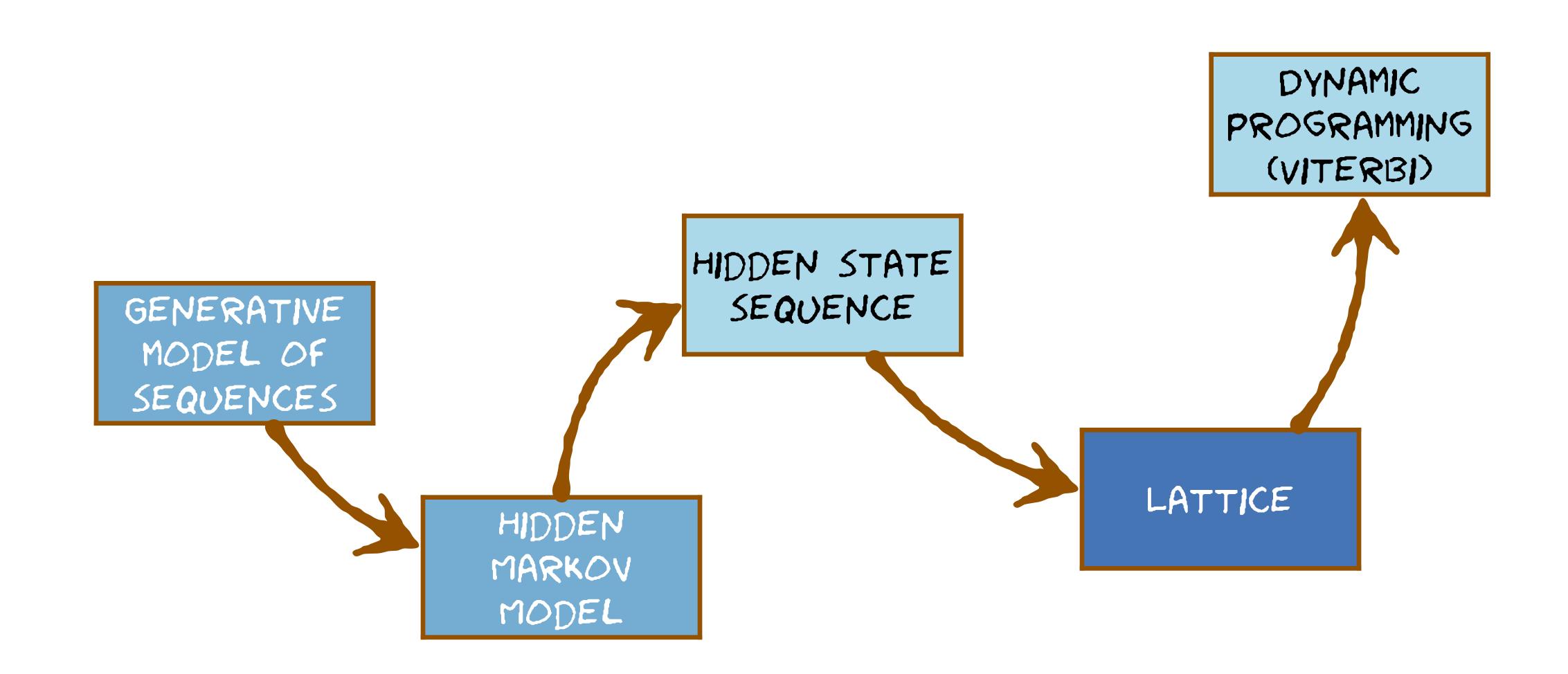






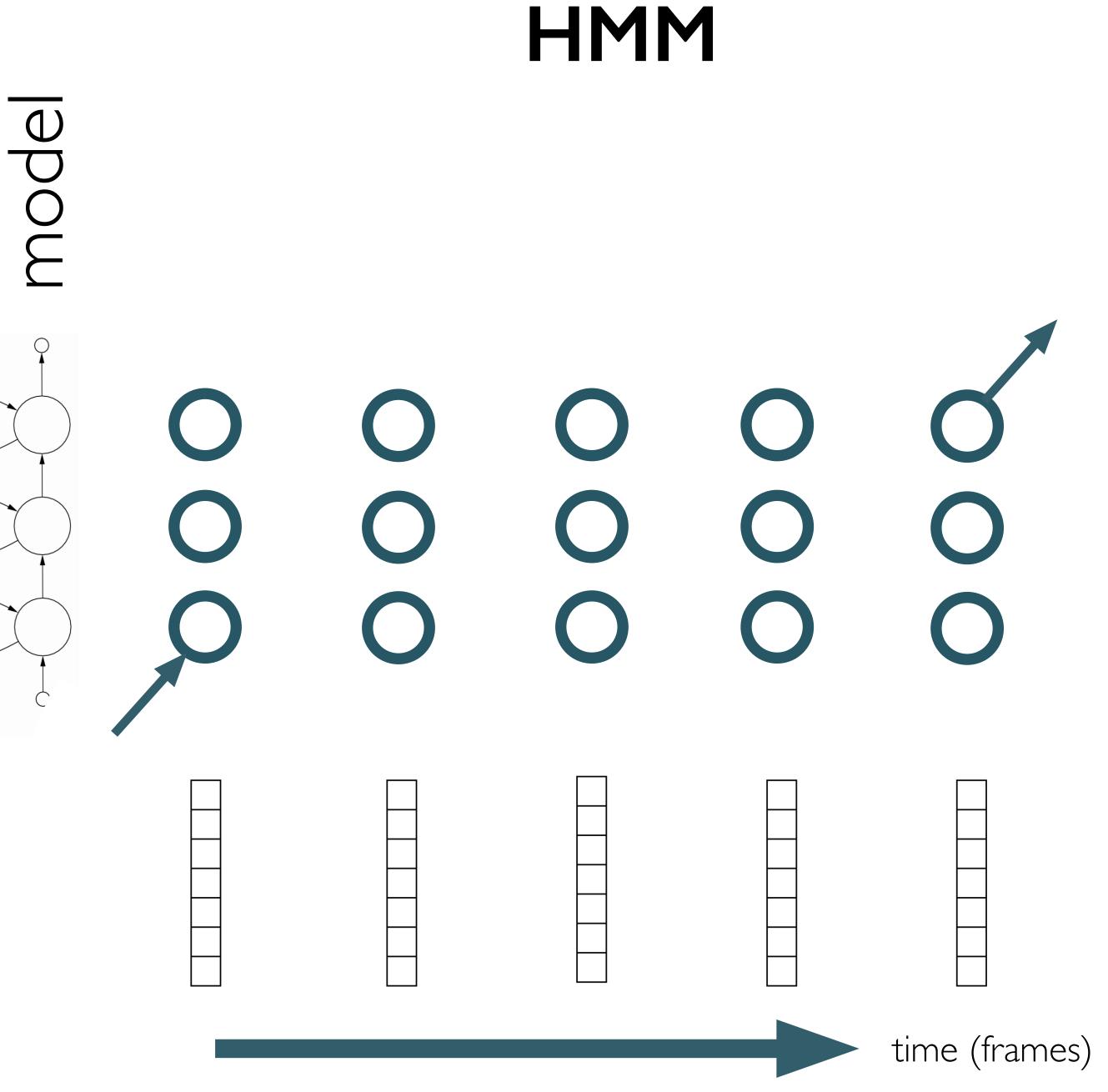
DYNAMIC PROGRAMMING (DTW)





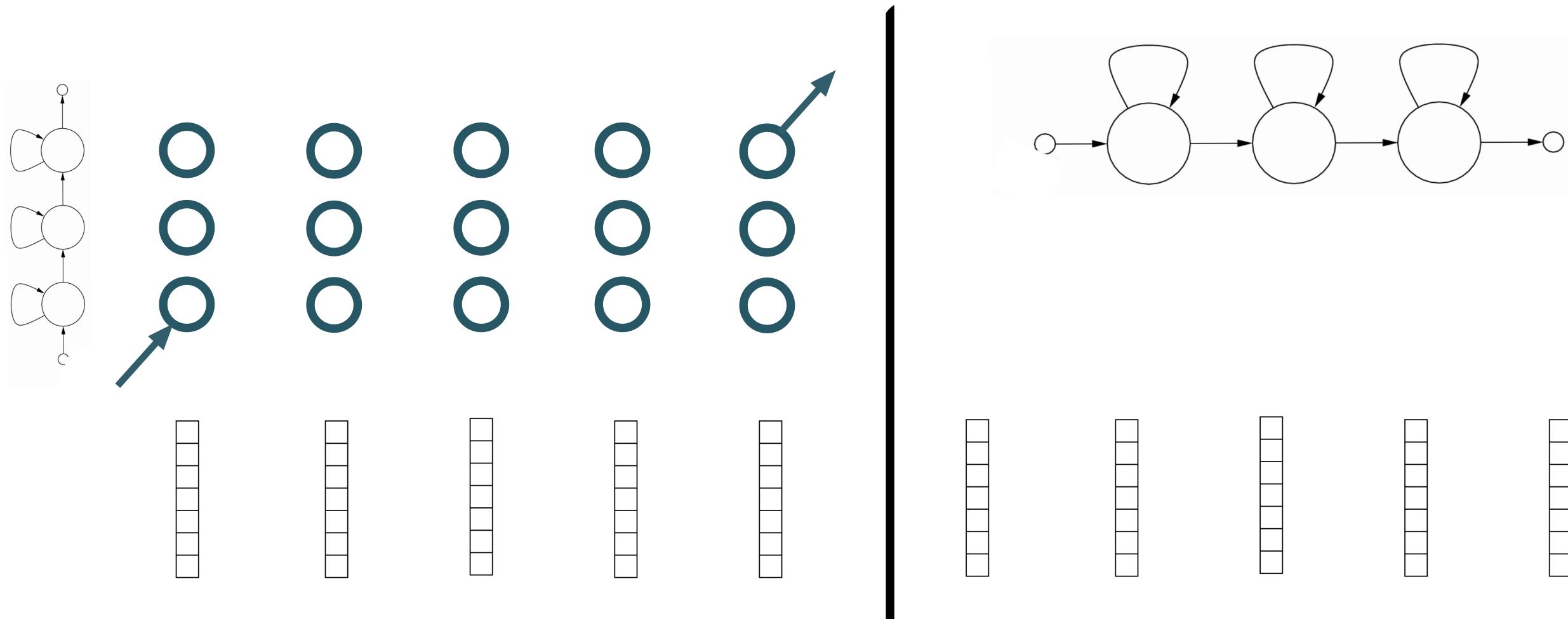
template

DTW



time	(f
------	----

Two ways to implement the Viterbi algorithm



What next?

connected speech

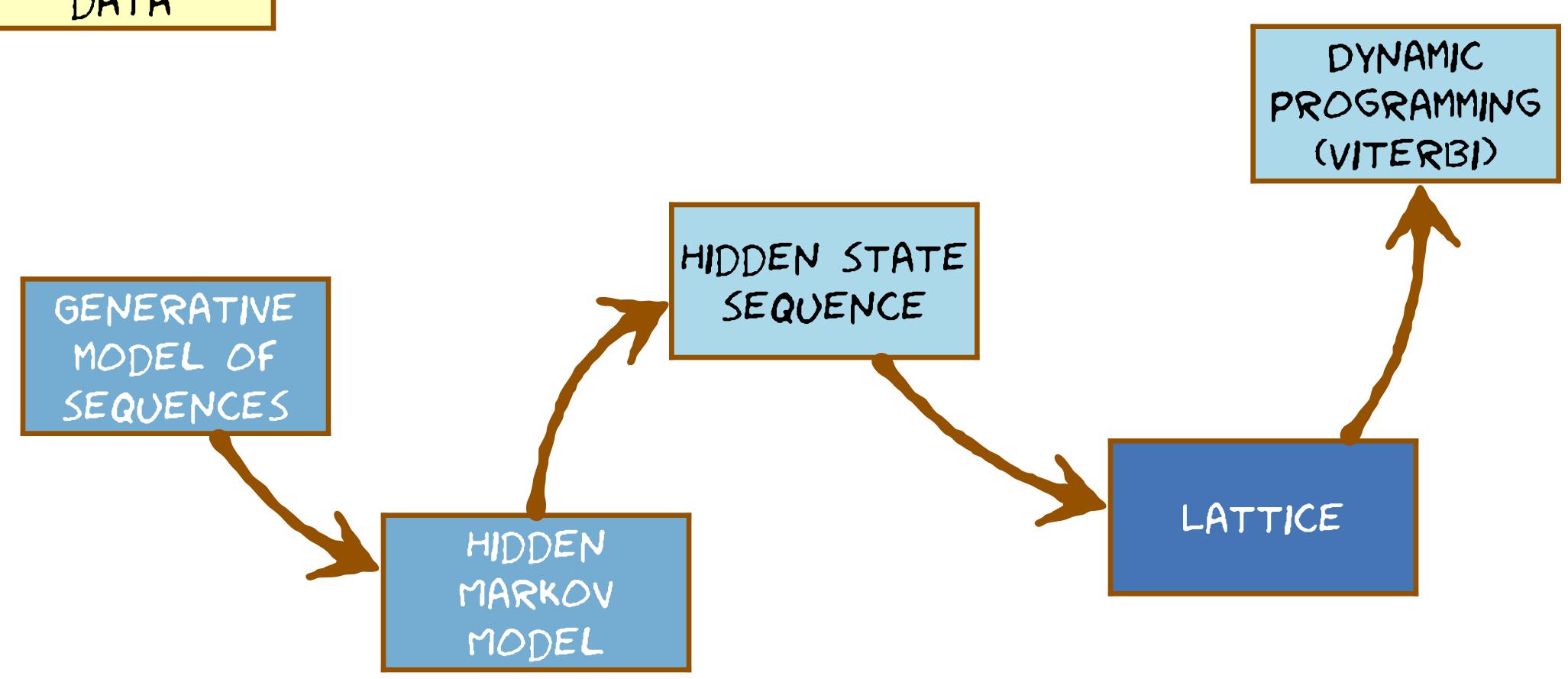
• training the model from data

this extension will turn out to be quite easy we just need to add a language model

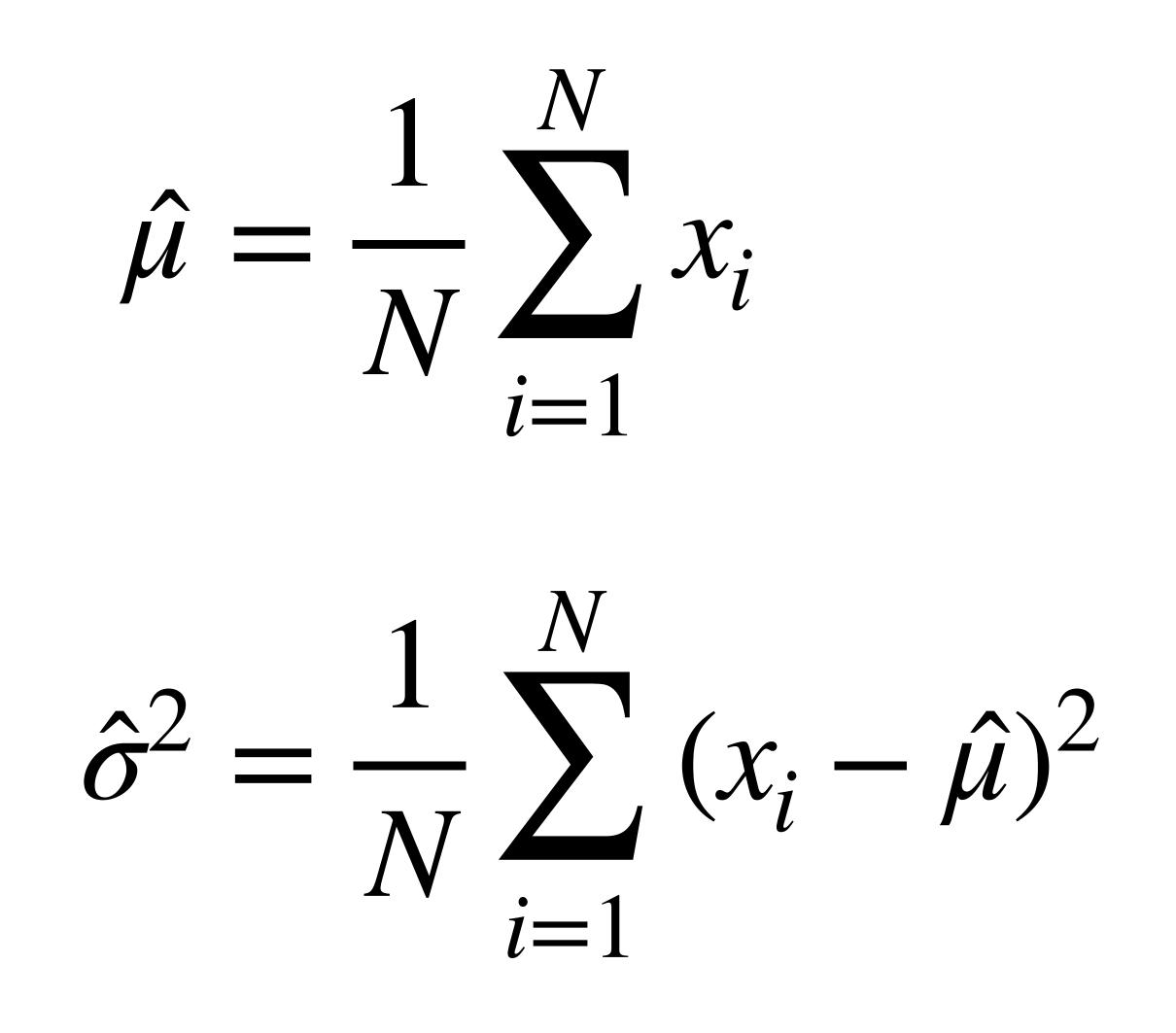
computationally, this is straightforward

but you may find it conceptually challenging

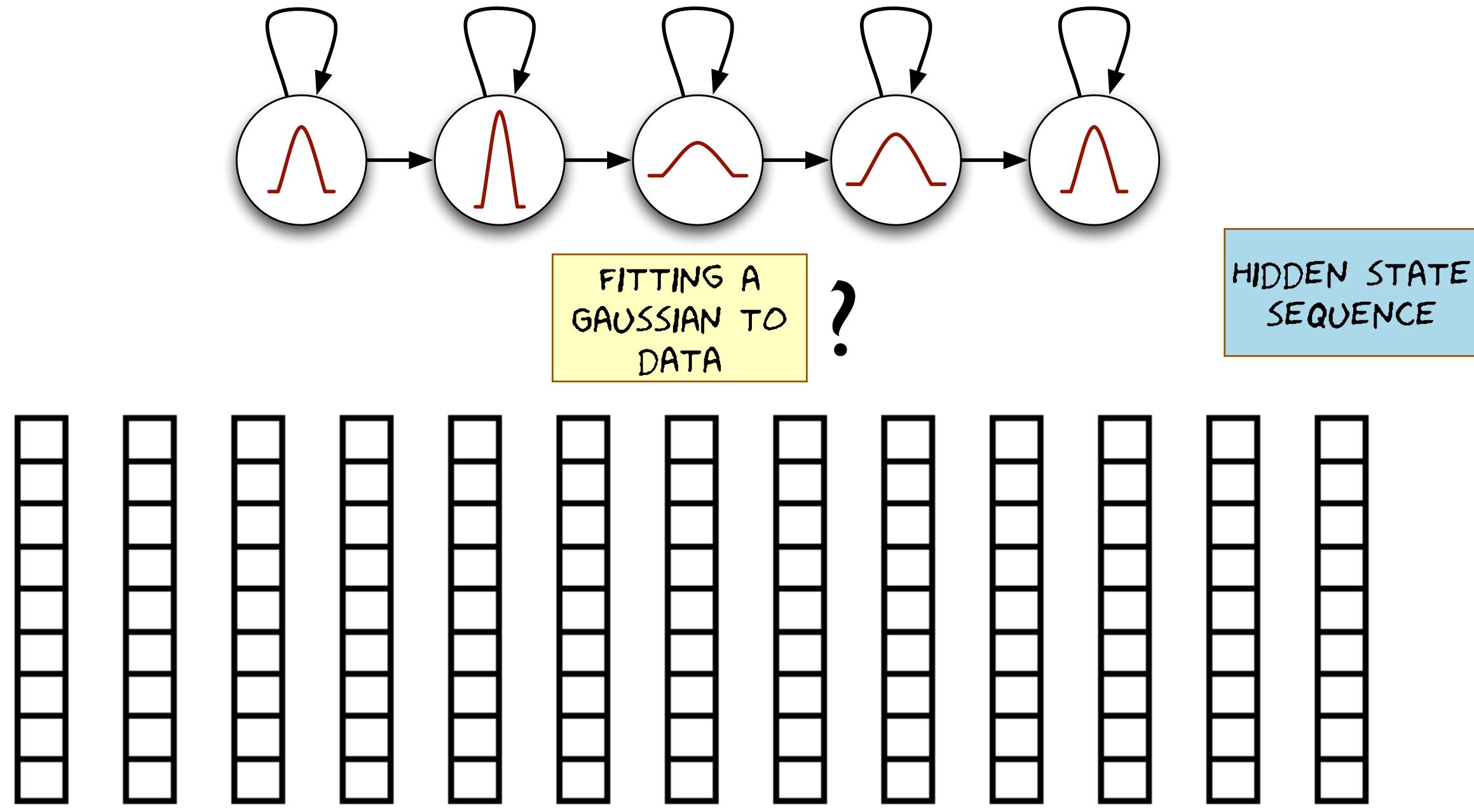
FITTING A GAUSSIAN TO DATA



Fitting the Gaussian to data



 $(x-\mu)^2$ p(x) $-e^{-2\sigma^2}$



_		

1	_	
	L	
	L	
	Γ	
	Γ	
	Γ	
	Γ	
	L	

