## Speech Processing

Simon King University of Edinburgh



additional class slides for 2020-21

## Module 6

## Pattern matching

#### Orientation

• We're on a journey towards HMMs

• Pattern matching

• Extracting **features** from speech

• Probabilistic generative modelling

What we are learning along the way



Dynamic programming
(in the form of Dynamic Time Warping)

The interaction between

- choice of model
- choice of features

Dynamic programming
(in the form of the Viterbi algorithm)

#### What you should already know

- Why the **waveform** is not good for pattern recognition
- Concept of a **feature vector**
- Let's start as simple as possible: whole word templates
  - But we already have to deal with sequences of different lengths

Source and filter are combined But we only want the **filter** 

Speech waveforms change over time
Use short-term analysis
Extract features from frames of speech

Finding an alignment between two sequences

- linear time warping
- non-linear ('dynamic') time warping













#### The auditory system is like a bank of bandpass filters: a "filterbank"





#### Each filter's output is a useful feature for doing Automatic Speech Recognition





Filterbank features for one frame are speech are stored in a single vector



EATMRE

FEATURE VECTOR



#### SEQUENCE

#### Sequences are everywhere in language

- We've already seen
  - a waveform is a sequence of samples
  - a waveform can be analysed as a sequence of overlapping analysis frames
  - a sentence is a sequence of words
  - a spoken word is a sequence of **phones**
  - a written word is a sequence of letters
- Now we have
  - from each frame we extract a feature vector
  - · so a waveform becomes a sequence of feature vectors



Filterbank features for one frame are speech are stored in a single vector







#### Filterbank features for automatic speech recognition



Filterbank features for automatic speech recognition













EXEMPLAR

DISTANCE

global distance

— Jocal distances





Image credit: Figure 8.1 from Holmes & Holmes

EXEMPLAR



### Pattern matching by Dynamic Time Warping



#### Dynamic Time Warping is a form of Dynamic Programming

• Understanding Dynamic Programming, as an algorithm

Getting harder

• Being able to see that Dynamic Programming can be applied to a particular problem

Really quite difficult

• Devising a suitable data structure for that problem

My brain hurts













## DYNAMIC PROGRAMMING (DTW)

| H         | В | В | В |   |
|-----------|---|---|---|---|
| $\exists$ | H | H |   |   |
| H         |   | H | H | H |
|           |   |   |   |   |

# DYNAMIC PROGRAMMING (DTW)

#### What you can learn next



#### What next?

- DTW, and especially the local distance measure doesn't account for variability
  - so we'll replace it with a probabilistic model

- That model will use Gaussian probability density functions
  - to make these simpler, we will first try to remove covariance from our
     features
  - time for some feature engineering!

HMMs in Module 8

MFCCs in Module 7