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Putting one technology against another can lead to intriguing developments.

Using speech synthesis to 'spoof speaker verification systems was initially
found to be very successful, but immediately triggered the development of

effective countermeasures.

The next step in the arms race is synthetic speech that cannot be detected by

those countermeasures. It doesn't even have to sound natural or like the target
speaker to a human listener - only to the machine. Other forms of such an

adversarial attack have been demonstrated against image classifiers (with
images that look like one thing to a human but something entirely different to

the machine) and automatic speech recognition systems (where signals that
sound like noise to a human are recognised as words by the machine).

This highlights the enormous differences between human and machine
perception. Does that matter? Do generative models and adversarial
techniques tell us anything about human speech, or is there no connection?

I'm not promising any answers though, I'm likely to raise more questions.
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Some pieces of an interesting puzzle

1
2

3

4.

5

. Speech synthesis
. Objective measures of speech quality

. Speaker identification or verification
Presentation attack (‘'spoofing’)

. Countermeasures (‘anti-spoofing’)

. Adversarial techniques
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1. Speech synthesis

* the goal is to sound ‘natural
* which is defined as ‘human-like’

» usually sounds like a specific
iIndividual human talker
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1. Speech synthesis - how it works

Text-to-Speech

text waveform
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Reduce to a problem we can actually solve with machine learning
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The classic pipeline of statistical parametric speech synthesis
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The classic pipeline of statistical parametric speech synthesis
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2. Objective measures

 Auditory / perceptual model
» Feature extraction

» Feature engineering (normalise etc)

» Compare features of
» degraded speech
» reference natural speech

» Map to perceptual score
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2. Objective measures - how they work (it’s complicated !)

PAPERS OPEN ACCESS Freely available online

Perceptual Objective Listening Quality
Assessment (POLQA), The Third Generation ITU-T

Standard for End-to-End Speech Quality
Measurement Part lI-Perceptual Model

JOHN G. BEERENDS,' AES Fellow CHRISTIAN SCHMIDMER? JENS BERGER?®
MATTHIAS OBERMANN? RAPHAEL ULLMANN?® JOACHIM POMY?2 AND
MICHAEL KEYHL,2 AES Member
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Fig. 1. Overview of the first part of the POLQA perceptual model: Calculation of the internal representation of the reference and
degraded signals (see Sections 5.1 through 5.10). Four different variants of the internal representations are calculated (represented by
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_  Measuring naturalness
W|thout usmg human Ilsteners
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Abstract

Instrumental speech-quality prediction for text-to-speech signals is explored in a twofold manner. First, the perceptual quality space
of TTS is structured by means of three perceptual quality dimensions which are derived from multiple auditory tests. Second, quality-
prediction models are evaluated for each dimension using prosodic and MFCC-based measurands. Linear and nonlinear model types are
compared under cross-validation restrictions, giving detailed insight into model-generalizability aspects. Perceptually regularized prop-
erties, denoted as quality elementspare’mtroduced an-orderio encodectheuguality-“mdicative effect of andividual signal characteristics.
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Proc. Blizzard Challenge 2010

Comparison of Approaches for Instrumentally Predicting the Quality of
Text-to-Speech Systems: Data from Blizzard Challenges 2008 and 2009

Florian Hinterleitner', Sebastian Moller’,
Tiago H. Falk?, Tim Polzehl*

!Quality and Usability Lab, Deutsche Telekom Laboratories, TU Berlin, Germany,
’Bloorview Research Institute, Toronto, Canada
florian.hinterleitner@gmail.com, sebastian.moeller(@telekom.de,

tiago.falkRieee.org, tim.polzehl@telekom.de

Abstract

In this paper, we compare and combine different approaches
for instrumentally predicting the perceived quality of Text-to-
Speech systems. First, a Log-Likelihood is determined by com-
paring features extracted from synthesized speech signals with
features trained on natural speech. Second, parameters are ex-
tracted which capture quality-relevant degradations of the syn-
thesized speech signal. Bothapproachesare combined and eval-
nated on annditorv evalniated svnthetic sneech databaces from the

a method for instrumentally predicting the quality of synthetic
speech could greatly support the development of high-quality
TTS systems.

Several proposals have been made to estimate the percieved
quality of synthesized speech, however, a universal method for
quality prediction has not yet been established. Most measures
use a natural reference signal and evaluate the spectral distance
between the synthesized signal and its natural counterpart. Cer-
nak [6] used the ITU-T P.862 PESQ measure [7], an objective



3. Speaker identification or
verification

» older method
* build a model of the speaker

* build a model of all competing speakers
(‘background’)

» compare likelihood of data under each

* newer method
» project (embed) speakers into a space

» classify in that space

* Both need clever techniques to separate out

speaker-specific features (from channel,
session, ...)

© Copyright Simon King, University of Edinburgh, 201 8. Personal use only. Not for re-use or redistribution.



3. Speaker identification or verification - how it works
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4. Presentation attack
(‘'spoofing’)

» ISO/IEC 30107-1:2016

» Speaker-adaptive text-to-speech

* \/oice conversion
» Replay of recorded speech

» Mostly general-purpose systems

* Until recently, very little attack-
specific work

© Copyright Simon King, University of Edinburgh, 201 8. Personal use only. Not for re-use or redistribution.
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4. Presentation attack (‘'spoofing’) - how it works

speech synthesis voice conversion
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4. Presentation attack (‘'spoofing’) - how it works

Impersonation

true

replay speaker

verification

system false

speech synthesis

volice conversion



Presentation attack
using speech synthesis
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5. Countermeasures (‘anti-spoofing’)

» Lots of work on detecting:
* synthetic speech
* voice-converted speech
 record and playback

* Focus Is on detecting artefacts
 extract large numbers of features

* apply machine learning

© Copyright Simon King, University of Edinburgh, 201 8. Personal use only. Not for re-use or redistribution.



5. Countermeasures (‘anti-spoofing’) - how they work

W Feat“'fe Classifier
extraction

Human
———3Or

spoofed

Fig.4. Simple spoofing-detection framework adhered to by all 16 submissions

to ASVspooft 2015.

ASVspoof. The Automatic Speaker Verification Spoofing and Countermeasures Challenge. Wu, Yamaglshl
Kinnunen, Hanilci, Sahidullah, Sizov, Evans, Todisco & Delgado, IEEE Journal of Selected Toplcs in Signal

Processing, vol. 11, no. 4, pp. 588-604, June 2017.
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Speaker identification that is
defended against presentation attack
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Another use for replay detection...

HOW TO]{EEP AM AZON ECHO VOICE ASSISTANTS sucH as the Amazon Echo and Google
AND GOOGLE HOME FROM Home are pretty smart, but they’re not yet sharp enough to

understand the difference between TV and reality. A Google
RESPOND lN G TO YOUR TV commercial during yesterday’s Super Bowl prompted Home
to play whale noises, flip the hallway lights on, and recite a
substitute for cardamom. As a series of actors barked "OK
Google” commands on TV, the devices started doing what
they were asked to do. Android phones with Google
Assistant may have done the same thing. Google Home
wasn’t haunted. It was just doing its job.

Any owner of a Google Home or Amazon Echo knows that
certain TV commercials prompt unwanted activity.

imon King, University of Edinburgh, 2018. Personal use only. Not for re-use or redistribution.




...but detection of replay & synthetic speech
will also block users of assistive communication devices

[iImage credit: Tobii-Dynavoxl
© Copyright Simon King, University of Edinburgh, 201 8. Personal use only. Not for re-use or redistribution.



6. Adversarial techniques

» Constructing examples
* Images, objects, and sounds

* Training a generative model
* that learns to beat the adversary

© Copyright Simon King, University of Edinburgh, 201 8. Personal use only. Not for re-use or redistribution.



6. Adversarial techniques - how they work : adversarial examples
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Adversarial images & objects

» Recognised by the machine as
one thing, but for humans

* mean nothing, or
* recognised as something else

© Copyright Simon King, University of Edinburgh, 201 8. Personal use only. Not for re-use or redistribution.



Images that that mean nothing
to humans, but fool machines

* Machines use quite different
features to humans

» Constructed images can fool
them, via these extracted
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Images that look like one thing to humans, but another to machines.

+ .007 x —
g (Ve (0.2.0)  ign(V,.0(0,2,y))
“panda” “nematode” “g1bbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Explaining and harnessing adversarial examples. Goodfellow, Shlens & Szegedy, ICLP 2015



Objects that look like one thing to humans, but another to machines

W classified as turtle B classified as rifle | classified as other

Synthesizing robust adversarial examples. Athalye, Engstrom, llyas & Kwok, ICML 2018
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Video available at

https://www.labsix.org/physical-objects-that-fool-neural-nets
or

https://youtu.be/gPxIhGSGOtc



Adversarial sounds

» Recognised by the machine as
one thing, but for humans

e sounds like noise, or
» sounds like something else, or
» simply inaudible

© Copyright Simon King, University of Edinburgh, 201 8. Personal use only. Not for re-use or redistribution.



Hidden Voice Commands

Black-Box attack demo

Video: 2m40s



Video available at

http://www.hiddenvoicecommands.com
or

https://youtu.be/HvZAZFztIO0
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Hidden Voice Commands. Carlini, Mishra, Vaidya, Zhang, Sherr, Shields, \Wagner & Zhou,
USENIX Security Symposium (Security) 2016.



Sounds that fool machines, but are 5 Citwas the.

heard as something else by humans B ik
Normal audio, recognised correctly by ASR \
"itis a trut

—I,  universally
" acknowledged
that a single"

Adversarial audio, recognised incorrectly by ASR as
okay google browse to evil dot com

https://nicholas.carlini.com/code/audio adversarial examples



Recognised by machine,
but inaudible to humans

 Modulate an ultrasound

carrier with speech -
Galaxy S6 Edge

 Demodulation occurs
because of non-linearities | —
In the receiving microphone Ultrasonic
(in @ smartphone) T transducer

DolphinAttack: Inaudible Voice Commands. Zhang, Yan, Ji, Zhang, Zhang & Xu,
ACM Conference on Computer and Communications Security. (CCS) 2017
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6. Adversarial techniques - how they work : generative adversarial
networks

natural examples

generator adversary



natural examples

real
fake

generator adversary



Training the generator

update freeze
parameters parameters

generator adversary



o natural examples
Training the adversary

freeze
parameters

update
parameters

generator adversary




Practical adversarial training

 Modified loss function is sum of
e adversarial loss
* generation error

» Conditional generator

* €.g., linguistic features, for text-
to-speech

© Copyright Simon King, University of Edinburgh, 201 8. Personal use only. Not for re-use or redistribution.
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Statistical Parametric Speech Synthesis Incorporating
Generative Adversarial Networks

Yuki Saito . Shinnosuke Takamichi . Member, IEEE, and Hiroshi Saruwatari , Member, IEEE

Abstract—A method for statistical parametric speech synthe-
sis incorporating generative adversarial networks (GANSs) is pro-
posed. Although powerful deep neural networks techniques can
be applied to artificially synthesize speech waveform, the synthetic
speech quality is low compared with that of natural speech. One
of the issues causing the quality degradation is an oversmoothing
effect often observed in the generated speech parameters. A GAN
introduced in this paper consists of two neural networks: a dis-
criminator to distinguish natural and generated samples, and a
generator to deceive the discriminator. In the proposed framework
incorporating the GANSs, the discriminator is trained to distinguish
natural and generated speech parameters, while the acoustic mod-
els are trained to minimize the weighted sum of the conventional
minimum generation loss and an adversarial loss for deceiving
the discriminator. Since the objective of the GANSs is to minimize
the divergence (i.e., distribution difference) between the natural
and generated speech parameters, the proposed method effectively
alleviates the oversmoothing efféct on the generated speech pa-

acoustic models represent the relationship between input fea-
tures and acoustic features. Recently, deep neural networks
(DNNs) [4] have been utilized as the acoustic models for TTS
and VC because they can model the relationship between input
features and acoustic features more accurately than conven-
tional hidden Markov models [5] and Gaussian mixture mod-
els [6]. These acoustic models are trained with several training
algorithms such as the minimum generation error (MGE) cri-
terion [7], [8]. Techniques for training the acoustic models to
generate high-quality speech are widely studied since they can
be used for both TTS and VC. However, the speech parameters
generated from these models tend to be over-smoothed, and the
resultant quality of speech is still low compared with that of
natural speech [1], [9]. The over-smoothing effect 1s a common

1Ssie‘in both TS and V.
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...S0 how about making the machine listen
more like a human does?
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Abstract

We propose to use a perceptually-oriented domain to improve
the quality of text-to-speech generated by deep neural networks
(DNNs). We train a DNN that predicts the parameters required
for speech reconstruction but whose cost function is calculated
in another domain. In this paper, to represent this perceptual
domain we extract an approximated version of the Spectro-
Temporal Excitation Pattern that was originally proposed as part
of a model of hearing speech in noise. We train DNNs that pre-
dict band aperiodicity, fundamenta! frequency and Mel cepstral
coefficients and compare generated speech when the spectral

mised using a shared cost function, allowing the model poten-
tially to learn dependencies between output parameters.

DNN training easily allows for different cost functions to
be used. It is possible to train a DNN to predict Mel cepstral
coefficients but to calculate the error in the higher-dimensional
spectral domain, simply by reformulating the cost function. It
1s also possible to train a DNN to predict the spectrum directly.

There are, however, more perceptually relevant representa-
tions of speech that could be used to measure the error, but that
do not allow for synthesis. So, we might measure the error not
divectlycon/the otitput acoustic-features (1.e., vocoder parame-
tere) hint 1in come other domain which mav not iteelf he 1nicefinl
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Objective measure vs. adversarial technique

 Either can be used to optimise, e.g. speech synthesis

» Objective measure

» advantage: supposed to mimic human judgements

 disadvantages: not designed for synthetic speech; only measures global
‘quality’ (whatever that means) and not 'naturalness’



Objective measure vs. adversarial technique

 Either can be used to optimise, e.g. speech synthesis

» Adversarial technique

» advantages: powerful, automatic, require no additional data or knowledge

 disadvantage: doesn't behave like a human, so not clear what we are
optimising



Why not use an objective measure as the adversary?

* Objective measure
» advantage: supposed to mimic human judgements
» Adversarial technique

» disadvantage: doesn't behave like a human, so not clear what we are
optimising

* An adversarial objective measure
» could incorporate complete objective measure, or
* just the Internal representation used in its perceptual model



How to use an objective (quality) measure as the adversary
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Machines that learn
to speak naturally
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Machines that learn
to beat speaker identification
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Conclusions
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Speaking naturally? It depends who is listening...
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