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[ext-to-speech key challenges

« We can identify four main challenges for any builder of a T TS system.

1. Semiotic classification of text

2. Decoding natural-language text
3. Creating natural, human-sounding speech
4. Creating intelligible speech
« We can also identity two current and future main challenges
1. Generating affective and augmentative prosody

2. Speaking In a way that takes the listener’s situation and needs into account

(Taylor 2009, Section 3.6, page 5 1)



VWhat properties of text do we need to know about!

it is not necessary to go all the way and uncover the meaning from the written signal;
we have to perform just the job of text decoding, not also that of text understanding

by and large, the identity and order of the words to be spoken is all we require to synthesise speech;

no higher-order analysis or understanding is necessary.
(Taylor 2009, Section 3.1.2, page 29)

but Taylor adds two caveats:

+ word sense disambiguation (e.g., 'polish™)

* prosody



What properties of speech do we need to know about!?

» Jo start us thinking about the Issues involved In creating synthetic speech, let's think first
about what speech Is "made of "', because

* In speech synthesis, we need to say new things (l.e., utterances not in our recorded
database)

* In speech recognition, we need to generalise from the examples in the training data to
the speech we have to recognise

* It 1s convenient to think about speech as a linear sequence of units
* enables a concatenative approach to speech synthesis

* In speech recognition, allows us to string together models of small units (e.g. phonemes)
to make models of larger units (e.g. words)




What you have learned so far
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« Unit selection synthesis

» how the target cost function uses the
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inguistic specification, by querying
each feature (usually individually)
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* JoIn cost encourages continurty of
acoustic features

» Speech signal modelling (vocoding)

« why we don't use the waveform

* generalising the source-filter model
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[ he classic two-stage pipeline of
unit selection

Front end

linguistic
specification

waveform

S —— -

lext

lbi!(:h accent ]

"the cat Sa.tll \phrase i{utial j phrase final|

sidhaxkaetsaet si
“the cat sat”
DET NN VB
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| he end-to-end problem we want to solve

text

"the cat sat”

Text-to-Speech

waveform

S —— -




A problem we can actually solve
with machine learning

q é
liInquistic
specification speech features

. pitch accent | — —
phrase intial j phrase fina
sighaxkaegtsaet si

“the cat sat”



[ he classic three-stage pipeline of
statistical parametric speech synthesis
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[ he classic three-stage pipeline of
statistical parametric speech synthesis

feature
extraction

o

"the cat sat”

text

“ feature
tatistical .
—_—)p He re s on > extraction
inguistic speech feaz‘ures/\waveform
specification
= o I 2 HE HEHE EEE%E
sidhaxkaetsaetsi OOooooopoooooooge

“the cal

sat”



VWe can describe the core problem as sequence-to-sequence regression

output sequence
(speech features)

iNput sequence
(liInguistic specification)




Orilentation

o Unit selection

e selection of waveform units based on
* target cost
* joIn cost

 Speech signal modelling

» generalised sourcetfilter model

« Statistical parametric synthesis

* predict speech parameters
from linguistic specification
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Orientation Let's just consider the type of target

cost that Is based only on the
» Unit selection linguistic specification

e selection of waveform unit

* target cost

* joIn cost |
| | I here are several ways to do this, but we
» Speech signal modelling / ~eed 1o be able 16
» generalised source+filter model * separate excitation & spectral envelope

* reconstruct the waveform

» Statistical parametric synthesis

* predict speech parameters
from linguistic SPeCification\ A regression task!
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What are the input features ! Just the linguistic features !

pitch accent

ohrase initial J ‘p/hrase final
sil dhk getsaet sil
'the cat sat”
DET NN VB

siindh-ax+k=ae, "phrase initial”, "unstressed syllable”, ...

input feature vector



What are the output features (l.e., s

Input
signal-1

G G G G &g &,y

spectral
envelope
analysis

non-periodicity
analysis

heech

speech parameters

barameters) !

output feature vector



What next!?

* Feature extraction + feature engineering
 constructing the input features

 constructing the output features

 Then, performing the regression

© Copyright Simon King, University of Edinburgh, 20
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-xtracting features from text
using the front end

feature
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lext processing pipeline

InqQuistic
text guIstic
specification
[Front end h
4 N\ N\ [ N\ N\ [ )
. POS Phrase
tokenize iac | TS reaks ntonation | m=—
\_ L L J J
individually learned
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lext processing pipeline

* A chain of processes

* bach process Is performed by (Frontend
d mOdeI —- {tokenize}{ Phrase mtonatlon

» These models are ) \‘ ‘ //
independently trained In a
individually learned

supervised fashion on from labelled data
annotated data




( Front end g

: Phrase] |. :
» iIntonation
| ta ‘ breaks

POS tagging 1/

individually learned
from labelled data

» Part-of-speech tagger
» Accuracy Is very high

» But

N¥F bOSton,

* trained on annotated text P Doctor

data e ke
NP Beard,

VBZ says
* categories are designed for o the
pus
text, not speech IN for
VBP do
PP 1t
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Pronunciation / LTS

individually learned
from labelled data

NG
) N

* Pronunciation model

. |his seqguence Is the
» dictionary |0 ‘<—UJ[Z)rlaDu

annotatec 1
* letterfa-3unmac N
» But pred
* need deep knowledgé of

AEQUITRO AYl K WAI—PI@ X AAO0 N

the language to design the AEQUITRON

bhoneme set AERTAL
AERIALS

* human expert must write AERIE £l @ Y0 17
CﬂCtk)ﬂaI)/ AERIEN RIYO‘AHO‘N
AERIENS

AERITALIA  EH2 R IHO T AE1 L Y AHO
AERO EH1 R OWO



Predict phrase breaks

individually learned
from labelled data

=47

» Phrage-braak seradetics is the

+ binargNE@éF&dUgiaININg data o S
sequeries @linpirase break =
. But predictor 3 2
* trained on annotat : o
spoken data -
* therefore very sma .
training set :




We will need to convert the linguistic specification to a vector .... later !

pitch accent

ohrase initial J ‘p/hrase final
sil dhk getsaet sil
'the cat sat”
DET NN VB

siindh-ax+k=ae, "phrase initial”, "unstressed syllable”, ...

input feature vector
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-eature extraction from speech

speech parameters
representations suitable for modelling (feature engineering)

ﬁ

converting back to a waveform




Orilentation

* S0 far: speech signal analysis

* epochs
* O

» spectral envelope

* Now: speech signal modelling

 speech parameters
* representations suitable for modelling

 converting back to a waveform
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Orilentation

* S0 far: speech signal analysis

* epochs

* O

» spectral envelope function

regressi

\
* Now: speech signal modelling ——
phrase initial P phrase final
* speech parameters N /| 7
Sil dhk aetsaetsi
* representations suitable for modelling the cat sat”
DET NN VB

» converting back to a wavetorm

silndh-ax+k=ae, "phrase initial", "unstressed syllable”, ...



Orilentation

* S0 far: speech signal analysis

* epochs
* O

» spectral envelope

+  smooth spectral envelope
* Now: speech signal modelling - fundamental frequency (FO)
» speech parameters w * aperiodic energy

» representations surtable for modelling

» converting back to a wavetorm



-eature extraction from speech

speech paramete

S
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representations s

converting back to a wavef
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Representations of the speech parameters that are suitable for modelling

» Many vocoders are conceptually based on a source-filter model

» except they use an excitation signal + spectral envelope, not the “true” source+filter

» excitation signal

* a periodic signal (e.g., a pulse train) at a frequency of FO
» switched on and off by a voiced/unvoiced (V/UV) decision

» spectral envelope

* we need a representation that I1s amenable to statistical modelling

* aperiodiC energy

» spectrally-shaped noise



Representations of the speech parameters that are suitable for modelling

» We want parameters that are
» fixed in number (per frame) and as low dimensional as possible
» at a fixed frame rate
* 2 good separation of prosodic and segmental identity aspects of speech
» so that we can model (and/or modify) erther of them independently
» well behaved and stable, when we perturb them (e.g.,, by averaging, or modelling error)
 consecutive frames within a single speech sound

* frames pooled from several similar sounds

» and for statistical modelling, we may addrtionally like to have

» statistically uncorrelated parameters (to avoid having to model covariance)



What does STRAIGHT actually

* ... and s 1t surtable for modelling?

» smooth spectral envelope

.« FQ

* non-periodicity

* In other words, aperiodic energy

DIOC

¢ physical

spectral
envelope
analysis

S G G @& ab aGgb a _ -

y

non-periodicity
analysis

non-
periodicity

FO analysis —>

Figure: Hideki Kawahara



What does STRAIGHT actually produce!

ST specinogean

» smooth spectral envelope

* high resolution (same as FFT)
* highly-correlated parameters €0 “

* probably not surtable for 0 o
statistical modelling ‘

» at least, not with diagonal-
covariance Gausslans 0
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Improving the representation of the spectral envelope

 warp frequency scale

e decorrelate

 reduce dimensionality

ST specinogean

-
1

v
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M0
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Representing the spectral envelope as the Mel-cepstrum

* Not guite the same as the MFCCs we use in ASR, but basically the same motivation

« warp the frequency scale

* Instead of lossy discrete filterbank, use a continuous function (all-pass filter)

e decorrelate

» convert from spectrum to cepstrum

* reduce dimensionality

* truncate the cepstrum

* In ASR, we kept the first |2 coefficients

* In synthesis, we'll use a lot more, perhaps the first 40-60 coefficients



What does STRAIGHT actually

* aperiodic energy

» effectively the ratio between
periodic and aperiodic
energy, at each frequency

* high resolution (same as FF1T)

» highly-correlated parameters

DIOC

uce!

Envelope calculation original and

_ smoothed
/" spectrum

aupt

cepstrum

|

 lifter

upper and
~ lower
'~ .envelope

Figure: Hideki Kawahara
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Improving the re

* aperiodic energy

* reduce dimensionality

* 5IM
ave

Dly

freque

/‘ag.

reduce resolution by
Ng across broad

ncy bands

» .8, between 5 and 25 bands
(on a Mel scale, of course)

bresentation of the aperiodic energy
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Figure: Hideki Kawahara




-Inal representation of speech parameters, after feature engineering

G G G G &g &,y

spectral
envelope
analysis

Input
signal-1

non-periodicity
analysis

speech parameters output feature vector



-eature extraction from speech

speech paramete
representations s

converting back to a wavet
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STRAIGHT analysis and synthesis

I
I I
spectra |
envelope esr?veeclgs Ie T = (;thgr
analysis | g
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(Afet FO analysis ificati pulse SEIDIEN i e
signal-1 mixer
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I

I
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I
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Figure: Hideki Kawahara



Excrtation signal

pulse/noise

PP

STRAIGHT

=

figure from Heiga Zen
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What next!?

» We have decomposed speech Into
[0, plus aV/UV decision

» smooth spectral envelope,
parameterised as the Mel-cepstrum

* band aperiodicity parameters

e WWe've seen how to reconstruct the
waveform

« Now we can insert a statistical

model between the analysis and
synthesis parts

© Copyright Simon King, University of Edinburgh, 20



VWhat next!?

» We have decomposed speech Into
» O, plus aV/UV decision

* smooth spectral e

pd

nvelope,

rameterised as -

the Mel-cepstrum

 band aperiodicity parameters

e WWe've seen how to reconstruct the
waveform

« Now we can insert a statistical

model between the analysis and
synthesis parts

input
signal-1

spectral
envelope
analysis

N
r

FO analysis

17

non-periodicity
analysis

i

periodic

=" pulse

generator

mixer

shaper and
— P

non-periodic

@ component

generator

|

-— es en on o» o» er er er e» s s s o o

Figures: Hideki Kawahara
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VWhat next!

...... ———— e ——————
| | synthesis l
\ |
spectral |
' output
analysis | signal
\ |
input : | oEioels shaper and
St FO analysis = — pulse mixer
: : | generator
: ' ® '
v I l
! !
non-periodicity ' ' |
analysis ———> component

Figures: Hideki Kawahara
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VWhat you should already know

* phonemes
* place, manner, voicing, etc
» front-end text processing

* [iInguistic specification
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VWhat you should already know

* phonemes
* place, manner, voicing, etc
» front-end text processing

* [iInguistic specification



VWhat you should already know

* phonemes

» place, manner, voicing, etc

CONSONANTS (PULMONIC) © 2015 TIPA
Bilabial |Labiodental| Dental |Alveolar Postalveolar| Retroflex | Palatal Velar Uvular | Pharyngeal | Glottal

Plosive p b t d {d cy kg qgo ?
Nasal m 11] 1 I 1L I] N
Trill B I R
Tap or Flap \YA r [
fiaive (G B T v 00 sz | 3 Sz ¢J| XYy YXB h h
Ficative t |
Approximant U 1 ] ] 00|
gs;igimant ] l A L

Symbols to the right in a cell are voiced, to the left are voiceless. Shaded areas denote articulations judged impossible.




VWhat you should already know

* phonemes VOWELS
- place, manner; voicing, etc Front Central Back
Close  ley led WelU
1Y O
Close-mid Ce( S5e0 Y eO
e
Open-mid Ee(C— 3\6 AeD
e &
Open de (E \ JeD

Where symbols appear in pairs, the one
to the right represents a rounded vowel.



VWhat you should already know

* phonemes
» place, manner, voicing, etc

» front-end text processing

* [iInguistic specification

phrase initial

N

pitch accent

/

phrase final

<

Sl dh aetsaet gl
‘the cat sat’ hhoneme: ax

D

—[ NN VB

eft context: sil dh

right context: k ae
oosition In phrase: initial
syllable stress: unstressed
etc....




Remember this problem?! We haven't actually solved It yet...

pitch accent ,
pohrase initial J phrase final

sil dhk getsaet sil
'the cat sat”
DET NN VB

siindh-ax+k=ae, "phrase initial”, "unstressed syllable”, ...

input feature vector



First solution: convert rich linguistic structure Into a linear sequence

pitch accent ,
phrase initial J phrase final

N <

Sl dh aectsaetasl
‘the cat sat’ phoneme: ax

DET NN VB left context: sil dn
right context: k ae
position In phrase: initial
syllable stress: unstressed
etc....




“Flatten” the linguistic structure, by attaching contextual features to phones

pitch accent ,
pohrase initial j phrase final

N <

sl dhk actsaetsi
'the cat sat”
DET NN VB

silndh-ax+k=ae, "phrase initial", "unstressed syllable", ...

sil~sil-sil+ao=th@x x/A:0 0 O0/B:x-x-x@x-x&x-x#x-x$...
sil~sil-ao+th=er@l 2/A:0 0 0/B:1-1-2@1-2&1-7#1-4S...
sil~ao-th+er=ah@2 1/A:0 0 0/B:1-1-2Q@1-2&1-7#1-4S...
ao~th-er+ah=v@l 1/A:1 1 2/B:0-0-1@2-1&2-6#1-4S$...
th~er-ah+v=dh@l 2/A:0 0 1/B:1-0-2@1-1&3-5#1-3$...
er~ah-v+dh=ax@2 1/A:0 0 1/B:1-0-2@1-1&3-5#1-3$...
ah~v-dh+ax=d@1 2/A:1 0 2/B:0-0-2@1-1&4-4#2-3§...
v~dh-ax+d=ey@2 1/A:1 0 2/B:0-0-2@1-1&4-4#2-3§...



Orilentation

e So far:

» extract rich linguistic features from
text using the front end (same as In
unit selection)

» flatten those features into a sequence
of context-dependent phones

¢ Next:

» create a statistical model for every
possible context-dependent phone

e train the model on data

* use It to synthesise new sentences




Our first model: regression tree + Hic

» [wo complementary explanations
* regression

 context-dependent models

» Duration modelling

 Generation from the model

C

en Markov Moc

e



Iwo complementary explanations

regression

» Describing synthesis as a regression task

» prediction of continuous speech parameters from linguistic features



Sequence-to-sequence regression = alignment + frame-to-frame regression

output sequence
(speech features)

iNput sequence
(liInguistic specification)




Iwo tasks to accomplish E

* Seguencing

 progress through the phonetic sequence

» decide durations g N -
* create a sequence of frames . . 1%,
regressidn function 2
-
- . - A <
 Prediction (regression) 0

° Givef] the ‘Oca‘ Hﬂgulstlc SpeC'ﬂcaJ[iOﬂ, sil~sil-sil+ao=th@x x/A:0 0 O/B:x-x-x@x-x&x-x#x-x$...

: r sil~sil-ao+th=er@1 2/A:0 0 0/B:1-1-2Q@1-2&1-7#1-4S$...

predict one frame of speech parameters sil-ao-th+er=ah@2 1/A:0 0 0/B:1-1-2@1-2&1-7#1-45...
ao~th-er+ah=v@1 1/A:1 1 2/B:0-0-1Q@2-1&2-6#1-45...
th~er-ah+v=dh@1 2/A:0 0 1/B:1-0-2@1-1&3-5#1-3$...
er~ah-v+dh=ax@2 1/A:0 0 1/B:1-0-2@1-1&3-5#1-3$...
ah~v-dh+ax=d@1 2/A:1 0 2/B:0-0-2Q@1-1&4-4#2-3$...
v~dh-ax+d=ey@2 1/A:1 0 2/B:0-0-2@1-1&4-4#2-3$...




Choose surtable machinery for each task

* Seguencing
« Hidden Markov Model

« Why! [t's the simplest model we know that can generate sequences!

» Regression

-

9O
P,
P,
D
-
”
D

i

* Regression tree (1.e,,a CART with continuously-valued predictee)
« Why?! Again, the simplest model we know, that can learn an arbrtrary function

* the mapping from linguistic specification to speech spectrum is surely non-linear

© Copyright Simon King, University of Edinburgh, 2017. Personal use only. Not for re-use or redistribution.
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CART (Classification and Regression Iree) - see speech.zone

Mmt\')/ fed O ®

-

9O
P,
P,
D
- .
”
D

i
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HMM for sequencing + regression tree for prediction

pitch accent ,
ohrase initial J phrase final

N <

Sl dhk setsaetsi
the cat sat”

DET NN VB
((the cat) sat)

-

9O
P,
P,
D
- .
”
D

i

siiAdh-ax+k=ae, "phrase initial”", "unstressed syllable”, ...

© Copyright Simon King, University of Edinburgh, 2017. Personal use only. Not for re-use or redistribution.



HMM for sequencing + regression tree for prediction

pitch accent ,
phrase initial J phrase final

N <

sil dhk sgetsaet sil
'the cat sat”
DET NN VB

((the cat) sat)

-

9O
P,
P,
D
- .
”
D

i

silhdh-ax+k=ae, "phrase initial”, "unstressed syllable”,

OO -

© Copyright Simon King, University of Edinburgh, 2017. Personal use only. Not for re-use or redistribution.




HMM for sequencing + regression tree for prediction

-

9O
P,
P,
D
- .
”
D

i

siiAdh- ax+k ae, 'phrase initial”, "unstressed syllable”,

© Copyright Simon |<|ng University of Edinburgh, 2017/. Personal use only. Not for re-use or redistribution.




Iwo complementary explanations

context-dependent

modelling

» Practical implementation using context-dependent models

* create /ots of models: oops! for many, there Is no training data

* Tix this by sharing parameters with existing models (“'tying’)



Reminder: constructing the target unit sequence (for unit selection)

m-N H N N

<

aet sl

eft context: si'tiie cat sat"
right context: Bg? N -
position In phrase: inwiaY

syllable stress{Uinstressed)

etc....

H B A EEEEN

© Copyright Simon King, University of Edinburgh, 2017. Personal use only. Not for re-use or redistribution.




From linguistic specification to sequence of models

@)
"Author of the ...’ %%
sil~sil-sil+tao=th@x x/A:0 0 0/B:xX-X-X@X-X&X—X#X-XS..... =
sil~sil-ao+th=er@l 2/A:0 0 0/B:1-1-2@1-2&1-7#1-4$..... —
sil~ao-th+er=ah@2 1/A:0 0 0/B:1-1-2Q1-2&1-7#1-4S$..... =
ao~th-er+ah=v@1l 1/A:1 1 2/B:0-0-1@2-1&2-6#1-4S..... je
th~er-ah+v=dh@l 2/A:0 0 1/B:1-0-2@1-1&3-5#1-3$..... 2
er~ah-v+dh=ax@2 1/A:0 0 1/B:1-0-2@1-1&3-5#1-3$..... =
ah~v-dh+ax=d@1 2/A:1 0 2/B:0-0-2@1-1&4-4#2-3$..... >
v-dh-ax+d=ey@2_1/A:1_0_2/B:0-0-2@1-1&4-4#2-3$..... =

O

O




Context-dependent modelling

» We cannot be sure to have examples of every unit type In every possible context in the
training data

* |In reality, the context Is so rich (it spans the whole sentence), that almost every single
token in the training data Is the only token of its type

 [wo key problems to solve
» train models for types that we have too few examples of (e.g., |)

» create models for types that we have no examples of

Q)
£
D
U
®,
-
)
C
O
U
C
DO
O
O
U
4+
X
O
et
C
®,
O

* Joint solution: parameter sharing amongst groups of similar models

© Copyright Simon King, University of Edinburgh, 2017. Personal use only. Not for re-use or redistribution.



Training models for types that we have too few examples of

* We could train a model on just a single example (= single token)
» But it will be very poorly estimated

* unlikely to perform well

* Pooling training data across groups of types will increase amount of data avallable
* How to decide which groups of models should share data’

* 1.e.,, which groups of models will end up with the same parameters

Q)
£
DO
U
®,
-
e
C
O
U
C
DO
O
O
U
4+
X
O
et
C
®,
O
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Some contexts exert similar effects

» Key Insight
* We can group contexts according to the effect that they have on the centre phoneme
» for example
 the [ae] In the contexts p-aett and b-aet+t may be very similar
* how to group these contexts!

* how to represent them so we can form useful groupings!

* use the phonetic features of the surrounding context

Q)
£
DO
U
®,
-
e
C
O
U
C
DO
O
O
U
4+
X
O
et
C
®,
O

* place, manner; voicing, ....

© Copyright Simon King, University of Edinburgh, 2017. Personal use only. Not for re-use or redistribution.



Grouping contexts according to phonetic features

« Could try to write rules to express our knowledge of how co-articulation and other
context effects work

J)

« “all bilabial stops have a similar effect on the following vowel
« "all nasals have a similar effect on the preceding vowel”
e ... ElC

o Of course, It's better to learn this from the data, for 2 reasons
» find those groupings that actually make a difference to the acoustics

» adjust the granularity of the groups according to how much data we have

Q)
£
D
U
®,
-
)
C
O
U
C
DO
O
O
U
4+
X
O
et
C
®,
O

» But we still want to make use of our phonetic knowledge




Combining phonetic knowledge with data-driven learning

vowel to right ?

nasal to left ?

@)
=
DO
U
®,
=
s
C
D
U
C
D
O
DO
U
4+
X
O
e
C
@,
O

tied state
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How to choose the best split

e |deal measure

* a) train a single model on data pooled across the unsplit set of contexts

 b) train two models: one on each split of the data

» compare the likelihood increase from a) to b)

* This is not feasible In practice - too computationally-expensive

 cannot retrain models for every possible split, at every node In the tree
* Instead, use an approximation to the likelihood increase

» this can be computed without actually retraining any models

Q)
£
D
U
®,
-
)
C
O
U
C
DO
O
O
U
4+
X
O
et
C
®,
O

* only requires access to the state occupancy statistics and Gaussian parameters




What about models for unseen contexts!?

e [o find out which model to use for a

. vowel to right ?
particular context 5

« just follow the tree from root to leaf,
answering the questions

nasal to left ?

 Crucially, to do this we only need to know the
name of the model, In order to answer those
questions

S0 1t works for models which have training
data, and also for models that don't

ah~v-dh+ax=d@l 2/A:1 0 2/B:0-0-2@1-1&4-4#2-3S.....

/uw/ to right )

@)
£
D
U
®,
-
)
C
O
U
C
DO
O
O
U
4+
X
O
et
C
®,
O




Summary: linguistic processing, training, synthesis

* Linguistic processing

» from text to linguistic features using the front end (same as in unit selection)

» attach linguistic features to phonemes: “flatten” the linguistic structures

» we then create one context-dependent HMM for every unique combination of
inguistic features




Summary: linguistic processing, training, synthesis

* lraining the HMMs

» need labelled speech data, just as for ASR (supervised learning)

* need models for all combinations of linguistic features, including those unseen In the
training data

» this Is achieved by parameterising the models using a regression tree



Summary: linguistic processing, training, synthesis

 Synthesising from the HMMs

» use the front end to predict required sequence of context-dependent models
» the regression tree provides the parameters for these models
* use those models to generate speech parameters

¢ use a vocoder to convert those to a waveform



Generating from the regression tree + Hidc

en Markov Moc

» [his is straightforward, because the HMM Is a generative model

* Follow the Maximum Likelihood principle
» generate the most likely output

» that will simply be the sequence of state means

* What about duration?

» We need a model to predict this

* let's just use another regression tree, predicting duration per state

» predictors: linguistic context + state-position-within-phone

» predictee: duration of the current state, In frames

e



[rajectory generation

time

Jolswiesed yooads



| SPs extracted from waveform vs. generated by HMM

v rosep

Ngmw g v \\t‘\\]\“\\.‘\ v

w& il
b-: 35 WA APt wd

..v.?. ..;{

WA B AN PO N VN &0"1!‘..“6".-‘.&‘ .

time
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"Over smoothing”

« (Generated trajectories are temporally smoother than natural ones

» fine detail is lost - this Is actually not a problem (it was probably just analysis error)

* deviation from the mean is reduced - this Is a significant problem

» Standard solution: scale the standard deviation (or variance) back up to global natural level
* Global Variance (GV)

» simple scaling



"Over smoothing”

« (Generated spectral envelope Is smoother In frequency domain than natural one

» formant (resonance) peaks are wider and less sharp - giving a ‘muffled’ sound

* reduced resonance reveals the ‘buzzy’ nature of the artificial source signal

 Standard solution: enhance the spectral sharpness
* raise spectrum to a power greater than 1

* ...0rone of many other solutions



Orilentation

* Qur first attempt at statistical
parametric speech synthesis

e we used models that we are familiar
with and understand well

e (Gaussians are convenient

* £.g, 50 We can borrow many useful
techniques from ASR

» But regression trees are weak models

T _— "q ..- : - - N -
-~ R ‘ ' 9 . ' ¥ 'w L
7. PensoNSR ISPt S e /U3 d4str|butm
- o - : v . . . y L




Orilentation

* Our first attempt at statistical
pDarametric speech synthesis

» we used models that we are fami\iar/'

with and understand well

» (Gaussians are convenient M

* €., S0 We can borrow many useful
techniques from ASR

P

his Is perfectly sensible: we

nave good algorithms for
training the models, for
example.

e.g., model adaptation

The key weakness of the method.
» But regression trees are weak models — We must replace the regression

tree with something more

powertul,



What next!?

* Better regression model
 a Neural Network

* Input & output features essentially the
same as regression tree + HMM

» Quality will still be limrited by the vocoder

» Later, we will also address that problem
* hybrid synthesis (not in this course)

» direct waveform generation

© Copyright Simon King, University of Edinburgh, 20
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Contents

 |he big picture

» text-to-speech, viewed as regression V
» (etting ready for regression

 feature extraction from text V

e feature extraction from speech V

» Doing regression

e using a decision tree: so-called "HMM-based T 15"

* using more powerful and general regression models: neural networks



Speech synthesis using Neural Networks

preparing the input features
what I1s a Neural Network!
osenerating speech with a Neural Network
training a Neural Network




Speech synthesis using Neural Networks

preparing the input features
what I1s a Neural Network!
osenerating speech with a Neural Network
training a Neural Network




We've describec

output seque
(speech featu

NCEe

res)

iNput sequence

(liInguistic specification)

the

broblem as sequence-to-sequence regression

gtlj

ifferent lengths, because of
differing ‘clock rates’



Remember this problem!? Now we really have to solve It

pitch accent ,
pohrase initial J phrase final

sil dhk getsaet sil
'the cat sat”
DET NN VB

siindh-ax+k=ae, "phrase initial”, "unstressed syllable”, ...

input feature vector



Pre

baring the input features for Neural Network speech synthesis

) flatten the linguistic structure, to create a linear sequence (as for HMMs)

pitch accent ,
pohrase initial j phrase final

N <

sl dhk actsaetsi
'the cat sat”
DET NN VB

silndh-ax+k=ae, "phrase initial", "unstressed syllable", ...

sil~sil-sil+ao=th@x x/A:0 0 O0/B:x-x-x@x-x&x-x#x-x$...
sil~sil-ao+th=er@l 2/A:0 0 0/B:1-1-2@1-2&1-7#1-4S...
sil~ao-th+er=ah@2 1/A:0 0 0/B:1-1-2Q@1-2&1-7#1-4S...
ao~th-er+ah=v@l 1/A:1 1 2/B:0-0-1@2-1&2-6#1-4S$...
th~er-ah+v=dh@l 2/A:0 0 1/B:1-0-2@1-1&3-5#1-3$...
er~ah-v+dh=ax@2 1/A:0 0 1/B:1-0-2@1-1&3-5#1-3$...
ah~v-dh+ax=d@1 2/A:1 0 2/B:0-0-2@1-1&4-4#2-3§...
v~dh-ax+d=ey@2 1/A:1 0 2/B:0-0-2@1-1&4-4#2-3§...



Preparing the

2) encode anc

inguistic timescale

U

DSAIM

dle

input features for Neural Network s

predict durations

sil~sil-sil+ao=th@x x/A:0 0 0/B:x-x-x@x-x&x-x#x-x$...
sil~sil-ao+th=er@l1l 2/A:0 0 0/B:1-1-2Q@Q1-2&1-7#1-4S...
sil~ao-th+er=ah@2 1/A:0 0 0/B:1-1-2Q@1-2&1-7#1-48S...
ao~th-er+ah=v@1l 1/A:1 1 2/B:0-0-1Q@2-1&2-6#1-4S...
th~er-ah+v=dh@l 2/A:0 0 1/B:1-0-2@1-1&3-5#1-3S...
er~ah-v+dh=ax@2 1/A:0 0 1/B:1-0-2@1-1&3-5#1-3$...
ah~v-dh+ax=d@1 2/A:1 0 2/B:0-0-2@1-1&4-4#2-3S$...
v~dh-ax+d=ey@2 1/A:1 0 2/B:0-0-2@1-1&4-4#2-3S...

[O
[0

[0

[0
[0
[O

[O

[O
[0
[0

o O

o O OO

© O OO
O O0OOHR

beech synthesis

fixed framerate
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How to construct the sequence of input features

0.0]
0.1]

0.2
0.2

0010010110 ..

0010010110 ..

0010010110 ..

1.0]

0.2

0.4 0.0]
0.4 0.5]

0010010110 ..

0010010110 ..

1.0]

0.4

0010010110 ..

0010010110 ..

1.0]
0.0]
0.2]
0.4]

1.0
0.2
0.2
0.2

0001110100 ..

0001110100 ..

0001110100 ..



Pre

daring the input

phrase initial

R

sil dhk aetsaet sil

silndh-ax+k=ae, "phrase initial", "unstressed syllable”, ...

sil~sil-sil+dh=ax@x_x/A:0_0_0/B:x-x-x@x-x&x-x#x-x$...
sil~sil-dh+ax=k@1l_2/A:0_0_0/B:1-1-2@1-2&1-7#1-4$...
sil~dh-ax+k=ae@2_1/A:0_0_0/B:1-1-2Q@1-2&1-7#1-4S...
dh~ax-k+ae=t@1_1/A:1_1 2/B:0-0-1Q@2-1&2-6#1-4$...
ax~k-ae+t=s@1_2/A:0_0_1/B:1-0-2@1-1&3-5#1-3$...
k~ae-t+s=ae@2 1/A:0 0 _1/B:1-0-2@1-1&3-5#1-3$...
ae~t-s+ae=t@1 2/A:1 0 2/B:0-0-2@1-1&4-4#2-3$...
t~s-ae+t=sil@2_1/A:1_0_2/B:0-0-2@1-1&4-4#2-3%...

[O
[O

o O
gy
o O

[O
[O
[O
[O

O O OO
o
O O OO

[O
[O
[O
[O

©OO0OO0OOo

O OO M
N = =

pitch accent

/

'the cat sat”
DET NN VB

o O

O O0OO0OOo

= = = O

+

+

11

[
o
o

[
o
[
[
o

N el
O O OO0
N el =
N el
O O OO0

= e
O O0OO0OO0O
=
O O0OOHR
O O0OO0O0O0O

phrase final

e

o O

O O0OO0OOo

OO0OOHR

2 0.0]
2 0.1]
2 1.0]
4 0.0]
4 0.5]
4 1.0]
0 1.0]
2 0.0]
2 0.2]
2 0.4]

Run the front end
e obtain linguistic specification

d|edsawiil

djeJdWed} paxiy
€ JB MOU Sl dwi}

d13sIN3ul|



Preaarirlwg the.i” but: linguistic timescale: phones
flatten linguistic specification

pitch accent :
phrase initial J phrase final

N <

sil dh kaetsaet sl

'the cat sat”
DET NN VB
((the cat) sat)

silndh-ax+k=ae, "phrase initial", "unstressed syllable”, ...
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Preparing the input: linguistic timescale: phones
a sequence of context-dependent phones

144

“Please call .

#~p-1+1=z:2 3/A/0_0 0/B/1-1-4:1-1&1-4# .

positional features POS features

INphon
quinpnone (e.q., position of phone in syllable)

This is the sequence of model names that we would
use in HNVIM-based speech synthesis



Pre 3?””% th? nput: inguistic timescale: subphones
dredict durations at the subphone level

"

“Please call . . .

#~p-1+1=z:2_3/A/0_0_0/B/1-1-4:1-1&1-4# . . .
#~p-1+1=2:2_3/A/0_0_0/B/1-1-4:1-1&1-4# . . .
#~p-1+1=z:2_3/A/0_0_0/B/1-1-4:1-1&1-4# . . .
#~p-1+1=2z:2_3/A/0_0_0/B/1-1-4:1-1&1-4# . . .
#~p-1+1=2:2_3/A/0_0_0/B/1-1-4:1-1&1-4# . . .
#~p-1+1=z:2_3/A/0_0_0/B/1-1-4:1-1&1-4# . . .



| iInguistic timescale: subphones
What Is the “subphone’ !

 All early DNN systems employ HMMSs as a sub-phonetic “clock”

* duration Is then modelled at the state (l.e, subphone) level

#~p-l+1=z:2 3/A/0 0_0/B/1-1-4:1-1&1-4# .

- O-O-0O-0O-0O

| regression tree
t1 .
(in fromes) ! 3 1 3 duration model




Pre 3?””% th? nput: inguistic timescale: subphones
dredict durations at the subphone level

"

“Please call . . .

#~p-1+1=z:2_3/A/0_0_0/B/1-1-4:1-1&1-4# . . .
#~p-1+1=2:2_3/A/0_0_0/B/1-1-4:1-1&1-4# . . .
#~p-1+1=z:2_3/A/0_0_0/B/1-1-4:1-1&1-4# . . .
#~p-1+1=2z:2_3/A/0_0_0/B/1-1-4:1-1&1-4# . . .
#~p-1+1=2:2_3/A/0_0_0/B/1-1-4:1-1&1-4# . . .
#~p-1+1=z:2_3/A/0_0_0/B/1-1-4:1-1&1-4# . . .



’reparing the input: convert each state of each

context-dependent phone to a vector of binary features

144

“Please call . .

#~p—-1+1=2:2 3/A/0_0 _0/B/1-1-4:1-1&1-4# . .
3900000 4000000 #~p-1l+1=z:2 3/A/0 0 0/B/]

4000000 4050000 #~p—
4050000 4200000 #~p—
4200000 4250000 #~p—

+1=z:2_3/A/0_0 0/B/]
+1=z:2 3/A/0 0 _0/B/]
+1=z:2_3/A/0_0_0/B/]

4250000 4400000 #~p—

+1=z:2_3/A/0_0 0/B/]

Qs "
QS "
QS "
Qs "
QS "
QS "
Qs "
QS "
QS "
Qs "
QS "
QS "

1
H- O
H

|
)
H

OHONONONONONONONPONOINPNP

|
Il’_l.'l:ll.'l:IC:I—lrazog)

|
Q
1 =H

T Mm ™ MM M = =

' {—OI+} «

{-1+}

' {-aU+}
" {-aI+}

{-at}
{-Q+}

' {-@@+}
' {-I@+}
' {-U@e+}
' {-EQ+}

{-E+}

- {-A+}



Position-within-phone and position-within-state features

000001000001000100000 . . .



Position-within-bhone state counter

000001000001000100000 .

000001000001000100000 .

000001000001000100000 .

000001000001000100000 .

W 000001000001000100000 .



time Is now at a

fixed framerate

Position-within-state feature

000001000001000100000 . . . 2 0.50

N 000001000001000100000 . . . 2 1.00
000001000001000100000 . . . 3 @.B0

- 000001000001000100000 . . . 2 1.00
000001000001000100000 . . . 3 1.00 Ul in the context
000001000001000100000 . . . 4 0.33 fnp-1+i=2:2 3/.

" 000001000001000100000 . . . 4 0.66 B
000001000001000100000 . . . 4 1.00 Jith a duration of
000001000001000100000 . . . 5 1.00 10 frames (50ms)

. 000001000001000100000 . . . 6 0.33
000001000001000100000 . . . b6 2.06
000001000001000100000 . . . 6 1.00

W 000001000001000100000 . . . 6 0.33
000001000001000100000 . . . 6 0.66
000001000001000100000 . . . 6 1.00



real example of prepared features



Speech synthesis using Neural Networks

preparing the input features
what i1s a Neural Network?
osenerating speech with a Neural Network
training a Neural Network




A simple "feed forwarc

directed connections,
each with a weight

nput layer

a weight matrix

" neural network

a hidden layer

—

uni
Wit

information flows In this direction

ts (or “neurons’’), each

N an activation function

output layer



VWhat Is a unit, anc

what ¢

oes It do!

a Non-linear
function

usually called
the “activation”



What are all those layers for?

m learned

iNtermediate

JAV‘ representations

% 0
a representation of w W

the Input )

a sequence of non-linear projections

a representation of
the output




Speech synthesis using Neural Networks

preparing the input features
what I1s a Neural Network!
generating speech with a Neural Network
training a Neural Network




“Author of the ...

Putting It all together: text-to-s

heech with a heural hetwork

/Front end
4 ) 4 ) 4 )
)
tokenize 05 LTS WasSe iNntonation
tag 'eaks
\_ J \_ J \_ J




N\ N\ [ N\
_ Phrase | | . .
S intonation
breaks
_ VRN Y,

Putting 1t all together: text-to-speech with a neural network

sil~sil-sil+ao=th@x x/A:0 0 0/B:x-x-x@x-x&x-x#x-x$...
sil~sil-ao+th=er@l 2/A:0 0 0/B:1-1-2@Q1-2&1-7#1-4S...

sil~ao-th+er=ah@2 1/A:0 0 0/B:1-1-2@1-2&1-7#1-48S...
ao~th-er+ah=v@l 1/A:1 1 2/B:0-0-1@2-1&2-6#1-45...
th~er-ah+v=dh@l 2/A:0 0 1/B:1-0-2@1-1&3-5#1-3$...
er~ah-v+dh=ax@2 1/A:0 0 1/B:1-0-2@1-1&3-5#1-3$...
ah~v-dh+ax=d@l 2/A:1 0 2/B:0-0-2@1-1&4-4#2-3§...
v~dh-ax+d=ey@2 1/A:1 0 2/B:0-0-2@1-1&4-4#2-3$...



sil~sil-sil+ao=th@x x/A:0 0 O0/B:x-x-x@x-x&x-x#x-x$...
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Putting It all together: text-to-s
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Putting it all together: text-to-speech with a neural network
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Putting It all together: text-to-s
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Speech synthesis using Neural Networks

preparing the input features
what I1s a Neural Network!
osenerating speech with a Neural Network
training a Neural Network




’reparing the inputs and outputs for training

* |Inputs
* [iInguistic features
» plus positional features (‘counters’)

* re-write as vectors
« OO0 10010001 1000001 10.... 02 O.]

» QOutputs

* same speech features (vocoder parameters) used iIn HMM synthesis

» Form input/output pairs, one pair per frame (e.g., every 5 msec)

* how to get the alignment?

OO0 OO0



[raining a neural network:
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[raining a neural network: back-propagation

INnput output target

o | |
-
=
N

-
N
W
W

|_l

[



n
S |

a0 |
-3

I

© Copyright Simon King, University of Edinburgh, 2017. Personal use only. Not for re-use or redistribution.




Orilentation

« Simple neural networks

» feed-forward architecture

« Constructing the input features

» converting categorical features to binary

* mapping linguistic timescale to fixed
frame rate using the duration model
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Orilentation

» SImple neural networks

» feed-forward architecture

» Constructing the input features

» converting categorical features to binary

mapping lingu

frame rate us

istic timescale to fixed

ng the duration model e —-

a straightforwa

/ the regression tree

mode
WOork

from an HMM system

Jses a better duration

In both cases, the ‘clock’ s a

separate mechanism -
regression (acoustic) model.

~d replacement for

-arly work borrowed a duration

Later

model.

0 the main



What next!?

» Even better regression models?

« different Neural Network archrtectures
* recurrent, sequence-to-sequence, etc
* Avoiding vocoding
 generating a spectrogram
» direct waveform generation
 other possibilities
* Avoiding the front end

* ‘raw text input

© Copyright Simon King, University of Edinburgh, 20



Alternative and/or ac

network archrtectures
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[ he classic three-stage pipeline of
statistical parametric speech synthesis

| Statistical

-3 Front end >
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text L
specification
— pitch accent | —
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model
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[ he classic three-stage pipeline of
statistical parametric speech synthesis

feature
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Alternative and/or ac

network architectures
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INg vocoding
ing the front end
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« Conceptually straightforwarad

* [For each input frame

o pe
CO

ﬁ

"TOr

ik

reg

bond]

ress|O

A

Ng out

P

LO

Jt features

» |o provide wider Input context,
ply stack several frames

COUu

|d sinr

together

» although, remember that the
Inguistic features already span
several timescales



Recurrent

* Pass some of the outputs (or hidden
ayer activations) forwards in time,
typically to the next time step

* A kind of memory

e Provides “Infinite” left context

» Could also pass information
backwards in time

- EREX

AN AR
B B
35 XY



Recurrent

» SImple recurrence Is equivalent to a
very deep network

« [0 train this network, we have to
backpropagate the derivative of the

the errors (the gradient) through all
of the layers

» "backpropagation through time”

» Suffers from the “vanishing
gradient’ problem, for long
sequences
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Long short-term memory (a
type of recurrence)

» Solves the vanishing gradient

broblem by using “gates’ to control
the flow of information

« Conceptually

e | earns when to remember

NN
XK
o VZa\Va\
» Remembers information ‘perfectly

for some number of time steps

* |earns when to forget % W




Long short-term memory (a
type of recurrence)

» Solves the vanishing gradient

broblem by using “gates’ to control
the flow of information

« Conceptually

 Learns when to remember
« Remembers for several time steps

* |earns when to forget

Fisure from Alex Graves, Abdel-rahnman Mohamed, and Geoffrey Hinton.
“Speech recognition with deep recurrent neural networks’™. In Acoustics,

Speech and Signal Processing (ICASSP), 2013 |EEE International
Conference on, pages 6645—6649. |[EEE, 201 3, redrawn as SVG by Eddie
Antonio Santos

Forget Gate

Output Gate




Orilentation

e Feed-forward architecture

* NO Memory

« "Simple” recurrent neural networks

* vanishing gradient problem

« LSTM unit solves vanishing gradient
broblem

 But

* Inputs and outputs at same frame rate

» need an external ‘clock’ or alignment
mechanism to ‘upsample’ the inputs
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Sequence-to-sequence

» Next step Is to integrate the alignment mechanism into the network rtself

* Now, length of input sequence may be different to length of output sequence
* For example
* Input: sequence of context-dependent phones

» output: acoustic frames (for the vocoder)

« Conceptually

* read in the entire Input sequence; memorise It using a fixed-length representation

* given that representation, write the output sequence



Sequence-to-sequence (just conce

btually)

he encoder

e A recurrent network that “‘reads’ the

d

entire INput sequence and
S

ummarises’ or ‘memorises’ it using

fixed-length representation

R
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Sequence-to-sequence (just conceptually)

 [he decoder

A recurrent network that takes that
fixed-length representation as Its
initial state, then generates the entire

AN AN AN
output sequence 3 B B3
¥ ¥ ¥

t-| t t+ |



Alisnment In sequence-to-sequence models: adding “attention”

* Basic model, as presented, has no alighment between input and output

» (et better performance by adding “attention’ to the input sequence, in the decoder

See also Dzmitry Bahdanau, Kyunghyun Cho, Yoshua Bengio. "Neural Machine Translation by Jointly Learning to Align and Translate”. In Proc ICLR 2015



Alisnment In sequence-to-sequence models: adding “attention”

output sequence
(speech features)

iNput sequence
(liInguistic specification)







Alignment In sec

uence-to-sequence models: ASR-style acoustic features

* Trying to do ASR with typical TTS vocoder features does not work very well

* |. Dines, |. Ya’nagishi and S. King,

115" In [EEE Journal of Se
Dec. 2010,  do;

¢ S0, we would ex

for the alignment

bect to get bette

"Measuring the Gap Between HMM-Based ASR and

ected Topics In Signal Processing, vol. 4, no. 6, pp. 1046-1058,
[0.1109/]STSP2010.2079315

~ performance by using ASR-style acoustic features (just

part of the moc

el)

» e.g. Mel-cepstrum or log Mel filterbank

 This is exactly what people are finding (e.g., the Tacotron)
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1 he end-to-end problem
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"Regression only
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(Generate lower-level speech features
(e.g. power spectrum)

\

| Statistical |
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model
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Why exactly were we using a vocoder anyway!

 Separate source and filter

* Filter can be very compactly parameterised (e.g., Mel cepstrum)

* For waveform reconstruction, we do not need to provide phase

 [he periodic source signal (e.g., pulse train) has phase structure

« Make some simplifying assumption about the filter's phase



Predict spectrum: magnitude only

« e.g, lacotron” (Wang & | 3 other authors, Interspeech 201 7/)

» (Generate a spectrogram (l.e., sequence of magnitude spectra)

* Do not predict phase
* [herefore, to create a waveform, phase has to be “recovered”

» e.g, Griffin-Lim algorithm, or one of several variants on that

 Post-processing Is required to reduce highly-audible phase-related artefacts in the
waveform inferred using Griffin-Lim




Predict spectrum: magnitude and phase

to appear in Proc Interspeech 201/

Direct Modelling of Magnitude and Phase Spectra
for Statistical Parametric Speech Synthesis

Felipe Espic, Cassia Valentini-Botinhao, and Simon King

The Centre for Speech Technology Research (CSTR), University of Edinburgh, UK

felive.espicled.ac.uk, cvbotinhfinf.ed.ac.uk, Simon.Kingfed.ac.uk

© Copyright Simon King, University of Edinburgh, 2017. Personal use only. Not for re-use or redistribution.



(Generate lower-level speech features
(e.g. power spectrum)
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(Generate the waveform rtself

Statistical Waveform
Front end ™= — ——
model generator
lInguistic waveform
specification

“the cat sat”



VWavenet

» "Researchers usually avoid modelling raw audio because it ticks so quickly: typically 16,000

samples per second or

more, with important structure at many time-scales.”

* No, that's not the main reason that most approaches do not deal directly with
sampled (digital) speech waveforms.

» "Building a completely autoregressive model, in which the prediction for every one of those
samples is influenced by all previous ones (in statistics-speak, each predictive distribution is
conditioned on all previous observations), is clearly a challenging task.”

» Autoregressive models with a fixed order are widespread, and have been In use since

the 1960s :linear p

redictive coding (LPC).

Quotes are from https://deepmind.com/blog/wavenet-generative-model-raw-audio/



VWavenet

« "WaveNet...has none of the [common] assumptions [about speech signals]. It incorporates
almost no prior knowledge about audio sighals”

* |s it such a great idea to disregard almost everything we (think we) know about
speech signals!

 Discuss (later) |

Quotes are from arXiv:1609.03499 (not peer reviewed)
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Quantisation (which introduces guantisation noise)
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“Avolding the front end”
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Raw text input !

« e.g, lacotron” (Wang & | 3 other authors, Interspeech 201 7/)

» "Modern text-to-speech (T15) pipelines are complex (laylor, 2009)”

* [rue - but the Tacotron is hardly “simple’ or “easy to build”

« "[the front-end| components are based on extensive domain expertise”

e
aval

ils

E

tely a problem fo

~ low-resou

ble domain exper

rce languages, but do we really want to disregard all

Ise 1IN high-

resource languages!

Quotes are from arXiv: | 7/03.10135v2
(presumed to be pre-submission version of Interspeech paper)



Raw text input !

« e.g, lacotron” (Wang & | 3 other authors, Interspeech 201 7/)

* “errors from each component may compound”

« Agreed

» “The complexity ... leads to substantial engineering efforts when building a new system”

» How many people did it take to build the Tacotron !/

Quotes are from arXiv: | 7/03.10135v2
(presumed to be pre-submission version of Interspeech paper)
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What next!?

* Expect many, many papers on DNN
synthesis at Interspeech

* Especially
e “end-to-end”

 "avoiding vocoding”

* Front-end Issues probably harder to
address with Deep Learning

* but I1solated parts of the problem
certainly can be (e.g, LIS/ G2P)
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