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Figure 2.2: Example of applying temporal smoothing to LSF parameteris using a slid-

ing Hanning window.

temporal resolution of HMM modelling. The width of the window was varied, to im-

pose varying amounts of smoothing. Figure 2.2 shows an example of this process.

2.5.1.2 Variance scaling

Variance adjustment was implemented as a simple scaling of the standard deviation

by a fixed factor. For each parameter (i.e., each LSF) in turn, the mean value over

the utterance was found and subtracted before multiplying the parameter by a scalar

value, and finally adding the mean back in. By altering the scalar value, the standard

deviation is correspondingly adjusted, to simulate both reduced variance (which is

commonly observed in HMM synthesis) and increased variance (e.g., as may happen

if a Gaussian p.d.f. is poorly estimated during training, or when GV fails to re-instate

the appropriate amount of variance). This approach of variance scaling is similar to

the postfiltering method investigated by Silén and Helander (2012). Figure 2.3 shows

an example of this process.
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Text-to-speech key challenges

• We can identify four main challenges for any builder of a TTS system.
1. Semiotic classification of text
2. Decoding natural-language text 
3. Creating natural, human-sounding speech
4. Creating intelligible speech

• We can also identify two current and future main challenges
1. Generating affective and augmentative prosody
2. Speaking in a way that takes the listener’s situation and needs into account

(Taylor 2009, Section 3.6, page 51)
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What properties of text do we need to know about?

“it is not necessary to go all the way and uncover the meaning from the written signal; 

we have to perform just the job of text decoding, not also that of text understanding

……
by and large, the identity and order of the words to be spoken is all we require to synthesise speech;

no higher-order analysis or understanding is necessary.”
(Taylor 2009, Section 3.1.2, page 29)

but Taylor adds two caveats:
• word sense disambiguation (e.g., “polish”)
• prosody
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What properties of speech do we need to know about?

• To start us thinking about the issues involved in creating synthetic speech, let’s think first 
about what speech is “made of ”, because
• in speech synthesis, we need to say new things (i.e., utterances not in our recorded 

database)
• in speech recognition, we need to generalise from the examples in the training data to 

the speech we have to recognise

• It is convenient to think about speech as a linear sequence of units
• enables a concatenative approach to speech synthesis
• in speech recognition, allows us to string together models of small units (e.g. phonemes) 

to make models of larger units (e.g. words)
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What you have learned so far

• Unit selection synthesis
• how the target cost function uses the 

linguistic specification, by querying 
each feature (usually individually)

• join cost encourages continuity of 
acoustic features

• Speech signal modelling (vocoding)
• why we don’t use the waveform
• generalising the source-filter model
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The end-to-end problem we want to solve

Text-to-Speech

text

"the cat sat"

waveform
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A problem we can actually solve
with machine learning

speech features
linguistic 

specification
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linguistic 
specification

The classic three-stage pipeline of 
statistical parametric speech synthesis

Front end
Waveform 
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Statistical 
model

linguistic 
specification

The classic three-stage pipeline of 
statistical parametric speech synthesis

text waveform

"the cat sat"

speech features

Regression
feature 

extraction
feature 

extraction
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We can describe the core problem as sequence-to-sequence regression

output sequence
(speech features)

input sequence
(linguistic specification)
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Orientation

• Unit selection
• selection of waveform units based on
• target cost
• join cost

• Speech signal modelling
• generalised source+filter model

• Statistical parametric synthesis
• predict speech parameters             

from linguistic specification
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• Unit selection
• selection of waveform units based on
• target cost
• join cost

• Speech signal modelling
• generalised source+filter model

• Statistical parametric synthesis
• predict speech parameters             

from linguistic specification

Orientation Let’s just consider the type of target 
cost that is based only on the 
linguistic specification

There are several ways to do this, but we 
need to be able to
• separate excitation & spectral envelope
• reconstruct the waveform

A regression task!
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regression function

sil^dh-ax+k=ae, "phrase initial", "unstressed syllable", ...

sil dh ax k ae t s ae t sil

((the cat) sat)

DET NN VB

phrase finalphrase initial
pitch accent

"the cat sat"

• Unit selection
• selection of waveform units based on
• target cost
• join cost

• Speech signal modelling
• generalised source+filter model
• Statistical parametric synthesis
• predict speech parameters             

from linguistic specification

Orientation

"the cat sat"
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What are the input features ?             Just the linguistic features !

sil^dh-ax+k=ae, "phrase initial", "unstressed syllable", ...

sil dh ax k ae t s ae t sil

((the cat) sat)

DET NN VB

phrase finalphrase initial
pitch accent

"the cat sat"

input feature vector
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STRAIGHT is a VOCODER
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What are the output features (i.e., speech parameters) ?

speech parameters output feature vector
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What next?

• Feature extraction + feature engineering

• constructing the input features
• constructing the output features

• Then, performing the regression
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linguistic 
specification

Extracting features from text
using the front end
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Text processing pipeline
text

Front end

LTS Phrase 
breaks

linguistic 
specification

tokenize POS 
tag intonation

individually learned 
from labelled data
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Text processing pipeline

9

text

Front end

LTS
Phrase 
breaks

linguistic
specification

tokenize
POS
tag intonation

individually learned
from labelled data

9

Text processing pipeline

• A chain of processes

• Each process is performed by 
a model

• These models are 
independently trained in a 
supervised fashion on 
annotated data
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NN Director
IN of
DT the
NP McCormick
NP Public
NPS Affairs
NP Institute
IN at
NP U-Mass
NP Boston,
NP Doctor
NP Ed
NP Beard,
VBZ says
DT the
NN push
IN for
VBP do
PP it
PP yourself
NN lawmaking

POS tagging

• Part-of-speech tagger

• Accuracy is very high

• But

• trained on annotated text 
data

• categories are designed for 
text, not speech

Text processing pipeline

9

text

Front end

LTS
Phrase 
breaks

linguistic
specification

tokenize
POS
tag intonation

individually learned
from labelled data

9
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• Pronunciation model
• dictionary look-up,  plus
• letter-to-sound model

• But
• need deep knowledge of 

the language to design the 
phoneme set

• human expert must write 
dictionary 

ADVOCATING  AE1 D V AH0 K EY2 T IH0 NG
ADVOCATION  AE2 D V AH0 K EY1 SH AH0 N
ADWEEK  AE1 D W IY0 K
ADWELL  AH0 D W EH1 L
ADY  EY1 D IY0
ADZ  AE1 D Z
AE  EY1
AEGEAN  IH0 JH IY1 AH0 N
AEGIS  IY1 JH AH0 S
AEGON  EY1 G AA0 N
AELTUS  AE1 L T AH0 S
AENEAS  AE1 N IY0 AH0 S
AENEID  AH0 N IY1 IH0 D
AEQUITRON  EY1 K W IH0 T R AA0 N
AER  EH1 R
AERIAL  EH1 R IY0 AH0 L
AERIALS  EH1 R IY0 AH0 L Z
AERIE  EH1 R IY0
AERIEN  EH1 R IY0 AH0 N
AERIENS  EH1 R IY0 AH0 N Z
AERITALIA  EH2 R IH0 T AE1 L Y AH0
AERO  EH1 R OW0
AEROBATIC  EH2 R AH0 B AE1 T IH0 K

AERIALS EH1 R IY0 AH0 L Z

A   -
E   EH1
R   R
I   IY0
A   AH0
L   L
S   Z

This sequence is the 
annotated training data 
for our letter-to-sound 

predictor
0.

Pronunciation / LTS

Text processing pipeline

9

text

Front end

LTS
Phrase 
breaks

linguistic
specification

tokenize
POS
tag intonation

individually learned
from labelled data

9
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Break !

A              DT NB
nineteen-      CD NB
eighteen       CD NB
state          NN NB
constitutional JJ NB
amendment      NN  B

• Phrase-break prediction
• binary classifier using POS 

sequence as input
• But

• trained on annotated 
spoken data

• therefore very small 
training set

This sequence is the 
annotated training data 
for our phrase break 

predictor

Predict phrase breaks

Text processing pipeline

9

text

Front end

LTS
Phrase 
breaks

linguistic
specification

tokenize
POS
tag intonation

individually learned
from labelled data

9

© Copyright Simon King, University of Edinburgh, 2017. Personal use only. Not for re-use or redistribution.



We will need to convert the linguistic specification to a vector …. later !

sil^dh-ax+k=ae, "phrase initial", "unstressed syllable", ...

sil dh ax k ae t s ae t sil

((the cat) sat)

DET NN VB

phrase finalphrase initial
pitch accent

"the cat sat"

input feature vector
© Copyright Simon King, University of Edinburgh, 2017. Personal use only. Not for re-use or redistribution.



Contents

• The big picture
• text-to-speech, viewed as regression

• Getting ready for regression
• feature extraction from text
• feature extraction from speech 

• Doing regression
• using a decision tree: so-called “HMM-based TTS”
• using more powerful and general regression models: neural networks} My next lecture

✔

✔

© Copyright Simon King, University of Edinburgh, 2017. Personal use only. Not for re-use or redistribution.



Feature extraction from speech

• speech parameters
• representations suitable for modelling (feature engineering)
• converting back to a waveform
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Orientation

• So far : speech signal analysis

• epochs
• F0
• spectral envelope

• Now: speech signal modelling

• speech parameters
• representations suitable for modelling
• converting back to a waveform
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Orientation

• So far : speech signal analysis

• epochs
• F0
• spectral envelope

• Now: speech signal modelling

• speech parameters
• representations suitable for modelling
• converting back to a waveform

regression function

sil^dh-ax+k=ae, "phrase initial", "unstressed syllable", ...

sil dh ax k ae t s ae t sil

((the cat) sat)

DET NN VB

phrase finalphrase initial
pitch accent

"the cat sat"
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Orientation

• So far : speech signal analysis

• epochs
• F0
• spectral envelope

• Now: speech signal modelling

• speech parameters
• representations suitable for modelling
• converting back to a waveform

• smooth spectral envelope
• fundamental frequency (F0)
• aperiodic energy
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Feature extraction from speech

• speech parameters
• representations suitable for modelling (feature engineering)
• converting back to a waveform
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Representations of the speech parameters that are suitable for modelling

• Many vocoders are conceptually based on a source-filter model
• except they use an excitation signal + spectral envelope, not the “true” source+filter

• excitation signal
• a periodic signal (e.g., a pulse train) at a frequency of F0
• switched on and off by a voiced/unvoiced (V/UV) decision

• spectral envelope
• we need a representation that is amenable to statistical modelling

• aperiodic energy
• spectrally-shaped noise
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Representations of the speech parameters that are suitable for modelling

• We want parameters that are
• fixed in number (per frame) and as low dimensional as possible
• at a fixed frame rate
• a good separation of prosodic and segmental identity aspects of speech

• so that we can model (and/or modify) either of them independently
• well behaved and stable, when we perturb them (e.g., by averaging, or modelling error)

• consecutive frames within a single speech sound
• frames pooled from several similar sounds

• and for statistical modelling, we may additionally like to have
• statistically uncorrelated parameters (to avoid having to model covariance)

© Copyright Simon King, University of Edinburgh, 2017. Personal use only. Not for re-use or redistribution.



What does STRAIGHT actually produce?

• … and is it suitable for modelling?

• smooth spectral envelope

• F0

• non-periodicity
• in other words, aperiodic energy

STRAIGHT is a VOCODER

input 
signal-1 F0 analysis

spectral 
envelope 
analysis
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analysis

non-
periodicity

spectral 
envelope
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Figure: Hideki Kawahara© Copyright Simon King, University of Edinburgh, 2017. Personal use only. Not for re-use or redistribution.



TANDEM-STRAIGHT: natural speech

Mo
vie

What does STRAIGHT actually produce?

• smooth spectral envelope

• high resolution (same as FFT)
• highly-correlated parameters
• probably not suitable for 

statistical modelling
• at least, not with diagonal-

covariance Gaussians

Figure: Hideki Kawahara© Copyright Simon King, University of Edinburgh, 2017. Personal use only. Not for re-use or redistribution.



• warp frequency scale

• decorrelate 

• reduce dimensionality

TANDEM-STRAIGHT: natural speech

Mo
vie

Improving the representation of the spectral envelope

Figure: Hideki Kawahara© Copyright Simon King, University of Edinburgh, 2017. Personal use only. Not for re-use or redistribution.



Representing the spectral envelope as the Mel-cepstrum

• Not quite the same as the MFCCs we use in ASR, but basically the same motivation

• warp the frequency scale
• instead of lossy discrete filterbank, use a continuous function (all-pass filter)

• decorrelate
• convert from spectrum to cepstrum

• reduce dimensionality
• truncate the cepstrum
• in ASR, we kept the first 12 coefficients
• in synthesis, we’ll use a lot more, perhaps the first 40-60 coefficients
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What does STRAIGHT actually produce?

• aperiodic energy
• effectively the ratio between 

periodic and aperiodic 
energy, at each frequency

• high resolution (same as FFT)
• highly-correlated parameters

Figure: Hideki Kawahara
Figure 19: How to estimate aperiodicity index..

Finally the ap values are calibrated based on the calibration table that was prepared based on a series of simulations
using synthetic vowels.

imagesc([0 794],[0 fs/2],10.0.^(ap/20));axis(’xy’)

The following figure is the extracted aperiodicity index using the formula above. The speech is a Japanese vowel
sequence /aiueo/. This index is represented in dB. The value 0 dB indicates that the excitation is totally random
because it represents contribution from energy of random component. When the index is set lower than -60 dB, the
excitation is effectively purely periodic.
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Figure 20: Extracted aperiodicity index using the formula above. The speech is a Japanese vowel sequence /aiueo/.

The following Matlab command line session record shows how to modify the apriodicity index to control excitation
source.

25
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Improving the representation of the aperiodic energy

• aperiodic energy

• reduce dimensionality
• simply reduce resolution by 

averaging across broad 
frequency bands

• e.g., between 5 and 25 bands   
(on a Mel scale, of course)

Figure: Hideki Kawahara

Figure 19: How to estimate aperiodicity index..

Finally the ap values are calibrated based on the calibration table that was prepared based on a series of simulations
using synthetic vowels.
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The following figure is the extracted aperiodicity index using the formula above. The speech is a Japanese vowel
sequence /aiueo/. This index is represented in dB. The value 0 dB indicates that the excitation is totally random
because it represents contribution from energy of random component. When the index is set lower than -60 dB, the
excitation is effectively purely periodic.
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Figure 20: Extracted aperiodicity index using the formula above. The speech is a Japanese vowel sequence /aiueo/.

The following Matlab command line session record shows how to modify the apriodicity index to control excitation
source.
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STRAIGHT is a VOCODER
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Final representation of speech parameters, after feature engineering

speech parameters output feature vector
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Feature extraction from speech

• speech parameters
• representations suitable for modelling (feature engineering)
• converting back to a waveform
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STRAIGHT analysis and synthesis

Figure: Hideki Kawahara
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Excitation signalExamples of generated excitation signals

pulse/noise

STRAIGHT

75

figure from Heiga Zen
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What next?

• We have decomposed speech into
• F0, plus a V/UV decision
• smooth spectral envelope, 

parameterised as the Mel-cepstrum
• band aperiodicity parameters
• We’ve seen how to reconstruct the 

waveform

• Now we can insert a statistical 
model between the analysis and 
synthesis parts
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• We have decomposed speech into
• F0, plus a V/UV decision
• smooth spectral envelope, 

parameterised as the Mel-cepstrum
• band aperiodicity parameters
• We’ve seen how to reconstruct the 

waveform

• Now we can insert a statistical 
model between the analysis and 
synthesis parts
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Figures: Hideki Kawahara

Figure 19: How to estimate aperiodicity index..

Finally the ap values are calibrated based on the calibration table that was prepared based on a series of simulations
using synthetic vowels.
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The following figure is the extracted aperiodicity index using the formula above. The speech is a Japanese vowel
sequence /aiueo/. This index is represented in dB. The value 0 dB indicates that the excitation is totally random
because it represents contribution from energy of random component. When the index is set lower than -60 dB, the
excitation is effectively purely periodic.
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Figure 20: Extracted aperiodicity index using the formula above. The speech is a Japanese vowel sequence /aiueo/.

The following Matlab command line session record shows how to modify the apriodicity index to control excitation
source.
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Figure 21: STRAIGHT spectrogram for the same sample. The speech is a Japanese vowel sequence /aiueo/.

>> [x,fs,nbs,ops]=wavread(’vaiueo2d.wav’);
>> [f0raw,ap]=exstraightsource(x,fs);
>> n3sgram=exstraightspec(x(:,1),f0raw,fs);
>> syOrg = exstraightsynth(f0raw,n3sgram,ap,fs);
>> syApr = exstraightsynth(f0raw,n3sgram,ap*0,fs);
>> syPpr = exstraightsynth(f0raw,n3sgram,ap*0-60,fs);
>> [syPprD0,prmS] = exstraightsynth(f0raw,n3sgram,ap*0-60,fs);
>> prmS

prmS =

spectralUpdateInterval: 1
groupDelayStandardDeviation: 0.5000
groupDelaySpatialBandWidth: 70

groupDelayRandomizeCornerFrequency: 4000
ratioToFundamentalPeriod: 0.2000

ratioModeIndicator: 0
levelNormalizationIndicator: 1

headRoomToClip: 22
powerCheckSegmentLength: 15

timeAxisMappingTable: 1
fundamentalFrequencyMappingTable: 1

frequencyAxisMappingTable: 1
timeAxisStretchingFactor: 1

DisplayPlots: 0
lowestF0: 50

statusReport: ’ok’

>> prmS.groupDelayStandardDeviation = 0.001;
>> [syPprD0,prmS] = exstraightsynth(f0raw,n3sgram,ap*0-60,fs,prmS);
>> wavwrite(syOrg/32768,fs,16,’synAiueoOrg.wav’);
>> wavwrite(syApr/32768,fs,16,’synAiueoApr.wav’);
>> wavwrite(syPpr/32768,fs,16,’synAiueoPpr.wav’);
>> wavwrite(syPprD0/32768,fs,16,’synAiueoPprD0.wav’);

Examples synthesized using these commands are linked below. (Links are accessible only in the HTML version of
this document.)

26

© Copyright Simon King, University of Edinburgh, 2017. Personal use only. Not for re-use or redistribution.



STRAIGHT is a VOCODER

input 
signal-1 F0 analysis

spectral 
envelope 
analysis

F0

analysis

non-
periodicity

spectral 
envelope

non-periodicity 
analysis

non-periodic 
component  
generator

shaper and 
mixer

filter output 
signal

synthesis

periodic 
pulse 

generator
modification

data

process

signal

parameter

physical 
attributes
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Figures: Hideki Kawahara
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Contents

• The big picture
• text-to-speech, viewed as regression

• Getting ready for regression
• feature extraction from text
• feature extraction from speech

• Doing regression
• using a decision tree: so-called “HMM-based TTS” 

• using more powerful and general regression models: neural networks} My next lecture

✔

✔
✔
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What you should already know

• phonemes
• place, manner, voicing, etc

• front-end text processing
• linguistic specification
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What you should already know

• phonemes
• place, manner, voicing, etc

• front-end text processing
• linguistic specification
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• phonemes
• place, manner, voicing, etc

• source-filter model
• F0, formants, vocal tract frequency 

response
• front-end text processing

• linguistic specification

What you should already know

CONSONANTS (PULMONIC) © 2015 IPA

 Bilabial Labiodental Dental Alveolar Postalveolar Retroflex Palatal Velar Uvular Pharyngeal Glottal

Plosive                       
Nasal                       
Trill                       
Tap or Flap                       
Fricative                       
Lateral 
fricative                       
Approximant                       
Lateral 
approximant                       

Symbols to the right in a cell are voiced, to the left are voiceless. Shaded areas denote articulations judged impossible. 

THE INTERNATIONAL PHONETIC ALPHABET (revised to 2015) 

Typefaces: Doulos SIL (metatext); Doulos SIL, IPA Kiel, IPA LS Uni (symbols) 
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• phonemes
• place, manner, voicing, etc

What you should already know

VOWELS 
Front Central  Back

Close      
     

Close-mid     
     

Open-mid    
     

Open     
Where symbols appear in pairs, the one 
to the right represents a rounded vowel. 

THE INTERNATIONAL PHONETIC ALPHABET (revised to 2015) 

Typefaces: Doulos SIL (metatext); Doulos SIL, IPA Kiel, IPA LS Uni (symbols) 
 

 

© Copyright Simon King, University of Edinburgh, 2017. Personal use only. Not for re-use or redistribution.



What you should already know

phoneme: ax
left context: sil dh
right context: k ae
position in phrase: initial
syllable stress: unstressed
etc....

sil dh ax k ae t s ae t sil

"the cat sat"

((the cat) sat)

DET NN VB

phrase finalphrase initial
pitch accent

• phonemes
• place, manner, voicing, etc

• front-end text processing
• linguistic specification
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Remember this problem? We haven’t actually solved it yet…

sil^dh-ax+k=ae, "phrase initial", "unstressed syllable", ...

sil dh ax k ae t s ae t sil

((the cat) sat)

DET NN VB

phrase finalphrase initial
pitch accent

"the cat sat"

input feature vector
© Copyright Simon King, University of Edinburgh, 2017. Personal use only. Not for re-use or redistribution.



First solution: convert rich linguistic structure into a linear sequence

phoneme: ax
left context: sil dh
right context: k ae
position in phrase: initial
syllable stress: unstressed
etc....

sil dh ax k ae t s ae t sil

"the cat sat"

((the cat) sat)

DET NN VB

phrase finalphrase initial
pitch accent

© Copyright Simon King, University of Edinburgh, 2017. Personal use only. Not for re-use or redistribution.



“Flatten” the linguistic structure, by attaching contextual features to phones

sil~sil-sil+ao=th@x_x/A:0_0_0/B:x-x-x@x-x&x-x#x-x$...
sil~sil-ao+th=er@1_2/A:0_0_0/B:1-1-2@1-2&1-7#1-4$...
sil~ao-th+er=ah@2_1/A:0_0_0/B:1-1-2@1-2&1-7#1-4$...
ao~th-er+ah=v@1_1/A:1_1_2/B:0-0-1@2-1&2-6#1-4$...
th~er-ah+v=dh@1_2/A:0_0_1/B:1-0-2@1-1&3-5#1-3$...
er~ah-v+dh=ax@2_1/A:0_0_1/B:1-0-2@1-1&3-5#1-3$...
ah~v-dh+ax=d@1_2/A:1_0_2/B:0-0-2@1-1&4-4#2-3$...
v~dh-ax+d=ey@2_1/A:1_0_2/B:0-0-2@1-1&4-4#2-3$...

sil^dh-ax+k=ae, "phrase initial", "unstressed syllable", ...

sil dh ax k ae t s ae t sil

((the cat) sat)

DET NN VB

phrase finalphrase initial
pitch accent

"the cat sat"
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Orientation

• So far :
• extract rich linguistic features from 

text using the front end (same as in 
unit selection)

• flatten those features into a sequence 
of context-dependent phones

• Next:
• create a statistical model for every 

possible context-dependent phone
• train the model on data
• use it to synthesise new sentences
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Our first model: regression tree + Hidden Markov Model

• Two complementary explanations
• regression
• context-dependent models

• Duration modelling
• Generation from the model
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Two complementary explanations

regression

context-dependent 
modelling

• Describing synthesis as a regression task
• prediction of continuous speech parameters from linguistic features

• Practical implementation using context-dependent models
• create lots of models: oops! for many, there is no training data

• fix this by sharing parameters with existing models (“tying”)
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Sequence-to-sequence regression = alignment + frame-to-frame regression

output sequence
(speech features)

input sequence
(linguistic specification)
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• Sequencing
• progress through the phonetic sequence
• decide durations
• create a sequence of frames

• Prediction (regression)
• Given the local linguistic specification,       

predict one frame of speech parameters

Two tasks to accomplish

regression function

R
eg

re
ss

io
n

sil~sil-sil+ao=th@x_x/A:0_0_0/B:x-x-x@x-x&x-x#x-x$...
sil~sil-ao+th=er@1_2/A:0_0_0/B:1-1-2@1-2&1-7#1-4$...
sil~ao-th+er=ah@2_1/A:0_0_0/B:1-1-2@1-2&1-7#1-4$...
ao~th-er+ah=v@1_1/A:1_1_2/B:0-0-1@2-1&2-6#1-4$...
th~er-ah+v=dh@1_2/A:0_0_1/B:1-0-2@1-1&3-5#1-3$...
er~ah-v+dh=ax@2_1/A:0_0_1/B:1-0-2@1-1&3-5#1-3$...
ah~v-dh+ax=d@1_2/A:1_0_2/B:0-0-2@1-1&4-4#2-3$...
v~dh-ax+d=ey@2_1/A:1_0_2/B:0-0-2@1-1&4-4#2-3$...
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Choose suitable machinery for each task

• Sequencing
• Hidden Markov Model 

• Why? It’s the simplest model we know that can generate sequences!

• Regression
• Regression tree (i.e., a CART with continuously-valued predictee)
• Why? Again, the simplest model we know, that can learn an arbitrary function

• the mapping from linguistic specification to speech spectrum is surely non-linear

R
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n
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CART (Classification and Regression Tree) - see speech.zone
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HMM for sequencing + regression tree for prediction

sil^dh-ax+k=ae, "phrase initial", "unstressed syllable", ...

sil dh ax k ae t s ae t sil

((the cat) sat)

DET NN VB

phrase finalphrase initial
pitch accent

"the cat sat"

R
eg

re
ss

io
n
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HMM for sequencing + regression tree for prediction

sil^dh-ax+k=ae, "phrase initial", "unstressed syllable", ...

sil dh ax k ae t s ae t sil

((the cat) sat)

DET NN VB

phrase finalphrase initial
pitch accent

"the cat sat"
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HMM for sequencing + regression tree for prediction

sil^dh-ax+k=ae, "phrase initial", "unstressed syllable", ...

R
eg

re
ss
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n
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Two complementary explanations

regression

context-dependent 
modelling

• Describing synthesis as a regression task
• prediction of continuous speech parameters from linguistic features

• Practical implementation using context-dependent models
• create lots of models: oops! for many, there is no training data

• fix this by sharing parameters with existing models (“tying”)
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Reminder: constructing the target unit sequence (for unit selection)

phoneme: ax
left context: sil dh
right context: k ae
position in phrase: initial
syllable stress: unstressed
etc....

sil dh ax k ae t s ae t sil

"the cat sat"

((the cat) sat)

DET NN VB

phrase finalphrase initial
pitch accent

axsil sildh k ae t s ae t

phoneme: ax
left context: sil dh
right context: k ae
position in phrase: initial
syllable stress: unstressed
etc....

sil dh ax k ae t s ae t sil

"the cat sat"

((the cat) sat)

DET NN VB

phrase finalphrase initial
pitch accent

sil sildh ax k ae t s ae t
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From linguistic specification to sequence of models

“Author of the ...”
sil~sil-sil+ao=th@x_x/A:0_0_0/B:x-x-x@x-x&x-x#x-x$.....
sil~sil-ao+th=er@1_2/A:0_0_0/B:1-1-2@1-2&1-7#1-4$.....
sil~ao-th+er=ah@2_1/A:0_0_0/B:1-1-2@1-2&1-7#1-4$.....
ao~th-er+ah=v@1_1/A:1_1_2/B:0-0-1@2-1&2-6#1-4$.....
th~er-ah+v=dh@1_2/A:0_0_1/B:1-0-2@1-1&3-5#1-3$.....
er~ah-v+dh=ax@2_1/A:0_0_1/B:1-0-2@1-1&3-5#1-3$.....
ah~v-dh+ax=d@1_2/A:1_0_2/B:0-0-2@1-1&4-4#2-3$.....
v~dh-ax+d=ey@2_1/A:1_0_2/B:0-0-2@1-1&4-4#2-3$.....
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Context-dependent modelling

• We cannot be sure to have examples of every unit type in every possible context in the 
training data

• In reality, the context is so rich (it spans the whole sentence), that almost every single 
token in the training data is the only token of its type

• Two key problems to solve
• train models for types that we have too few examples of (e.g., 1)
• create models for types that we have no examples of 

• Joint solution: parameter sharing amongst groups of similar models 
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Training models for types that we have too few examples of

• We could train a model on just a single example (= single token)
• But it will be very poorly estimated

• unlikely to perform well

• Pooling training data across groups of types will increase amount of data available
• How to decide which groups of models should share data?

• i.e., which groups of models will end up with the same parameters
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Some contexts exert similar effects

• Key insight
• we can group contexts according to the effect that they have on the centre phoneme
• for example

• the [ae] in the contexts  p-ae+t  and  b-ae+t  may be very similar
• how to group these contexts?

• how to represent them so we can form useful groupings?

• use the phonetic features of the surrounding context 

• place, manner, voicing, .... C
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Grouping contexts according to phonetic features

• Could try to write rules to express our knowledge of how co-articulation and other 
context effects work
• “all bilabial stops have a similar effect on the following vowel”

• “all nasals have a similar effect on the preceding vowel”

• ... etc

• Of course, it’s better to learn this from the data, for 2 reasons
• find those groupings that actually make a difference to the acoustics

• adjust the granularity of the groups according to how much data we have

• But we still want to make use of our phonetic knowledge
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Combining phonetic knowledge with data-driven learning

vowel to right ?

nasal to left ?

/uw/ to right ?

yn

yn

yn

tied state
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How to choose the best split

• Ideal measure
• a) train a single model on data pooled across the unsplit set of contexts
• b) train two models: one on each split of the data
• compare the likelihood increase from a) to b)

• This is not feasible in practice - too computationally-expensive
• cannot retrain models for every possible split, at every node in the tree

• Instead, use an approximation to the likelihood increase
• this can be computed without actually retraining any models
• only requires access to the state occupancy statistics and Gaussian parameters C
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What about models for unseen contexts?

• To find out which model to use for a 
particular context
• just follow the tree from root to leaf, 

answering the questions
• Crucially, to do this we only need to know the 

name of the model, in order to answer those 
questions

• So it works for models which have training 
data, and also for models that don’t C
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vowel to right ?

nasal to left ?

/uw/ to right ?

yn

yn

yn

tied state
ah~v-dh+ax=d@1_2/A:1_0_2/B:0-0-2@1-1&4-4#2-3$.....
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Summary: linguistic processing, training, synthesis

• Linguistic processing
• from text to linguistic features using the front end (same as in unit selection)
• attach linguistic features to phonemes: “flatten” the linguistic structures

• we then create one context-dependent HMM for every unique combination of 
linguistic features

© Copyright Simon King, University of Edinburgh, 2017. Personal use only. Not for re-use or redistribution.



Summary: linguistic processing, training, synthesis

• Training the HMMs
• need labelled speech data, just as for ASR (supervised learning)
• need models for all combinations of linguistic features, including those unseen in the 

training data
• this is achieved by parameterising the models using a regression tree
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Summary: linguistic processing, training, synthesis

• Synthesising from the HMMs
• use the front end to predict required sequence of context-dependent models

• the regression tree provides the parameters for these models
• use those models to generate speech parameters
• use a vocoder to convert those to a waveform
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Generating from the regression tree + Hidden Markov Model

• This is straightforward, because the HMM is a generative model
• Follow the Maximum Likelihood principle

• generate the most likely output
• that will simply be the sequence of state means

• What about duration?
• we need a model to predict this
• let’s just use another regression tree, predicting duration per state

• predictors: linguistic context + state-position-within-phone
• predictee: duration of the current state, in frames
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LSPs extracted from waveform vs. generated by HMM

2.5. Methodology 19

Figure 2.2: Example of applying temporal smoothing to LSF parameteris using a slid-

ing Hanning window.

temporal resolution of HMM modelling. The width of the window was varied, to im-

pose varying amounts of smoothing. Figure 2.2 shows an example of this process.

2.5.1.2 Variance scaling

Variance adjustment was implemented as a simple scaling of the standard deviation

by a fixed factor. For each parameter (i.e., each LSF) in turn, the mean value over

the utterance was found and subtracted before multiplying the parameter by a scalar

value, and finally adding the mean back in. By altering the scalar value, the standard

deviation is correspondingly adjusted, to simulate both reduced variance (which is

commonly observed in HMM synthesis) and increased variance (e.g., as may happen

if a Gaussian p.d.f. is poorly estimated during training, or when GV fails to re-instate

the appropriate amount of variance). This approach of variance scaling is similar to

the postfiltering method investigated by Silén and Helander (2012). Figure 2.3 shows

an example of this process.

time

fre
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Figure 2.2: Example of applying temporal smoothing to LSF parameteris using a slid-

ing Hanning window.

temporal resolution of HMM modelling. The width of the window was varied, to im-

pose varying amounts of smoothing. Figure 2.2 shows an example of this process.

2.5.1.2 Variance scaling

Variance adjustment was implemented as a simple scaling of the standard deviation

by a fixed factor. For each parameter (i.e., each LSF) in turn, the mean value over

the utterance was found and subtracted before multiplying the parameter by a scalar

value, and finally adding the mean back in. By altering the scalar value, the standard

deviation is correspondingly adjusted, to simulate both reduced variance (which is

commonly observed in HMM synthesis) and increased variance (e.g., as may happen

if a Gaussian p.d.f. is poorly estimated during training, or when GV fails to re-instate

the appropriate amount of variance). This approach of variance scaling is similar to

the postfiltering method investigated by Silén and Helander (2012). Figure 2.3 shows

an example of this process.
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Figure 5: MLPG generated LSP by system F (phones, state units, DNN) in red compared with natural LSPs in blue.
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“Over smoothing”

• Generated trajectories are temporally smoother than natural ones
• fine detail is lost - this is actually not a problem (it was probably just analysis error)
• deviation from the mean is reduced - this is a significant problem

• Standard solution: scale the standard deviation (or variance) back up to global natural level
• Global Variance (GV)

• simple scaling
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“Over smoothing”

• Generated spectral envelope is smoother in frequency domain than natural one
• formant (resonance) peaks are wider and less sharp - giving a ‘muffled’ sound
• reduced resonance reveals the ‘buzzy’ nature of the artificial source signal

• Standard solution: enhance the spectral sharpness
• raise spectrum to a power greater than 1

• …or one of many other solutions
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Orientation

• Our first attempt at statistical 
parametric speech synthesis
• we used models that we are familiar 

with and understand well

• Gaussians are convenient
• e.g., so we can borrow many useful 

techniques from ASR 

• But regression trees are weak models
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Orientation

This is perfectly sensible: we 
have good algorithms for 

training the models, for 
example.

The key weakness of the method. 
We must replace the regression 

tree with something more 
powerful.

e.g., model adaptation

• Our first attempt at statistical 
parametric speech synthesis
• we used models that we are familiar 

with and understand well

• Gaussians are convenient
• e.g., so we can borrow many useful 

techniques from ASR 

• But regression trees are weak models
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What next?

• Better regression model 

• a Neural Network
• input & output features essentially the 

same as regression tree + HMM

• Quality will still be limited by the vocoder

• Later, we will also address that problem
• hybrid synthesis (not in this course)

• direct waveform generation
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2.5. Methodology 19

Figure 2.2: Example of applying temporal smoothing to LSF parameteris using a slid-

ing Hanning window.

temporal resolution of HMM modelling. The width of the window was varied, to im-

pose varying amounts of smoothing. Figure 2.2 shows an example of this process.

2.5.1.2 Variance scaling

Variance adjustment was implemented as a simple scaling of the standard deviation

by a fixed factor. For each parameter (i.e., each LSF) in turn, the mean value over

the utterance was found and subtracted before multiplying the parameter by a scalar

value, and finally adding the mean back in. By altering the scalar value, the standard

deviation is correspondingly adjusted, to simulate both reduced variance (which is

commonly observed in HMM synthesis) and increased variance (e.g., as may happen

if a Gaussian p.d.f. is poorly estimated during training, or when GV fails to re-instate

the appropriate amount of variance). This approach of variance scaling is similar to

the postfiltering method investigated by Silén and Helander (2012). Figure 2.3 shows

an example of this process.

Statistical Parametric Speech Synthesis
• HMM-based (2 hours)
• DNN-based (1 hour)

Simon King
University of Edinburgh
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Contents

• The big picture
• text-to-speech, viewed as regression

• Getting ready for regression
• feature extraction from text
• feature extraction from speech

• Doing regression
• using a decision tree: so-called “HMM-based TTS”
• using more powerful and general regression models: neural networks

✔

✔
✔

✔
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Speech synthesis using Neural Networks

• preparing the input features
• what is a Neural Network?
• generating speech with a Neural Network
• training a Neural Network
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Speech synthesis using Neural Networks

• preparing the input features
• what is a Neural Network?
• generating speech with a Neural Network
• training a Neural Network
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We’ve described the problem as sequence-to-sequence regression

output sequence
(speech features)

input sequence
(linguistic specification)

Different lengths, because of 
differing ‘clock rates’
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Remember this problem?                  Now we really have to solve it!

sil^dh-ax+k=ae, "phrase initial", "unstressed syllable", ...

sil dh ax k ae t s ae t sil

((the cat) sat)

DET NN VB

phrase finalphrase initial
pitch accent

"the cat sat"

input feature vector
© Copyright Simon King, University of Edinburgh, 2017. Personal use only. Not for re-use or redistribution.



Preparing the input features for Neural Network speech synthesis
1) flatten the linguistic structure, to create a linear sequence (as for HMMs)

sil~sil-sil+ao=th@x_x/A:0_0_0/B:x-x-x@x-x&x-x#x-x$...
sil~sil-ao+th=er@1_2/A:0_0_0/B:1-1-2@1-2&1-7#1-4$...
sil~ao-th+er=ah@2_1/A:0_0_0/B:1-1-2@1-2&1-7#1-4$...
ao~th-er+ah=v@1_1/A:1_1_2/B:0-0-1@2-1&2-6#1-4$...
th~er-ah+v=dh@1_2/A:0_0_1/B:1-0-2@1-1&3-5#1-3$...
er~ah-v+dh=ax@2_1/A:0_0_1/B:1-0-2@1-1&3-5#1-3$...
ah~v-dh+ax=d@1_2/A:1_0_2/B:0-0-2@1-1&4-4#2-3$...
v~dh-ax+d=ey@2_1/A:1_0_2/B:0-0-2@1-1&4-4#2-3$...

sil^dh-ax+k=ae, "phrase initial", "unstressed syllable", ...

sil dh ax k ae t s ae t sil

((the cat) sat)

DET NN VB

phrase finalphrase initial
pitch accent

"the cat sat"
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Preparing the input features for Neural Network speech synthesis
2) encode and upsample

sil~sil-sil+ao=th@x_x/A:0_0_0/B:x-x-x@x-x&x-x#x-x$...
sil~sil-ao+th=er@1_2/A:0_0_0/B:1-1-2@1-2&1-7#1-4$...
sil~ao-th+er=ah@2_1/A:0_0_0/B:1-1-2@1-2&1-7#1-4$...
ao~th-er+ah=v@1_1/A:1_1_2/B:0-0-1@2-1&2-6#1-4$...
th~er-ah+v=dh@1_2/A:0_0_1/B:1-0-2@1-1&3-5#1-3$...
er~ah-v+dh=ax@2_1/A:0_0_1/B:1-0-2@1-1&3-5#1-3$...
ah~v-dh+ax=d@1_2/A:1_0_2/B:0-0-2@1-1&4-4#2-3$...
v~dh-ax+d=ey@2_1/A:1_0_2/B:0-0-2@1-1&4-4#2-3$...

[0 0 1 0 0 1 0 1 1 0 … 0.2  0.0]
[0 0 1 0 0 1 0 1 1 0 … 0.2  0.1]
…
[0 0 1 0 0 1 0 1 1 0 … 0.2  1.0]
[0 0 1 0 0 1 0 1 1 0 … 0.4  0.0]
[0 0 1 0 0 1 0 1 1 0 … 0.4  0.5]
[0 0 1 0 0 1 0 1 1 0 … 0.4  1.0]
…
[0 0 1 0 0 1 0 1 1 0 … 1.0  1.0]
[0 0 0 1 1 1 0 1 0 0 … 0.2  0.0]
[0 0 0 1 1 1 0 1 0 0 … 0.2  0.2]
[0 0 0 1 1 1 0 1 0 0 … 0.2  0.4]
…

linguistic timescale fixed frameratepredict durations
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How to construct the sequence of input features

[0 0 1 0 0 1 0 1 1 0 … 0.2  0.0]
[0 0 1 0 0 1 0 1 1 0 … 0.2  0.1]
…
[0 0 1 0 0 1 0 1 1 0 … 0.2  1.0]
[0 0 1 0 0 1 0 1 1 0 … 0.4  0.0]
[0 0 1 0 0 1 0 1 1 0 … 0.4  0.5]
[0 0 1 0 0 1 0 1 1 0 … 0.4  1.0]
…
[0 0 1 0 0 1 0 1 1 0 … 1.0  1.0]
[0 0 0 1 1 1 0 1 0 0 … 0.2  0.0]
[0 0 0 1 1 1 0 1 0 0 … 0.2  0.2]
[0 0 0 1 1 1 0 1 0 0 … 0.2  0.4]
…
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Preparing the input

sil~sil-sil+dh=ax@x_x/A:0_0_0/B:x-x-x@x-x&x-x#x-x$...
sil~sil-dh+ax=k@1_2/A:0_0_0/B:1-1-2@1-2&1-7#1-4$...
sil~dh-ax+k=ae@2_1/A:0_0_0/B:1-1-2@1-2&1-7#1-4$...
dh~ax-k+ae=t@1_1/A:1_1_2/B:0-0-1@2-1&2-6#1-4$...
ax~k-ae+t=s@1_2/A:0_0_1/B:1-0-2@1-1&3-5#1-3$...
k~ae-t+s=ae@2_1/A:0_0_1/B:1-0-2@1-1&3-5#1-3$...
ae~t-s+ae=t@1_2/A:1_0_2/B:0-0-2@1-1&4-4#2-3$...
t~s-ae+t=sil@2_1/A:1_0_2/B:0-0-2@1-1&4-4#2-3$...

sil^dh-ax+k=ae, "phrase initial", "unstressed syllable", ...

sil dh ax k ae t s ae t sil

((the cat) sat)

DET NN VB

phrase finalphrase initial
pitch accent

"the cat sat"

[0 0 1 0 0 1 0 1 1 0 … 0.2  0.0]
[0 0 1 0 0 1 0 1 1 0 … 0.2  0.1]
…
[0 0 1 0 0 1 0 1 1 0 … 0.2  1.0]
[0 0 1 0 0 1 0 1 1 0 … 0.4  0.0]
[0 0 1 0 0 1 0 1 1 0 … 0.4  0.5]
[0 0 1 0 0 1 0 1 1 0 … 0.4  1.0]
…
[0 0 1 0 0 1 0 1 1 0 … 1.0  1.0]
[0 0 0 1 1 1 0 1 0 0 … 0.2  0.0]
[0 0 0 1 1 1 0 1 0 0 … 0.2  0.2]
[0 0 0 1 1 1 0 1 0 0 … 0.2  0.4]
…

•Run the front end 
•obtain linguistic specification 

•Flatten linguistic specification 
•attach contextual information to phones 

Sequence of context-dependent phones 

•Add duration information 

•Query context-dependent phones using 
yes/no questions, to obtain binary features 

Frame sequence 

•Add fine-grained positional information

linguistic 
tim

escale
tim

e is now
 at a 

fixed fram
erate
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Preparing the input:
flatten linguistic specification

sil^dh-ax+k=ae, "phrase initial", "unstressed syllable", ...

sil dh ax k ae t s ae t sil

((the cat) sat)

DET NN VB

phrase finalphrase initial
pitch accent

"the cat sat"

linguistic timescale: phones
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Preparing the input:
a sequence of context-dependent phones

This is the sequence of model names that we would 
use in HMM-based speech synthesis

quinphone positional features 
(e.g., position of phone in syllable)

POS features

“Please call . . .” 

#~p-l+i=z:2_3/A/0_0_0/B/1-1-4:1-1&1-4# . . . 
p~l-i+z=k:3_2/A/0_0_0/B/1-1-4:1-1&1-4# . . . 
l~i-z+k=O:4_1/A/0_0_0/B/1-1-4:1-1&1-4# . . . 
i~z-k+O=lw:1_3/A/1_1_4/B/1-1-3:1-1&2-3# . . . 
z~k-O+lw=s:2_2/A/1_1_4/B/1-1-3:1-1&2-3# . . .

linguistic timescale: phones
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“Please call . . .” 

#~p-l+i=z:2_3/A/0_0_0/B/1-1-4:1-1&1-4# . . . 

p~l-i+z=k:3_2/A/0_0_0/B/1-1-4:1-1&1-4# . . . 
l~i-z+k=O:4_1/A/0_0_0/B/1-1-4:1-1&1-4# . . . 
i~z-k+O=lw:1_3/A/1_1_4/B/1-1-3:1-1&2-3# . . . 
z~k-O+lw=s:2_2/A/1_1_4/B/1-1-3:1-1&2-3# . . . 

Preparing the input:
predict durations at the subphone level

 3900000 4000000 #~p-l+i=z:2_3/A/0_0_0/B/1-1-4:1-1&1-4# . . . [2] 
 4000000 4050000 #~p-l+i=z:2_3/A/0_0_0/B/1-1-4:1-1&1-4# . . . [3] 
 4050000 4100000 #~p-l+i=z:2_3/A/0_0_0/B/1-1-4:1-1&1-4# . . . [4] 
 4100000 4150000 #~p-l+i=z:2_3/A/0_0_0/B/1-1-4:1-1&1-4# . . . [5] 
 4150000 4200000 #~p-l+i=z:2_3/A/0_0_0/B/1-1-4:1-1&1-4# . . . [6] 

linguistic timescale: subphones
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• All early DNN systems employ HMMs as a sub-phonetic “clock”
• duration is then modelled at the state (i.e, subphone) level

Stream-dependent tree-based clustering 

State duration
model

Decision trees
for

mel-cepstrum

Decision trees
for F0

Decision tree
for state dur.
models

HMM

What is the “subphone” ?

#~p-l+i=z:2_3/A/0_0_0/B/1-1-4:1-1&1-4# . . .

regression tree
duration modelduration 

(in frames)
2      1      3      1      3

linguistic timescale: subphones
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Preparing the input:
predict durations at the subphone level

linguistic timescale: subphones

“Please call . . .” 

#~p-l+i=z:2_3/A/0_0_0/B/1-1-4:1-1&1-4# . . . 

p~l-i+z=k:3_2/A/0_0_0/B/1-1-4:1-1&1-4# . . . 
l~i-z+k=O:4_1/A/0_0_0/B/1-1-4:1-1&1-4# . . . 
i~z-k+O=lw:1_3/A/1_1_4/B/1-1-3:1-1&2-3# . . . 
z~k-O+lw=s:2_2/A/1_1_4/B/1-1-3:1-1&2-3# . . . 

 3900000 4000000 #~p-l+i=z:2_3/A/0_0_0/B/1-1-4:1-1&1-4# . . . [2] 
 4000000 4050000 #~p-l+i=z:2_3/A/0_0_0/B/1-1-4:1-1&1-4# . . . [3] 
 4050000 4100000 #~p-l+i=z:2_3/A/0_0_0/B/1-1-4:1-1&1-4# . . . [4] 
 4100000 4150000 #~p-l+i=z:2_3/A/0_0_0/B/1-1-4:1-1&1-4# . . . [5] 
 4150000 4200000 #~p-l+i=z:2_3/A/0_0_0/B/1-1-4:1-1&1-4# . . . [6] 
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“Please call . . .” 

#~p-l+i=z:2_3/A/0_0_0/B/1-1-4:1-1&1-4# . . . 
 3900000 4000000 #~p-l+i=z:2_3/A/0_0_0/B/1-1-4:1-1&1-4# . . . [2] 
 4000000 4050000 #~p-l+i=z:2_3/A/0_0_0/B/1-1-4:1-1&1-4# . . . [3] 
 4050000 4200000 #~p-l+i=z:2_3/A/0_0_0/B/1-1-4:1-1&1-4# . . . [4] 
 4200000 4250000 #~p-l+i=z:2_3/A/0_0_0/B/1-1-4:1-1&1-4# . . . [5] 
 4250000 4400000 #~p-l+i=z:2_3/A/0_0_0/B/1-1-4:1-1&1-4# . . . [6] 
p~l-i+z=k:3_2/A/0_0_0/B/1-1-4:1-1&1-4# . . . 
l~i-z+k=O:4_1/A/0_0_0/B/1-1-4:1-1&1-4# . . . 
i~z-k+O=lw:1_3/A/1_1_4/B/1-1-3:1-1&2-3# . . . 
z~k-O+lw=s:2_2/A/1_1_4/B/1-1-3:1-1&2-3# . . . 

QS "C-OI" {-OI+}
QS "C-i" {-i+}
QS "C-aU" {-aU+}
QS "C-aI" {-aI+}
QS "C-a" {-a+}
QS "C-Q" {-Q+}
QS "C-@@" {-@@+}
QS "C-I@" {-I@+}
QS "C-U@" {-U@+}
QS "C-E@" {-E@+}
QS "C-E" {-E+}
QS "C-A" {-A+}
QS "C-@U" {-@U+}
QS "C-O" {-O+}
QS "C-I" {-I+}
QS "C-@" {-@+}
QS "C-V" {-V+}
QS "C-u" {-u+}
QS "C-U" {-U+}
QS "C-eI" {-eI+}
QS "C-b" {-b+}

0000000000000000000000000001000000000000000000000001 . . . etc

Preparing the input: convert each state of each
context-dependent phone to a vector of binary features
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Position-within-phone and position-within-state features

2      1      3      1      3

000001000001000100000 . . .
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Position-within-phone  =  state counter

000001000001000100000 . . . 2 

000001000001000100000 . . . 3 

000001000001000100000 . . . 4 

000001000001000100000 . . . 5 

000001000001000100000 . . . 6 

2      1      3      1      3
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Position-within-state feature

000001000001000100000 . . . 2 0.50 
000001000001000100000 . . . 2 1.00 

000001000001000100000 . . . 3 1.00 

000001000001000100000 . . . 4 0.33 
000001000001000100000 . . . 4 0.66 
000001000001000100000 . . . 4 1.00 

000001000001000100000 . . . 5 1.00 

000001000001000100000 . . . 6 0.33 
000001000001000100000 . . . 6 0.66 
000001000001000100000 . . . 6 1.00

2      1      3      1      3

000001000001000100000 . . . 2 0.50 
000001000001000100000 . . . 2 1.00 
000001000001000100000 . . . 3 1.00 
000001000001000100000 . . . 4 0.33 
000001000001000100000 . . . 4 0.66 
000001000001000100000 . . . 4 1.00 
000001000001000100000 . . . 5 1.00 
000001000001000100000 . . . 6 0.33 
000001000001000100000 . . . 6 0.66 
000001000001000100000 . . . 6 1.00

 [l] in the context 
 #~p-l+i=z:2_3/. . . 

with a duration of 
10 frames (50ms)

time is now at a 
fixed framerate
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real example of prepared features
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Speech synthesis using Neural Networks

• preparing the input features
• what is a Neural Network?
• generating speech with a Neural Network
• training a Neural Network
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A simple “feed forward” neural network

directed connections,     
each with a weight

units (or “neurons”), each 
with an activation function

information flows in this directiona weight matrix

a hidden layer

input layer output layer
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What is a unit, and what does it do?

sum
 the

 inp
uts

outp
ut

a non-linear
function

usually called 
the “activation”
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What are all those layers for?

a representation of 
the input a representation of 

the output

learned 
intermediate 

representations

a sequence of non-linear projections
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Speech synthesis using Neural Networks

• preparing the input features
• what is a Neural Network?
• generating speech with a Neural Network
• training a Neural Network
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“Author of the …”

Front end

LTS Phrase 
breakstokenize POS 

tag intonation

Putting it all together: text-to-speech with a neural network
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sil~sil-sil+ao=th@x_x/A:0_0_0/B:x-x-x@x-x&x-x#x-x$...
sil~sil-ao+th=er@1_2/A:0_0_0/B:1-1-2@1-2&1-7#1-4$...
sil~ao-th+er=ah@2_1/A:0_0_0/B:1-1-2@1-2&1-7#1-4$...
ao~th-er+ah=v@1_1/A:1_1_2/B:0-0-1@2-1&2-6#1-4$...
th~er-ah+v=dh@1_2/A:0_0_1/B:1-0-2@1-1&3-5#1-3$...
er~ah-v+dh=ax@2_1/A:0_0_1/B:1-0-2@1-1&3-5#1-3$...
ah~v-dh+ax=d@1_2/A:1_0_2/B:0-0-2@1-1&4-4#2-3$...
v~dh-ax+d=ey@2_1/A:1_0_2/B:0-0-2@1-1&4-4#2-3$...

Front end

LTS Phrase 
breaks intonation

Putting it all together: text-to-speech with a neural network
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[0 0 1 0 0 1 0 1 1 0 … 0.2  0.0]
[0 0 1 0 0 1 0 1 1 0 … 0.2  0.1]
…
[0 0 1 0 0 1 0 1 1 0 … 0.2  1.0]
[0 0 1 0 0 1 0 1 1 0 … 0.4  0.0]
[0 0 1 0 0 1 0 1 1 0 … 0.4  0.5]
[0 0 1 0 0 1 0 1 1 0 … 0.4  1.0]
…
[0 0 1 0 0 1 0 1 1 0 … 1.0  1.0]
[0 0 0 1 1 1 0 1 0 0 … 0.2  0.0]
[0 0 0 1 1 1 0 1 0 0 … 0.2  0.2]
[0 0 0 1 1 1 0 1 0 0 … 0.2  0.4]
…

sil~sil-sil+ao=th@x_x/A:0_0_0/B:x-x-x@x-x&x-x#x-x$...
sil~sil-ao+th=er@1_2/A:0_0_0/B:1-1-2@1-2&1-7#1-4$...
sil~ao-th+er=ah@2_1/A:0_0_0/B:1-1-2@1-2&1-7#1-4$...
ao~th-er+ah=v@1_1/A:1_1_2/B:0-0-1@2-1&2-6#1-4$...
th~er-ah+v=dh@1_2/A:0_0_1/B:1-0-2@1-1&3-5#1-3$...
er~ah-v+dh=ax@2_1/A:0_0_1/B:1-0-2@1-1&3-5#1-3$...
ah~v-dh+ax=d@1_2/A:1_0_2/B:0-0-2@1-1&4-4#2-3$...
v~dh-ax+d=ey@2_1/A:1_0_2/B:0-0-2@1-1&4-4#2-3$...

Putting it all together: text-to-speech with a neural network
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Speech synthesis using Neural Networks

• preparing the input features
• what is a Neural Network?
• generating speech with a Neural Network
• training a Neural Network
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Preparing the inputs and outputs for training

• Inputs
• linguistic features
• plus positional features (‘counters’)
• re-write as vectors

• [0 0 1 0 0 1 0 0 0 1 1 0 0 0 0 0 1 1 0 …..   0.2  0.1]

• Outputs
• same speech features (vocoder parameters) used in HMM synthesis

• Form input/output pairs, one pair per frame (e.g., every 5 msec)
• how to get the alignment?
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Training a neural network: pairs of input/output vectors

[0 0 1 0 0 1 0 1 1 0 … 0.2  0.0]        [0.12 2.33 2.01 0.32 6.33 … ] 
[0 0 1 0 0 1 0 1 1 0 … 0.2  0.1]        [0.43 2.11 1.99 0.39 4.83 … ] 
… 
[0 0 1 0 0 1 0 1 1 0 … 0.2  1.0]        [1.11 2.01 1.87 0.36 2.14 … ] 
[0 0 1 0 0 1 0 1 1 0 … 0.4  0.0]        [1.52 1.82 1.89 0.34 1.04 … ] 
[0 0 1 0 0 1 0 1 1 0 … 0.4  0.5]        [1.79 1.74 2.21 0.33 0.65 … ] 
[0 0 1 0 0 1 0 1 1 0 … 0.4  1.0]        [1.65 1.58 2.68 0.31 0.73 … ] 
… 
[0 0 1 0 0 1 0 1 1 0 … 1.0  1.0]        [1.55 1.03 3.44 0.30 1.07 … ] 
[0 0 0 1 1 1 0 1 0 0 … 0.2  0.0]        [1.92 0.99 3.89 0.29 1.45 … ] 
[0 0 0 1 1 1 0 1 0 0 … 0.2  0.2]        [2.38 1.13 4.02 0.28 1.98 … ] 
[0 0 0 1 1 1 0 1 0 0 … 0.2  0.4]        [2.65 1.98 3.94 0.29 2.16 … ] 
…
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Training a neural network: back-propagation

[ 0.12 2.33 ]

[ 0    0    1 ]

input output target

[           ]
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Orientation

• Simple neural networks
• feed-forward architecture

• Constructing the input features
• converting categorical features to binary
• mapping linguistic timescale to fixed 

frame rate using the duration model
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Orientation
a straightforward replacement for 
the regression tree

Early work borrowed a duration 
model from an HMM system. Later 
work uses a better duration model.

In both cases, the ‘clock’ is a 
separate mechanism to the main 
regression (acoustic) model.

• Simple neural networks
• feed-forward architecture

• Constructing the input features
• converting categorical features to binary
• mapping linguistic timescale to fixed 

frame rate using the duration model
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What next?

• Even better regression models? 

• different Neural Network architectures
• recurrent, sequence-to-sequence, etc

• Avoiding vocoding 

• generating a spectrogram
• direct waveform generation
• other possibilities
• Avoiding the front end 

• ‘raw text’ input
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Alternative and/or advanced Neural Network techniques

• network architectures
• avoiding vocoding
• avoiding the front end
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© Copyright Simon King, University of Edinburgh, 2017. Personal use only. Not for re-use or redistribution.



Statistical 
model

linguistic 
specification

The classic three-stage pipeline of 
statistical parametric speech synthesis

text waveform

"the cat sat"

speech features

Regression
feature 

extraction
feature 

extraction
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Alternative and/or advanced Neural Network techniques

• network architectures
• avoiding vocoding
• avoiding the front end
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Feed-forward

• Conceptually straightforward
• For each input frame
• perform regression to 

corresponding output features
• To provide wider input context, 

could simply stack several frames 
together
• although, remember that the 

linguistic features already span 
several timescales
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Recurrent

• Pass some of the outputs (or hidden 
layer activations) forwards in time, 
typically to the next time step

• A kind of memory

• Provides “infinite” left context

• Could also pass information 
backwards in time

t-1 t t+1
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Recurrent

t-1

t

t+1
• Simple recurrence is equivalent to a 

very deep network

• To train this network, we have to 
backpropagate the derivative of the 
the errors (the gradient) through all 
of the layers
• “backpropagation through time”

• Suffers from the “vanishing 
gradient” problem, for long 
sequences
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Long short-term memory (a 
type of recurrence)

• Solves the vanishing gradient 
problem by using “gates” to control 
the flow of information

• Conceptually
• Learns when to remember
• Remembers information ‘perfectly’ 

for some number of time steps
• Learns when to forget
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• Solves the vanishing gradient 
problem by using “gates” to control 
the flow of information

• Conceptually
• Learns when to remember
• Remembers for several time steps
• Learns when to forget

20/07/2017, 09)50

Page 1 of 1https://upload.wikimedia.org/wikipedia/commons/5/53/Peephole_Long_Short-Term_Memory.svg

Long short-term memory (a 
type of recurrence)

Figure from Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. 
“Speech recognition with deep recurrent neural networks”. In Acoustics, 

Speech and Signal Processing (ICASSP), 2013 IEEE International 
Conference on, pages 6645–6649. IEEE, 2013, redrawn as SVG by Eddie 

Antonio Santos 
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Orientation

• Feed-forward architecture
• no memory
• “Simple” recurrent neural networks
• vanishing gradient problem
• LSTM unit solves vanishing gradient 

problem
• But 

• inputs and outputs at same frame rate
• need an external ‘clock’ or alignment 

mechanism to ‘upsample’ the inputs
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Sequence-to-sequence

• Next step is to integrate the alignment mechanism into the network itself
• Now, length of input sequence may be different to length of output sequence

• For example
• input: sequence of context-dependent phones
• output: acoustic frames (for the vocoder)

• Conceptually
• read in the entire input sequence; memorise it using a fixed-length representation 

• given that representation, write the output sequence

© Copyright Simon King, University of Edinburgh, 2017. Personal use only. Not for re-use or redistribution.



Sequence-to-sequence (just conceptually)

• The encoder

• A recurrent network that “reads” the 
entire input sequence and 
“summarises” or “memorises” it using 
a fixed-length representation

i-1 i i+1
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Sequence-to-sequence (just conceptually)

• The decoder

• A recurrent network that takes that 
fixed-length representation as its 
initial state, then generates the entire 
output sequence

t-1 t t+1
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Alignment in sequence-to-sequence models: adding “attention”

• Basic model, as presented, has no alignment between input and output
• Get better performance by adding “attention” to the input sequence, in the decoder

See also Dzmitry Bahdanau, Kyunghyun Cho, Yoshua Bengio. “Neural Machine Translation by Jointly Learning to Align and Translate”. In Proc ICLR 2015
© Copyright Simon King, University of Edinburgh, 2017. Personal use only. Not for re-use or redistribution.



Alignment in sequence-to-sequence models: adding “attention”

output sequence
(speech features)

input sequence
(linguistic specification)
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Alignment in sequence-to-sequence models: adding “attention”

encoder

decoder
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Alignment in sequence-to-sequence models: ASR-style acoustic features

• Trying to do ASR with typical TTS vocoder features does not work very well

• J. Dines, J. Yamagishi and S. King, "Measuring the Gap Between HMM-Based ASR and 
TTS," in IEEE Journal of Selected Topics in Signal Processing, vol. 4, no. 6, pp. 1046-1058, 
Dec. 2010.    doi: 10.1109/JSTSP.2010.2079315

• So, we would expect to get better performance by using ASR-style acoustic features (just 
for the alignment part of the model)
• e.g. Mel-cepstrum or log Mel filterbank

• This is exactly what people are finding (e.g., the Tacotron)
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Alternative and/or advanced Neural Network techniques

• network architectures
• avoiding vocoding
• avoiding the front end
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Why exactly were we using a vocoder anyway?

• Separate source and filter
• Filter can be very compactly parameterised (e.g., Mel cepstrum)
• For waveform reconstruction, we do not need to provide phase

• The periodic source signal (e.g., pulse train) has phase structure
• Make some simplifying assumption about the filter’s phase
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Predict spectrum: magnitude only

• e.g., “Tacotron" (Wang & 13 other authors, Interspeech 2017)

• Generate a spectrogram (i.e., sequence of magnitude spectra)

• Do not predict phase

• Therefore, to create a waveform, phase has to be “recovered”
• e.g., Griffin-Lim algorithm, or one of several variants on that

• Post-processing is required to reduce highly-audible phase-related artefacts in the 
waveform inferred using Griffin-Lim

© Copyright Simon King, University of Edinburgh, 2017. Personal use only. Not for re-use or redistribution.



Predict spectrum: magnitude and phase

to appear in Proc Interspeech 2017
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Waveform 
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Wavenet

• “Researchers usually avoid modelling raw audio because it ticks so quickly: typically 16,000 
samples per second or more, with important structure at many time-scales.”

• No, that’s not the main reason that most approaches do not deal directly with 
sampled (digital) speech waveforms.

• “Building a completely autoregressive model, in which the prediction for every one of those 
samples is influenced by all previous ones (in statistics-speak, each predictive distribution is 
conditioned on all previous observations), is clearly a challenging task.”

• Autoregressive models with a fixed order are widespread, and have been in use since 
the 1960s : linear predictive coding (LPC).

Quotes are from https://deepmind.com/blog/wavenet-generative-model-raw-audio/
© Copyright Simon King, University of Edinburgh, 2017. Personal use only. Not for re-use or redistribution.



Wavenet

• “ WaveNet…has none of the [common] assumptions [about speech signals]. It incorporates 
almost no prior knowledge about audio signals”

• Is it such a great idea to disregard almost everything we (think we) know about 
speech signals? 

• Discuss (later) !

Quotes are from arXiv:1609.03499 (not peer reviewed)
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Quantisation (which introduces quantisation noise)

time
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Alternative and/or advanced Neural Network techniques

• network architectures
• avoiding vocoding
• avoiding the front end
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Raw text input ?

• e.g., “Tacotron" (Wang & 13 other authors, Interspeech 2017)

• “Modern text-to-speech (TTS) pipelines are complex (Taylor, 2009)”

• True - but the Tacotron is hardly “simple” or “easy to build”

• “[the front-end] components are based on extensive domain expertise”

• Definitely a problem for low-resource languages, but do we really want to disregard all 
available domain expertise in high-resource languages?

Quotes are from arXiv:1703.10135v2 
(presumed to be pre-submission version of Interspeech paper)© Copyright Simon King, University of Edinburgh, 2017. Personal use only. Not for re-use or redistribution.



Raw text input ?

• e.g., “Tacotron" (Wang & 13 other authors, Interspeech 2017)

• “errors from each component may compound”

• Agreed

• “The complexity … leads to substantial engineering efforts when building a new system”

• How many people did it take to build the Tacotron !?

Quotes are from arXiv:1703.10135v2 
(presumed to be pre-submission version of Interspeech paper)© Copyright Simon King, University of Edinburgh, 2017. Personal use only. Not for re-use or redistribution.
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What next?

• Expect many, many papers on DNN 
synthesis at Interspeech

• Especially
• “end-to-end”
• “avoiding vocoding”

• Front-end issues probably harder to 
address with Deep Learning
• but isolated parts of the problem 

certainly can be (e.g., LTS / G2P)
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