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Abstract

We present Deep Voice, a production-quality
text-to-speech system constructed entirely from
deep neural networks. Deep Voice lays the
groundwork for truly end-to-end neural speech
synthesis. The system comprises five ma-
jor building blocks: a segmentation model for
locating phoneme boundaries, a grapheme-to-
phoneme conversion model, a phoneme duration
prediction model, a fundamental frequency pre-
diction model, and an audio synthesis model.
For the segmentation model, we propose a novel
way of performing phoneme boundary detection
with deep neural networks using connectionist
temporal classification (CTC) loss. For the au-
dio synthesis model, we implement a variant
of WaveNet that requires fewer parameters and
trains faster than the original. By using a neu-
ral network for each component, our system is
simpler and more flexible than traditional text-to-
speech systems, where each component requires
laborious feature engineering and extensive do-
main expertise. Finally, we show that inference
with our system can be performed faster than real
time and describe optimized WaveNet inference
kernels on both CPU and GPU that achieve up to
400x speedups over existing implementations.

1. Introduction

Synthesizing artificial human speech from text, commonly
known as text-to-speech (TTS), is an essential component
in many applications such as speech-enabled devices, navi-
gation systems, and accessibility for the visually-impaired.

*Listed alphabetically 1Baidu Silicon Valley Artificial Intel-
ligence Lab, 1195 Bordeaux Dr. Sunnyvale, CA 94089 2Baidu
Corporation, No. 10 Xibeiwang East Road, Beijing 100193,
China. Correspondence to: Andrew Gibiansky <gibianskyan-
drew@baidu.com>.

Proceedings of the 34 th International Conference on Machine
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by the author(s).

Fundamentally, it allows human-technology interaction
without requiring visual interfaces. Modern TTS systems
are based on complex, multi-stage processing pipelines,
each of which may rely on hand-engineered features and
heuristics. Due to this complexity, developing new TTS
systems can be very labor intensive and difficult.

Deep Voice is inspired by traditional text-to-speech
pipelines and adopts the same structure, while replacing all
components with neural networks and using simpler fea-
tures: first we convert text to phoneme and then use an
audio synthesis model to convert linguistic features into
speech (Taylor, 2009). Unlike prior work (which uses
hand-engineered features such as spectral envelope, spec-
tral parameters, aperiodic parameters, etc.), our only fea-
tures are phonemes with stress annotations, phoneme du-
rations, and fundamental frequency (F0). This choice of
features makes our system more readily applicable to new
datasets, voices, and domains without any manual data an-
notation or additional feature engineering. We demonstrate
this claim by retraining our entire pipeline without any hy-
perparameter changes on an entirely new dataset that con-
tains solely audio and unaligned textual transcriptions and
generating relatively high quality speech. In a conventional
TTS system this adaptation requires days to weeks of tun-
ing, whereas Deep Voice allows you to do it in only a few
hours of manual effort and the time it takes models to train.

Real-time inference is a requirement for a production-
quality TTS system; without it, the system is unusable for
most applications of TTS. Prior work has demonstrated that
a WaveNet (van den Oord et al., 2016) can generate close to
human-level speech. However, WaveNet inference poses a
daunting computational problem due to the high-frequency,
autoregressive nature of the model, and it has been hitherto
unknown whether such models can be used in a produc-
tion system. We answer this question in the affirmative and
demonstrate efficient, faster-than-real-time WaveNet infer-
ence kernels that produce high-quality 16 kHz audio and
realize a 400X speedup over previous WaveNet inference
implementations (Paine et al., 2016).
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Abstract

A text-to-speech synthesis system typically consists of multi-
ple stages, such as a text analysis frontend, an acoustic model
and an audio synthesis module. Building these components of-
ten requires extensive domain expertise and may contain brittle
design choices. In this paper, we present Tacotron, an end-to-
end generative text-to-speech model that synthesizes speech di-
rectly from characters. Given <text, audio> pairs, the model
can be trained completely from scratch with random initializa-
tion. We present several key techniques to make the sequence-
to-sequence framework perform well for this challenging task.
Tacotron achieves a 3.82 subjective 5-scale mean opinion score
on US English, outperforming a production parametric system
in terms of naturalness. In addition, since Tacotron generates
speech at the frame level, it’s substantially faster than sample-
level autoregressive methods.
Index Terms: text-to-speech synthesis, sequence-to-sequence,
end-to-end model.

1. Introduction

Modern text-to-speech (TTS) pipelines are complex [1]. For
example, it is common for statistical parametric TTS to have
a text frontend extracting various linguistic features, a dura-
tion model, an acoustic feature prediction model and a complex
signal-processing-based vocoder [2, 3]. These components are
based on extensive domain expertise and are laborious to de-
sign. They are also trained independently, so errors from each
component may compound. The complexity of modern TTS de-
signs thus leads to substantial engineering efforts when building
a new system.

There are thus many advantages of an integrated end-to-
end TTS system that can be trained on <text, audio> pairs
with minimal human annotation. First, such a system alleviates
the need for laborious feature engineering, which may involve
heuristics and brittle design choices. Second, it more easily al-
lows for rich conditioning on various attributes, such as speaker
or language, or high-level features like sentiment. This is be-
cause conditioning can occur at the very beginning of the model
rather than only on certain components. Similarly, adaptation to
new data might also be easier. Finally, a single model is likely
to be more robust than a multi-stage model where each com-
ponent’s errors can compound. These advantages imply that an
end-to-end model could allow us to train on huge amounts of
rich, expressive yet often noisy data found in the real world.

TTS is a large-scale inverse problem: a highly compressed
source (text) is “decompressed” into audio. Since the same text
can correspond to different pronunciations or speaking styles,

⇤ These authors really like tacos.
† These authors would prefer sushi.

this is a particularly difficult learning task for an end-to-end
model: it must cope with large variations at the signal level
for a given input. Moreover, unlike end-to-end speech recog-
nition [4] or machine translation [5], TTS outputs are continu-
ous, and output sequences are usually much longer than those
of the input. These attributes cause prediction errors to accu-
mulate quickly. In this paper, we propose Tacotron, an end-to-
end generative TTS model based on the sequence-to-sequence
(seq2seq) [6] with attention paradigm [7]. Our model takes
characters as input and outputs raw spectrogram, using sev-
eral techniques to improve the capability of a vanilla seq2seq
model. Given <text, audio> pairs, Tacotron can be trained
completely from scratch with random initialization. It does not
require phoneme-level alignment, so it can easily scale to using
large amounts of acoustic data with transcripts. With a simple
waveform synthesis technique, Tacotron produces a 3.82 mean
opinion score (MOS) on an US English eval set, outperforming
a production parametric system in terms of naturalness1.

2. Related Work

WaveNet [9] is a powerful generative model of audio. It works
well for TTS, but is slow due to its sample-level autoregressive
nature. It also requires conditioning on linguistic features from
an existing TTS frontend, and thus is not end-to-end: it only
replaces the vocoder and acoustic model. Another recently-
developed neural model is DeepVoice [10], which replaces ev-
ery component in a typical TTS pipeline by a corresponding
neural network. However, each component is independently
trained, and it’s nontrivial to change the system to train in an
end-to-end fashion.

To our knowledge, [11] is the earliest work touching end-
to-end TTS using seq2seq with attention. However, it requires
a pre-trained hidden Markov model (HMM) aligner to help the
seq2seq model learn the alignment. It’s hard to tell how much
alignment is learned by the seq2seq per se. Second, a few tricks
are used to get the model trained, which the authors note hurts
prosody. Third, it predicts vocoder parameters hence needs a
vocoder. Furthermore, the model is trained on phoneme inputs
and the experimental results seem to be somewhat limited.

Char2Wav [12] is an independently-developed end-to-end
model that can be trained on characters. However, Char2Wav
still predicts vocoder parameters before using a SampleRNN
neural vocoder [13], whereas Tacotron directly predicts raw
spectrogram. Also, their seq2seq and SampleRNN models need
to be separately pre-trained, but our model can be trained from
scratch. Finally, we made several key modifications to the
vanilla seq2seq paradigm. As shown later, a vanilla seq2seq
model does not work well for character-level inputs.

1Sound demos can be found at https://google.github.
io/tacotron
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ABSTRACT

We present Deep Voice 3, a fully-convolutional attention-based neural text-
to-speech (TTS) system. Deep Voice 3 matches state-of-the-art neural speech
synthesis systems in naturalness while training an order of magnitude faster.
We scale Deep Voice 3 to dataset sizes unprecedented for TTS, training on
more than eight hundred hours of audio from over two thousand speakers. In
addition, we identify common error modes of attention-based speech synthe-
sis networks, demonstrate how to mitigate them, and compare several differ-
ent waveform synthesis methods. We also describe how to scale inference to
ten million queries per day on a single GPU server.

1 INTRODUCTION

Text-to-speech (TTS) systems convert written language into human speech. TTS systems are used
in a variety of applications, such as human-technology interfaces, accessibility for the visually-
impaired, media and entertainment. Traditional TTS systems are based on complex multi-stage
hand-engineered pipelines (Taylor, 2009). Typically, these systems first transform text into a com-
pact audio representation, and then convert this representation into audio using an audio waveform
synthesis method called a vocoder.

Recent work on neural TTS has demonstrated impressive results, yielding pipelines with simpler
features, fewer components, and higher quality synthesized speech. There is not yet a consensus
on the optimal neural network architecture for TTS. However, sequence-to-sequence models (Wang
et al., 2017; Sotelo et al., 2017; Arık et al., 2017) have shown promising results.

In this paper, we propose a novel, fully-convolutional architecture for speech synthesis, scale it to
very large audio data sets, and address several real-world issues that arise when attempting to deploy
an attention-based TTS system. Specifically, we make the following contributions:

1. We propose a fully-convolutional character-to-spectrogram architecture, which enables fully
parallel computation and trains an order of magnitude faster than analogous architectures
using recurrent cells (e.g., Wang et al., 2017).

2. We show that our architecture trains quickly and scales to the LibriSpeech ASR dataset
(Panayotov et al., 2015), which consists of 820 hours of audio data from 2484 speakers.

3. We demonstrate that we can generate monotonic attention behavior, avoiding error modes
commonly affecting sequence-to-sequence models.

4. We compare the quality of several waveform synthesis methods, including WORLD (Morise
et al., 2016), Griffin-Lim (Griffin & Lim, 1984), and WaveNet (Oord et al., 2016).

⇤Authors listed in reverse alphabetical order.
†These authors contributed to this work while members of Baidu Research.
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ABSTRACT

This paper describes Tacotron 2, a neural network architecture for
speech synthesis directly from text. The system is composed of a
recurrent sequence-to-sequence feature prediction network that maps
character embeddings to mel-scale spectrograms, followed by a mod-
ified WaveNet model acting as a vocoder to synthesize time-domain
waveforms from those spectrograms. Our model achieves a mean
opinion score (MOS) of 4.53 comparable to a MOS of 4.58 for profes-
sionally recorded speech. To validate our design choices, we present
ablation studies of key components of our system and evaluate the im-
pact of using mel spectrograms as the conditioning input to WaveNet
instead of linguistic, duration, and F0 features. We further show that
using this compact acoustic intermediate representation allows for a
significant reduction in the size of the WaveNet architecture.

Index Terms— Tacotron 2, WaveNet, text-to-speech

1. INTRODUCTION

Generating natural speech from text (text-to-speech synthesis, TTS)
remains a challenging task despite decades of investigation [1]. Over
time, different techniques have dominated the field. Concatenative
synthesis with unit selection, the process of stitching small units
of pre-recorded waveforms together [2, 3] was the state-of-the-art
for many years. Statistical parametric speech synthesis [4, 5, 6, 7],
which directly generates smooth trajectories of speech features to be
synthesized by a vocoder, followed, solving many of the issues that
concatenative synthesis had with boundary artifacts. However, the
audio produced by these systems often sounds muffled and unnatural
compared to human speech.

WaveNet [8], a generative model of time domain waveforms, pro-
duces audio quality that begins to rival that of real human speech and
is already used in some complete TTS systems [9, 10, 11]. The inputs
to WaveNet (linguistic features, predicted log fundamental frequency
(F0), and phoneme durations), however, require significant domain
expertise to produce, involving elaborate text-analysis systems as
well as a robust lexicon (pronunciation guide).

Tacotron [12], a sequence-to-sequence architecture [13] for pro-
ducing magnitude spectrograms from a sequence of characters, sim-
plifies the traditional speech synthesis pipeline by replacing the pro-
duction of these linguistic and acoustic features with a single neural
network trained from data alone. To vocode the resulting magnitude
spectrograms, Tacotron uses the Griffin-Lim algorithm [14] for phase
estimation, followed by an inverse short-time Fourier transform. As

⇤Work done while at Google.

the authors note, this was simply a placeholder for future neural
vocoder approaches, as Griffin-Lim produces characteristic artifacts
and lower audio quality than approaches like WaveNet.

In this paper, we describe a unified, entirely neural approach to
speech synthesis that combines the best of the previous approaches:
a sequence-to-sequence Tacotron-style model [12] that generates mel
spectrograms, followed by a modified WaveNet vocoder [10, 15].
Trained directly on normalized character sequences and correspond-
ing speech waveforms, our model learns to synthesize natural sound-
ing speech that is difficult to distinguish from real human speech.

Deep Voice 3 [11] describes a similar approach. However, unlike
our system, its naturalness has not been shown to rival that of human
speech. Char2Wav [16] describes yet another similar approach to
end-to-end TTS using a neural vocoder. However, they use different
intermediate representations (traditional vocoder features) and their
model architecture differs significantly.

2. MODEL ARCHITECTURE

Our proposed system consists of two components, shown in Figure 1:
(1) a recurrent sequence-to-sequence feature prediction network with
attention which predicts a sequence of mel spectrogram frames from
an input character sequence, and (2) a modified version of WaveNet
which generates time-domain waveform samples conditioned on the
predicted mel spectrogram frames.

2.1. Intermediate Feature Representation

In this work we choose a low-level acoustic representation: mel-
frequency spectrograms, to bridge the two components. Using a
representation that is easily computed from time-domain waveforms
allows us to train the two components separately. This representation
is also smoother than waveform samples and is easier to train using a
squared error loss because it is invariant to phase within each frame.

A mel-frequency spectrogram is related to the linear-frequency
spectrogram, i.e., the short-time Fourier transform (STFT) magnitude.
It is obtained by applying a nonlinear transform to the frequency
axis of the STFT, inspired by measured responses from the human
auditory system, and summarizes the frequency content with fewer
dimensions. Using such an auditory frequency scale has the effect of
emphasizing details in lower frequencies, which are critical to speech
intelligibility, while de-emphasizing high frequency details, which
are dominated by fricatives and other noise bursts and generally do
not need to be modeled with high fidelity. Because of these properties,
features derived from the mel scale have been used as an underlying
representation for speech recognition for many decades [17].

1
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• may be more difficult
• other techniques required (out of scope here)
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Tokenize & Normalize

In 2011, I spent £100 at IKEA on 100 DVD holders.

NYER MONEY ASWD NUM LSEQ
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Tokenize & Normalize

• Step 3: a set of specialised modules to process NSWs of a each type

2011 ꔄ NYER  ꔄ twenty eleven
£100 ꔄ MONEY ꔄ one hundred pounds
IKEA ꔄ ASWD  ꔄ apply letter-to-sound
100  ꔄ NUM   ꔄ one hundred
DVD  ꔄ LSEQ  ꔄ D. V. D. ꔄ dee vee dee
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Figure 19: How to estimate aperiodicity index..

Finally the ap values are calibrated based on the calibration table that was prepared based on a series of simulations
using synthetic vowels.

imagesc([0 794],[0 fs/2],10.0.^(ap/20));axis(’xy’)

The following figure is the extracted aperiodicity index using the formula above. The speech is a Japanese vowel
sequence /aiueo/. This index is represented in dB. The value 0 dB indicates that the excitation is totally random
because it represents contribution from energy of random component. When the index is set lower than -60 dB, the
excitation is effectively purely periodic.
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Figure 20: Extracted aperiodicity index using the formula above. The speech is a Japanese vowel sequence /aiueo/.

The following Matlab command line session record shows how to modify the apriodicity index to control excitation
source.
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Figure 21: STRAIGHT spectrogram for the same sample. The speech is a Japanese vowel sequence /aiueo/.

>> [x,fs,nbs,ops]=wavread(’vaiueo2d.wav’);
>> [f0raw,ap]=exstraightsource(x,fs);
>> n3sgram=exstraightspec(x(:,1),f0raw,fs);
>> syOrg = exstraightsynth(f0raw,n3sgram,ap,fs);
>> syApr = exstraightsynth(f0raw,n3sgram,ap*0,fs);
>> syPpr = exstraightsynth(f0raw,n3sgram,ap*0-60,fs);
>> [syPprD0,prmS] = exstraightsynth(f0raw,n3sgram,ap*0-60,fs);
>> prmS

prmS =

spectralUpdateInterval: 1
groupDelayStandardDeviation: 0.5000
groupDelaySpatialBandWidth: 70

groupDelayRandomizeCornerFrequency: 4000
ratioToFundamentalPeriod: 0.2000

ratioModeIndicator: 0
levelNormalizationIndicator: 1

headRoomToClip: 22
powerCheckSegmentLength: 15

timeAxisMappingTable: 1
fundamentalFrequencyMappingTable: 1

frequencyAxisMappingTable: 1
timeAxisStretchingFactor: 1

DisplayPlots: 0
lowestF0: 50

statusReport: ’ok’

>> prmS.groupDelayStandardDeviation = 0.001;
>> [syPprD0,prmS] = exstraightsynth(f0raw,n3sgram,ap*0-60,fs,prmS);
>> wavwrite(syOrg/32768,fs,16,’synAiueoOrg.wav’);
>> wavwrite(syApr/32768,fs,16,’synAiueoApr.wav’);
>> wavwrite(syPpr/32768,fs,16,’synAiueoPpr.wav’);
>> wavwrite(syPprD0/32768,fs,16,’synAiueoPprD0.wav’);

Examples synthesized using these commands are linked below. (Links are accessible only in the HTML version of
this document.)
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A Unified Trajectory Tiling Approach to
High Quality Speech Rendering

Yao Qian, Senior Member, IEEE, Frank K. Soong, Fellow, IEEE, and Zhi-Jie Yan, Member, IEEE

Abstract—It is technically challenging to make a machine talk
as naturally as a human so as to facilitate “frictionless” interac-
tions between machine and human. We propose a trajectory tiling-
based approach to high-quality speech rendering, where speech pa-
rameter trajectories, extracted from natural, processed, or synthe-
sized speech, are used to guide the search for the best sequence of
waveform “tiles” stored in a pre-recorded speech database.We test
the proposed unified algorithm in both Text-To-Speech (TTS) syn-
thesis and cross-lingual voice transformation applications. Exper-
imental results show that the proposed trajectory tiling approach
can render speechwhich is both natural and highly intelligible. The
perceived high quality of rendered speech is also confirmed in both
objective and subjective evaluations.

Index Terms—Cross-lingual, speech synthesis, trajectory tiling,
voice transformation.

I. INTRODUCTION

S PEECH is one of the most natural and intuitive ways for

a human to interact with a computer or another human.

However, it is technically challenging for a machine to gen-

erate speech which can make the human-machine interaction

“frictionless.” Here speech rendering is meant to be more

general than a conventionally defined Text-To-Speech (TTS)
system. The input to such a speech rendering system can be

a piece of unrestricted text (like in TTS), speech synthesis

markup language (SSML), speech captured in an ambient

setup, e.g., by a distant microphone or in a noisy environ-

ment. The corresponding speech technologies consist of TTS,

voice transformation from one speaker to another speaker, or

translating speech from one language to another language but

keeping the voice characteristics of the original input (e.g.

EMIME project) [1], or speech enhancement for improving

the clarity/intelligibility of input noisy or reverberant speech

for human-human communication. In TTS, a hybrid approach

which combines the parametric model based HMM and wave-

form concatenation-based unit selection has significantly
improved the synthesized voice quality of synthesized speech

in the past few years [2]–[9]. While HMMs can yield rather
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smooth and highly intelligible synthesized speech, it has still

been perceived as a voice with some traditional vocoder flavor
[10]. On the other hand, the waveform concatenation-based

unit selection TTS can yield fairly natural sounding speech but

occasionally it may still produce some undesirable concate-

nation glitches. The hybrid approaches, which use HMM to

guide the unit selection process to minimize the spectral, pitch

and duration mismatch and concatenation distortion, tend to

preserve the advantages of both approaches [7]. A probabilistic

criterion of likelihood [2], Kullback-Leibler divergence (KLD)

between target and candidate phone-based HMMs [3], [44]

and the generated parameter trajectories from HMMs [4]–[6]

are used to select the potential waveform unit candidates. The

units for concatenation can be label-free, 5 ms speech frames

HMM state, half-phone, phone, diphone and other non-uniform

units. An in-depth review is given by Zen, et al. [7]. The unit
selection oriented approach can also improve the quality of

HMM-based synthesis by employing stable regions of natural

units [8] or using the optimal rich context model sequences

[9] to alleviate the sound muffling effects caused by overly
smoothed HMM parameters due to the “averaging” process in

HMM training [11].

To perform cross-lingual voice transformation, a straight-for-

ward approach is to firstly establish a phonetic mapping be-
tween source and target languages according to the Interna-

tional Phonetic Alphabets (IPAs) or acoustic mapping with a

statistical measure like KLD, then to establish voice transforma-

tion as the conventional, intra-lingual speaker adaptation via the

techniques like maximum a posterior (MAP), maximum like-

lihood linear regression (MLLR), constrained maximum like-

lihood linear regression (CMLLR), speaker adaptive training

(SAT) and constrained structural maximum a posteriori linear

regression (CSMAPLR) [12]. To transform voice between two

fairly different languages where their corresponding phoneme

set do not overlap well, shorter units of sub-phones or HMM

states are preferred, and a mapping between the states of two

HMMs of the source and target languages can be established

[13]–[18].

In this paper, we propose a trajectory tiling based approach

to high quality speech rendering, which uses natural, pro-

cessed, or synthesized trajectories to guide the search of the

“best” sequence of concatenated waveform segments. The

approach, when applied to TTS, has been shown to render

natural sounding speech without sacrificing the high intelligi-
bility, which has been shown to be well preserved in intrinsic

HMM-based TTS [4]. We also extended the trajectory tiling

approach to cross-lingual voice transformation [19] for ren-

dering target speaker’s training data in a language that he

1558-7916/$31.00 © 2012 IEEE

Copyright Simon King, University of Edinburgh, 2019. Personal use only. Not for re-use or redistribution.



Figure 1 from Y. Qian, F. K. Soong and Z. J. Yan “A Unified Trajectory Tiling Approach to High Quality Speech Rendering” IEEE Trans. Audio, 
Speech, and Language Proc. 21 (2), pp. 280-290, 2013. DOI:10.1109/TASL.2012.2221460

Waveform 
generator

Copyright Simon King, University of Edinburgh, 2019. Personal use only. Not for re-use or redistribution.



1990           2000          2010        2020

1st generation 
unit selection

2nd generation 
unit selection

statistical parametric 
speech synthesis

neural speech 
synthesis

Waveform 
generator

Copyright Simon King, University of Edinburgh, 2019. Personal use only. Not for re-use or redistribution.



Outline
• Tutorial
• Text processing
• Regression
• Waveform generation

• Current research
• Waveform generation
• Regression
• Text processing

• What next?
Copyright Simon King, University of Edinburgh, 2019. Personal use only. Not for re-use or redistribution.



Fourier transform, then 
ignore phase

Need to recover the phase, 
given the magnitude

Copyright Simon King, University of Edinburgh, 2019. Personal use only. Not for re-use or redistribution.



DOI: 10.21437/Interspeech.2019-1424 — Amazon’s neural vocoder

Towards achieving robust universal neural vocoding

Jaime Lorenzo-Trueba
1
, Thomas Drugman

1
, Javier Latorre

1⇤
, Thomas Merritt

1
, Bartosz Putrycz

1
,

Roberto Barra-Chicote
1
, Alexis Moinet

1
, Vatsal Aggarwal

1

1Amazon.com, Cambridge, United Kingdom
{truebaj, drugman, jlatorre, thommer, bartosz, rchicote, amoinet, agvatsal}@amazon.com

Abstract
This paper explores the potential universality of neural
vocoders. We train a WaveRNN-based vocoder on 74 speak-
ers coming from 17 languages. This vocoder is shown to be
capable of generating speech of consistently good quality (98%
relative mean MUSHRA when compared to natural speech) re-
gardless of whether the input spectrogram comes from a speaker
or style seen during training or from an out-of-domain scenario
when the recording conditions are studio-quality. When the
recordings show significant changes in quality, or when mov-
ing towards non-speech vocalizations or singing, the vocoder
still significantly outperforms speaker-dependent vocoders, but
operates at a lower average relative MUSHRA of 75%. These
results are shown to be consistent across languages, regardless
of them being seen during training (e.g. English or Japanese) or
unseen (e.g. Wolof, Swahili, Ahmaric).
Index Terms: Neural Vocoder, Text-to-speech, Scalability, Sta-
tistical Waveform Speech Synthesis

1. Introduction
Statistical parametric speech synthesis (SPSS) has seen a
paradigm change recently, mainly thanks to the introduction of
a number of autoregressive models [1, 2, 3, 4, 5, 6], turning
into what can be termed statistical speech waveform synthe-
sis (SSWS) [5]. This change has closed the gap in naturalness
between statistical text to speech (TTS) and natural recordings
whilst maintaining the flexibility of statistical models.

In the case of traditional vocoding [7, 8, 9, 10], approaches
commonly relied on simplified models (e.g. source-filter model
[11]) that were defined by acoustic features such as voicing de-
cisions, the fundamental frequency (F0), mel-generalized cep-
strum (MGC) or band aperiodicities. The quality of those tra-
ditional vocoders was limited by the assumptions made by the
underlying model and the difficulty to accurately estimate the
features from the speech signal [12, 13].

Traditional waveform generation algorithms, while capable
of generating speech from their spectral representation such as
Griffin-Lim [14], are not capable of generating speech with ac-
ceptable naturalness. This is due to the lack of phase informa-
tion in the short-time Fourier transform (STFT).

Neural vocoders are a data-driven method where neural net-
works learn to reconstruct an audio waveform from acoustic
features [1, 2, 15, 6]. They allow us to overcome the short-
comings of traditional methods [16] at a very significant cost
in computation power and data requirements. However, due
to sparsity (it is unlikely that we will ever be able to cover all
possible human-generated sounds in the training data) the neu-
ral vocoder models are prone to over-fit to the training speaker

*: Work performed while at Amazon.com, currently associated with
Apple Inc., UK.

characteristics and have poor generalization capabilities [17].
Several recent studies attempted to improve the adaptation ca-
pabilities of such models [18, 19], commonly using explicit
speaker information (either as a onehot encoding or some other
form of speaker embedding) [20]. There are however reports in
literature of initial successes training neural vocoders without
providing explicit speaker information [21, 22], however the
investigation either did not provide significant improvements
in terms of robustness or did not cover the details on how the
model handles changes in domain or unseen speakers.

This contributions of this paper are: 1) we demonstrate
that a speaker encoding is not required to train a high-quality
Speaker-Independent (SI) WaveRNN-based [2] neural vocoder;
2) our SI neural vocoder can effectively synthesise speakers
that were unseen during training, which is not possible with
vocoders trained with explicit speaker information or with a
speaker-dependent approach; 3) we study the robustness and
potential universality of our SI neural vocoder on a large diver-
sity of unseen conditions (e.g. language, phonation, noise or
speaking style).

2. System description
Even though CNN-based systems have been thoroughly re-
searched and real-time implementations have been proposed
[4, 23], it is known that they are prone to instabilities [24] which
occasionally affect perceptual quality. RNN-based systems, on
the other hand, can be expected to provide a more stable output
due to the persistence of the hidden state, at least when vocod-
ing, in which context is not critical beyond the closest spectro-
grams (a known characteristic of RNNs).

The structure of the neural vocoder system used in this
paper (heavily inspired by WaveRNN [2], only with minor
changes in the conditioning network) is described in Figure 1.
We refer to this system as RNN MS. The autoregressive side
consists of a single forward GRU (hidden size of 896) and a
pair of affine layers followed by a softmax layer with 1024 out-
puts, predicting the 10-bit mu-law samples for a 24 kHz sam-
pling rate. The conditioning network consists of a pair of bi-
directional gated recurrent units (GRUs) with a hidden size of
128. The mel-spectrograms used for conditioning the network
were extracted using Librosa library [25], with 80 coefficients
and frequencies ranging from 50 Hz to 12 kHz.

We trained system RNN MS in 4 different configurations,
whose details are shown in Table 1. First three SD systems
were trained on American English speakers, two female (F1 &
F2) and 1 male (M1) from our internal corpora.

We also trained 3 multi-speaker vocoders, one with all the
training data from the 3 SD voices (3Spk), another one with
7 American English speakers (7Spk) comprising 4 females, 2
males and 1 child but with restricted amounts of training data
per speaker (5000 utterances). This 7Spk neural vocoder aims

Copyright © 2019 ISCA
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2 audio samples from an open-source implementation of Amazon’s neural vocoder: 
https://bshall.github.io/UniversalVocoding/

Figure 1: Block diagram of system RNN MS

Table 1: Summary of the training data of the different RNN-

based vocoders.

Vocoder Speakers Utterances Language
F1 (SD) 1 22000 US English
F2 (SD) 1 15000 US English
M1 (SD) 1 15000 US English

3spk 3 52000 US English
7spk 7 35000 US English
Univ 74 149134 Multiple (17)

to check whether variability or data (i.e. 3Spk) are more impor-
tant for robustness in general. Finally we trained what is intro-
duced as our universal neural vocoder with 74 different voices,
22 males and 52 females, extracted from 17 languages, with
approx. 2000 utterances per speaker. This neural vocoder was
designed with the expectation of being generalizable to any in-
coming speaker regardless of whether it was seen during train-
ing or not.

3. Experimental protocol
To properly characterize the generalization capabilities of the
different vocoders in terms of naturalness we considered a num-
ber of scenarios, but always considering oracle spectrograms
directly extracted from recordings. First of all a topline sce-
nario in which we generated speech from speakers present in
the training data of all the vocoders, but with utterances not
seen during training (section 4.1). Then, we also generated
speech in scenarios partially out-of-domain from the training
data: a mixture of male and female neutral speakers extracted
from VCTK [26] for English or from the NITech Japanese sam-
ples database [27]. We also considered audiobook speech ex-
tracted from Blizzard2016 development set [28], which was out
of domain in terms of speaker, speaking style but as in all pre-
vious cases, recorded with studio-quality.

Finally we considered a number of out-of-domain scenar-
ios ranging from: i) different voice qualities [29], ii) irregular
recording conditions (i.e. background noise [30], reverberation
[31], or both [32]), iii) unseen languages (Ahmaric, Swahili
and Wolof) recorded in sub-optimal recording situations [33]
(i.e. significant reverberation, or poor quality audio), iv) singing
extracted from publicly available music corpora [34], v) non-
speech vocalizations [35]. The naturalness perceptual evalua-
tion was designed as a MUltiple Stimuli with Hidden Reference
and Anchor (MUSHRA) test [36], where the participants were
presented with the systems being evaluated side-by-side, asked

Figure 2: MUSHRA evaluation for the in-domain speakers.

to rate them in terms of naturalness from 0 (very poor) to 100
(completely natural), but modified so as not to force at least one
100 rated system. The test consisted of 200 randomly-selected
utterances, not included in the training data. Evaluations were
conducted with self-reported native American English speak-
ers using Amazon Mechanical Turk. 50 listeners participated in
each evaluation, balanced so that every utterance was rated by
5 listeners, each rating 20 screens.

Paired Student T-tests with Holm-Bonferroni correction
were used to validate the statistical significance of the dif-
ferences between systems, considering it validated when p �
value < 0.01. We use the ratio between the mean MUSHRA
score of a system and natural speech, we refer to this as ’relative
MUSHRA’, to illustrate the gap with the reference.

4. Results
4.1. In-domain speakers and style

This evaluation considered 2 female and 1 male speaker (the
ones used to train the 3Spk vocoder). The results in Figure
2 show that there is no significant difference in terms of eval-
uated naturalness when using any of the trained vocoders as
long as the speakers were part of the training data. This is a
strong result for the proposed universal vocoder, as it showed
no degradation when compared to the highly specific SD neu-
ral vocoder. Moreover, while there was a statistically significant
difference between vocoded and natural naturalness scores, it
was minimal (98.5% relative MUSHRA). It must be noted that
while there were inter-speaker differences, those did not affect
the rank-order, so results are presented as averages.

4.2. Robustness to unseen and out-of-domain speakers

In this evaluation, we considered out of domain speakers for
which some of the defining aspects were still part of the train-
ing corpus. That is, out of domain speakers but recorded in a
studio scenario, stretching it further by considering a children
audiobook scenario but from a professional voice talent [28].

In this scenario SD vocoders were not available. As such,
results are expectedly poor in comparison to some of the more
general neural vocoders. They were included as a bottom an-
chor and selected by looking for the one trained with the speaker
most similar to the target speaker. Similarity was measured by
training a number of multi-variate Gaussian Mixture Models
(GMMs) of the training data of the different vocoders and of the
target speaker, then obtaining the Kullback-Leibler divergence
(KLD) between the GMMs.
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Figure 1: Deep Voice 3 uses residual convolutional layers to encode text into per-timestep key and
value vectors for an attention-based decoder. The decoder uses these to predict the mel-scale log
magnitude spectrograms that correspond to the output audio. (Light blue dotted arrows depict the
autoregressive process during inference.) The hidden states of the decoder are then fed to a converter
network to predict the vocoder parameters for waveform synthesis. See Appendix A for more details.

The Deep Voice 3 architecture consists of three components:
• Encoder: A fully-convolutional encoder, which converts textual features to an internal

learned representation.
• Decoder: A fully-convolutional causal decoder, which decodes the learned representation

with a multi-hop convolutional attention mechanism into a low-dimensional audio repre-
sentation (mel-scale spectrograms) in an autoregressive manner.

• Converter: A fully-convolutional post-processing network, which predicts final vocoder
parameters (depending on the vocoder choice) from the decoder hidden states. Unlike the
decoder, the converter is non-causal and can thus depend on future context information.

The overall objective function to be optimized is a linear combination of the losses from the de-
coder (Section 3.5) and the converter (Section 3.7). We separate decoder and converter and apply
multi-task training, because it makes attention learning easier in practice. To be specific, the loss
for mel-spectrogram prediction guides training of the attention mechanism, because the attention is
trained with the gradients from mel-spectrogram prediction besides vocoder parameter prediction.

In multi-speaker scenario, trainable speaker embeddings as in Arık et al. (2017) are used across
encoder, decoder and converter. Next, we describe each of these components and the data prepro-
cessing in detail. Model hyperparameters are available in Table 4 within Appendix C.

3.1 TEXT PREPROCESSING

Text preprocessing is crucial for good performance. Feeding raw text (characters with spacing and
punctuation) yields acceptable performance on many utterances. However, some utterances may
have mispronunciations of rare words, or may yield skipped words and repeated words. We alleviate
these issues by normalizing the input text as follows:

1. We uppercase all characters in the input text.
2. We remove all intermediate punctuation marks.
3. We end every utterance with a period or question mark.
4. We replace spaces between words with special separator characters which indicate the du-

ration of pauses inserted by the speaker between words. We use four different word separa-
tors, indicating (i) slurred-together words, (ii) standard pronunciation and space characters,
(iii) a short pause between words, and (iv) a long pause between words. For example,
the sentence “Either way, you should shoot very slowly,” with a long pause after “way”
and a short pause after “shoot”, would be written as “Either way%you should shoot/very
slowly%.” with % representing a long pause and / representing a short pause for encoding
convenience. 2

2The pause durations can be obtained through either manual labeling or by estimated by a text-audio aligner
such as Gentle (Ochshorn & Hawkins, 2017). Our single-speaker dataset is labeled by hand and our multi-
speaker datasets are annotated using Gentle.

3
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Abstract

In this work, we propose “global style tokens”
(GSTs), a bank of embeddings that are jointly
trained within Tacotron, a state-of-the-art end-to-
end speech synthesis system. The embeddings
are trained with no explicit labels, yet learn to
model a large range of acoustic expressiveness.
GSTs lead to a rich set of significant results. The
soft interpretable “labels” they generate can be
used to control synthesis in novel ways, such as
varying speed and speaking style – independently
of the text content. They can also be used for
style transfer, replicating the speaking style of a
single audio clip across an entire long-form text
corpus. When trained on noisy, unlabeled found
data, GSTs learn to factorize noise and speaker
identity, providing a path towards highly scalable
but robust speech synthesis.

1. Introduction
The past few years have seen exciting developments in the
use of deep neural networks to synthesize natural-sounding
human speech (Zen et al., 2016; van den Oord et al., 2016;
Wang et al., 2017a; Arik et al., 2017; Taigman et al., 2017;
Shen et al., 2017). As text-to-speech (TTS) models have
rapidly improved, there is a growing opportunity for a num-
ber of applications, such as audiobook narration, news read-
ers, and conversational assistants. Neural models show the
potential to robustly synthesize expressive long-form speech,
and yet research in this area is still in its infancy.

To deliver true human-like speech, a TTS system must learn
to model prosody. Prosody is the confluence of a number
of phenomena in speech, such as paralinguistic informa-
tion, intonation, stress, and style. In this work we focus

1Google, Inc.. Correspondence to: Yuxuan Wang
<yxwang@google.com>.

Sound demos can be found at https://google.github.
io/tacotron/publications/global_style_
tokens

on style modeling, the goal of which is to provide models
the capability to choose a speaking style appropriate for
the given context. While difficult to define precisely, style
contains rich information, such as intention and emotion,
and influences the speaker’s choice of intonation and flow.
Proper stylistic rendering affects overall perception (see e.g.
“affective prosody” in (Taylor, 2009)), which is important
for applications such as audiobooks and newsreaders.

Style modeling presents several challenges. First, there is no
objective measure of “correct” prosodic style, making both
modeling and evaluation difficult. Acquiring annotations for
large datasets can be costly and similarly problematic, since
human raters often disagree. Second, the high dynamic
range in expressive voices is difficult to model. Many TTS
models, including recent end-to-end systems, only learn an
averaged prosodic distribution over their input data, generat-
ing less expressive speech especially for long-form phrases.
Furthermore, they often lack the ability to control the ex-
pression with which speech is synthesized.

This work attempts to address the above issues by introduc-
ing “global style tokens” (GSTs) to Tacotron (Wang et al.,
2017a; Shen et al., 2017), a state-of-the-art end-to-end TTS
model. GSTs are trained without any prosodic labels, and
yet uncover a large range of expressive styles. The internal
architecture itself produces soft interpretable “labels” that
can be used to perform various style control and transfer
tasks, leading to significant improvements for expressive
long-form synthesis. GSTs can be directly applied to noisy,
unlabeled found data, providing a path towards highly scal-
able but robust speech synthesis.

2. Model Architecture
Our model is based on Tacotron (Wang et al., 2017a;
Shen et al., 2017), a sequence-to-sequence (seq2seq) model
that predicts mel spectrograms directly from grapheme or
phoneme inputs. These mel spectrograms are converted
to waveforms either by a low-resource inversion algorithm
(Griffin & Lim, 1984) or a neural vocoder such as WaveNet
(van den Oord et al., 2016). We point out that, for Tacotron,
the choice of vocoder does not affect prosody, which is
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Figure 1. Model diagram. During training, the log-mel spectrogram of the training target is fed to the reference encoder followed by a
style token layer. The resulting style embedding is used to condition the Tacotron text encoder states. During inference, we can feed
an arbitrary reference signal to synthesize text with its speaking style. Alternatively, we can remove the reference encoder and directly
control synthesis using the learned interpretable tokens.

modeled by the seq2seq model.

Our proposed GST model, illustrated in Figure 1, consists
of a reference encoder, style attention, style embedding, and
sequence-to-sequence (Tacotron) model.

2.1. Training

During training, information flows through the model as
follows:

• The reference encoder, proposed in (Skerry-Ryan
et al., 2018), compresses the prosody of a variable-
length audio signal into a fixed-length vector, which
we call the reference embedding. During training, the
reference signal is ground-truth audio.

• The reference embedding is passed to a style token
layer, where it is used as the query vector to an at-
tention module. Here, attention is not used to learn
an alignment. Instead, it learns a similarity measure
between the reference embedding and each token in a
bank of randomly initialized embeddings. This set
of embeddings, which we alternately call global style

tokens, GSTs, or token embeddings, are shared across
all training sequences.

• The attention module outputs a set of combination
weights that represent the contribution of each style to-
ken to the encoded reference embedding. The weighted
sum of the GSTs, which we call the style embedding,
is passed to the text encoder for conditioning at every
timestep.

• The style token layer is jointly trained with the rest of
the model, driven only by the reconstruction loss from
the Tacotron decoder. GSTs thus do not require any
explicit style or prosody labels.

2.2. Inference

The GST architecture is designed for powerful and flexible
control in inference mode. In this mode, information can
flow through the model in one of two ways:

1. We can directly condition the text encoder on cer-
tain tokens, as depicted on the right-hand side of the
inference-mode diagram in Figure 1 (“Conditioned on
Token B”). This allows for style control and manipula-
tion without a reference signal.

2. We can feed a different audio signal (whose transcript
does not need to match the text to be synthesized) to
achieve style transfer. This is depicted on the left-
hand side of the inference-mode diagram in Figure 1
(“Conditioned on audio signal”).

These will be discussed in more detail in Section 6.

3. Model Details
3.1. Tacotron Architecture

For our baseline and GST-augmented Tacotron systems, we
use the same architecture and hyperparameters as (Wang
et al., 2017a) except for a few details. We use phoneme
inputs to speed up training, and slightly change the decoder,
replacing GRU cells with two layers of 256-cell LSTMs;
these are regularized using zoneout (Krueger et al., 2017)
with probability 0.1. The decoder outputs 80-channel log-
mel spectrogram energies, two frames at a time, which are
run through a dilated convolution network that outputs linear
spectrograms. We run these through Griffin-Lim for fast
waveform reconstruction. It is straightforward to replace
Griffin-Lim by a WaveNet vocoder to improve the audio
fidelity (Shen et al., 2017).

The baseline model achieves a 4.0 mean opinion score
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modeled by the seq2seq model.

Our proposed GST model, illustrated in Figure 1, consists
of a reference encoder, style attention, style embedding, and
sequence-to-sequence (Tacotron) model.

2.1. Training

During training, information flows through the model as
follows:

• The reference encoder, proposed in (Skerry-Ryan
et al., 2018), compresses the prosody of a variable-
length audio signal into a fixed-length vector, which
we call the reference embedding. During training, the
reference signal is ground-truth audio.

• The reference embedding is passed to a style token
layer, where it is used as the query vector to an at-
tention module. Here, attention is not used to learn
an alignment. Instead, it learns a similarity measure
between the reference embedding and each token in a
bank of randomly initialized embeddings. This set
of embeddings, which we alternately call global style

tokens, GSTs, or token embeddings, are shared across
all training sequences.

• The attention module outputs a set of combination
weights that represent the contribution of each style to-
ken to the encoded reference embedding. The weighted
sum of the GSTs, which we call the style embedding,
is passed to the text encoder for conditioning at every
timestep.

• The style token layer is jointly trained with the rest of
the model, driven only by the reconstruction loss from
the Tacotron decoder. GSTs thus do not require any
explicit style or prosody labels.

2.2. Inference

The GST architecture is designed for powerful and flexible
control in inference mode. In this mode, information can
flow through the model in one of two ways:

1. We can directly condition the text encoder on cer-
tain tokens, as depicted on the right-hand side of the
inference-mode diagram in Figure 1 (“Conditioned on
Token B”). This allows for style control and manipula-
tion without a reference signal.

2. We can feed a different audio signal (whose transcript
does not need to match the text to be synthesized) to
achieve style transfer. This is depicted on the left-
hand side of the inference-mode diagram in Figure 1
(“Conditioned on audio signal”).

These will be discussed in more detail in Section 6.

3. Model Details
3.1. Tacotron Architecture

For our baseline and GST-augmented Tacotron systems, we
use the same architecture and hyperparameters as (Wang
et al., 2017a) except for a few details. We use phoneme
inputs to speed up training, and slightly change the decoder,
replacing GRU cells with two layers of 256-cell LSTMs;
these are regularized using zoneout (Krueger et al., 2017)
with probability 0.1. The decoder outputs 80-channel log-
mel spectrogram energies, two frames at a time, which are
run through a dilated convolution network that outputs linear
spectrograms. We run these through Griffin-Lim for fast
waveform reconstruction. It is straightforward to replace
Griffin-Lim by a WaveNet vocoder to improve the audio
fidelity (Shen et al., 2017).

The baseline model achieves a 4.0 mean opinion score
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How do you learn an “embedding” ?

Figure from https://ai.googleblog.com/2018/03/expressive-speech-synthesis-with.html
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Additional information derived from a reference audio sample
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5 audio samples from https://google.github.io/tacotron/publications/global_style_tokens
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AEGON  EY1 G AA0 N
AELTUS  AE1 L T AH0 S
AENEAS  AE1 N IY0 AH0 S
AENEID  AH0 N IY1 IH0 D
AEQUITRON  EY1 K W IH0 T R AA0 N
AER  EH1 R
AERIAL  EH1 R IY0 AH0 L
AERIALS  EH1 R IY0 AH0 L Z
AERIE  EH1 R IY0
AERIEN  EH1 R IY0 AH0 N
AERIENS  EH1 R IY0 AH0 N Z
AERITALIA  EH2 R IH0 T AE1 L Y AH0
AERO  EH1 R OW0
AEROBATIC  EH2 R AH0 B AE1 T IH0 K
AEROBATICS  EH2 R AH0 B AE1 T IH0 K S
AEROBIC  EH0 R OW1 B IH0 K
AEROBICALLY  EH0 R OW1 B IH0 K L IY0
AEROBICS  ER0 OW1 B IH0 K S
AERODROME  EH1 R AH0 D R OW2 M
AERODROMES  EH1 R AH0 D R OW2 M Z
AERODYNAMIC  EH2 R OW0 D AY0 N AE1 M IH0 K
AERODYNAMICALLY  EH2 R OW0 D AY0 N AE1 M IH0 K L IY0
AERODYNAMICIST  EH2 R OW0 D AY0 N AE1 M IH0 S IH0 S T
AERODYNAMICISTS  EH2 R OW0 D AY0 N AE1 M IH0 S IH0 S T S
AERODYNAMICISTS(1)  EH2 R OW0 D AY0 N AE1 M IH0 S IH0 S
AERODYNAMICS  EH2 R OW0 D AY0 N AE1 M IH0 K S
AERODYNE  EH1 R AH0 D AY2 N
AERODYNE'S  EH1 R AH0 D AY2 N Z
AEROFLOT  EH1 R OW0 F L AA2 T

Traditional — explicit pronunciation dictionary + letter-to-sound model

+ a statistical model 
learned from this data

from 20k up to 200k entries (unique types)
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Tacotron 2

• Are “decorum” and “merlot” really complex words?
• The Oxford British English dictionary says

DECORUM      dɪˈkɔːrəm 
MERLOT         ˈməːləʊ/ 

• Which doesn’t seem particularly difficult …

While our samples sound great, there are still some difficult 
problems to be tackled. For example, our system has difficulties 
pronouncing complex words (such as “decorum” and “merlot”),

from https://ai.googleblog.com/2017/12/tacotron-2-generating-human-like-speech.html
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ENHANCING SEQUENCE-TO-SEQUENCE TEXT-TO-SPEECH WITH MORPHOLOGY

Jason Taylor⇤ and Korin Richmond†

Centre for Speech Technology Research, The University of Edinburgh, UK

ABSTRACT

Neural sequence-to-sequence (S2S) modelling encodes a
single, unified representation for each input sequence. In the
field of text-to-speech (TTS), such representations embed am-
biguities between English spelling and pronunciation. For ex-
ample, in pothole and there the character cluster th sounds
different. This is problematic when predicting pronuncia-
tion directly from letters. When letters are grouped into sub-
word units like morphemes, we posit pronunciation will be-
come easier to predict. Accordingly, we test the effect of aug-
menting input sequences of letters with morphological bound-
aries. We find morphological boundaries substantially lower
the Word and Phone Error Rates (PER and WER) of a Bi-
LSTM performing G2P and increase the naturalness score of
Tacotrons performing TTS in a MUSHRA listening test. Mor-
phological boundaries reduce the vocabulary, and increase the
counts of, seen units. For TTS, we also find they improve the
pacing and phrasing of synthetic speech. Furthermore, the
improvements to TTS quality are such that input of letters
augmented with morphological boundaries outperformed in-
put of phones without such boundaries. Since morphological
segmentation may be predicted with high accuracy, we be-
lieve this simple pre-processing step has important potential
for S2S modelling in TTS.

Index Terms— Speech Synthesis, Sequence-to-Sequence,
Morphology, Pronunciation

1. INTRODUCTION

English spelling is notoriously confusing with many contra-
dictory pronunciations. For instance, coathanger contains
the letter clusters th and ng which have different pronunci-
ations in words like there or range. The default solution in
text-to-speech (TTS) for such issues is usually a complex
pipeline of processes known collectively as the front-end.
This typically includes disambiguation of non-standard words
(like numbers, abbreviations and homographs), a lexicon-
lookup, and grapheme-to-phoneme (G2P) predictions for
out-of-vocabulary (OOV) words. CMUdict [1], Unisyn [2]
and Combilex [3] are examples of lexica used in TTS, while

⇤jason.taylor@ed.ac.uk; Supported by an ESRC Doctoral Training Grant.
†korin@cstr.ed.ac.uk

front-end packages include Festival [4], Mary [5] and Spar-
rowhawk [6]. Front-end modules are limited in their coverage
and rely on a back-off G2P model. This means improving
pronunciation prediction from letters is still valuable in TTS.

Neural Sequence-to-Sequence (S2S) models are the cur-
rent state-of-the-art in both TTS [7] and G2P modelling [8].
Both tasks involve the prediction of pronunciation from let-
ters, either implicitly or explicitly. By implicitly, we mean
the pronunciation is learnt latently and only inferred from
output audio, as in end-to-end (E2E) TTS systems such as
Tacotron [9]. By explicitly, we refer to the explicit prediction
of phones, as in G2P. The vagaries of English spelling make
pronunciation prediction by S2S models error-prone [10].

A growing body of work demonstrates linguistic informa-
tion improves the performance of neural S2S models. In G2P
for example, [11] showed jointly predicting syllable bound-
aries and lexical stress led to improvement, as did extracting
lexical features of similar in-vocabulary (IV) words in [12] .
For TTS meanwhile, using phones instead of letters as input
gave significant quality gains in [13], and syntactic informa-
tion in [14] led to significantly higher intelligibility and nat-
uralness by improving intonation. We suspect much of the
useful linguistic knowledge deployed in these papers is also
carried within morphological boundaries.

Morphology can delineate character clusters into mean-
ingful sub-word units. For instance, hanger is composed
of the root hang and a bound morpheme er. These may
attach to the root coat to derive coathanger. Morpheme
boundaries coincide with syllable boundaries and resolve
some pronunciation confusion arising from English spelling:
{coat}{hang}>er> is clearer than coathanger.

It has been suggested that in neural machine translation
the breakdown of input to morphemes improves performance
by narrowing the total translatable vocabulary, and increas-
ing the frequency of seen units during training [15]. Such
breakdown could likewise be beneficial to pronunciation pre-
diction. Morpheme boundaries reduce the total number of
unit types, as shown in Figure 1. The units broken down from
words to morphemes then occur with higher counts, as shown
by the area where the morpheme (dotted) line is above the
words (blue) line. Since the units are shorter and contain
less confusing character clusters, as in coathanger, we rea-
son homogenising the training data in this way benefits the
ability to learn pronunciation from letters. We therefore pro-
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Morphology should help

• Morphological boundaries break up words into constituent parts: 
• coathanger is {coat}{hang}>er>

• Can disambiguate pronunciation ambiguities (th in the above example)

Fig. 1. Total counts of most frequent units: words and mor-
phemes in the training data for our TTS systems. Splitting
into morphemes reduces the vocabulary and increases the
counts of seen units.

pose augmenting input sequences of letters with morphologi-
cal boundaries to improve pronunciation prediction, which we
evaluate by training G2P and TTS systems with and without
morpheme boundaries.

We compare Bi-LSTMs performing G2P and Tacotrons
performing TTS with and without morphological input. We
measure G2P performance using Word and Phone Error Rates
(WER and PER) on a test of random Unisyn entries, and a
disjoint test set consisting of unseen root morphemes. The
TTS systems are compared in a MUSHRA listening test.

2. EXPERIMENTAL SETUP

2.1. Morphology

Morphological boundaries are available in advanced lexica
like Unisyn and Combilex, but are missing from CMUdict.
Morphological information deemed useful for speech tech-
nology purposes is included. For instance, the entry unan-
swered has a prefix, <un<, a root, {answer}, and a suffix,
>ed>. The entry with both letters and morphemes appears as
<un<{answer}>ed> in Unisyn notation.

Whether morphemes are added as inflections or deriva-
tions is not included. Inflections are additions that involve a
change to the grammatical function of a word. For example
the possessive-s on dad’s or the 3rd person singular-s on walks
are inflections. Derivations, on the other hand, create a new
meaning by combining existing morphemes, like adding coat
to hanger. Further information on morphology contained in
the lexicon is provided in [16].

Unisyn is freely downloadable for academic purposes and
contains the phones, syllable boundaries, lexical stress mark-
ers and POS tags of entries. It is known the first three fea-
tures improve pronunciation prediction in neural S2S mod-

Input Base Unit Morphs Format V
G Graphemes 7 p o t h o l e s 13981

GM Graphemes 3 { p o t } { h o l e } >s > 5202
P Phones 7 p o t h ou l z 12631

PM Phones 3 { p o t } {h ou l } >z > 5606

Table 1. Description of inputs to Tacotron. V refers to the
total vocabulary size, i.e. number of unique units (words or
morphs) comprised of graphemes or phones.

elling and POS tags are already used in the front-end to dis-
ambiguate homographs like: to correlate, [k6ô@leIt] or a cor-
relate, [k6ô@l@t]. In the future we intend to compare morphol-
ogy to other features in a unified evaluation.

2.2. G2P Models

First we evaluate the effect of morphological boundaries as
input to a neural S2S G2P model. We used the baseform
lexicon of Unisyn, designed to be accent-independent, which
contains 160,000 entries split into a ratio of 75:20:5 for the
training, validation and test sets.

We created two partitions of the data for random and dis-
joint test sets. For the random test set, we randomly se-
lected 20% and 5% of Unisyn entries to be included in the
val and test sets respectively. For the disjoint test set, en-
tries were grouped according to the primary root morpheme
of the words, and the validation and test sets were selected
such that they contained distinct sets of root morphemes. For
example, the root {hiccough} may have been in the train-
ing set with associated entries such as {hiccough}>ed>and
{hiccough}>ing>, but {cough} is a separate root morpheme
and could therefore be put instead in the test set with deriva-
tions such as {cough}>ed>and {cough}>ing>. Note, the
sets were made entirely disjoint in terms of root morphemes
from one another· In this way, we test the G2P model’s ability
to generalise to unseen root morphemes, as often happens in
real-life applications of G2P. The scripts to create a disjoint
test set are available on Github 1. No further pre-processing
steps were taken such as removing homographs, apostrophes
or words of fewer than 4 letters.

Although the transformer network may have been shown
to perform with the lowest WER when using CMUdict [8], for
computing ease we train BiLSTMs, another neural S2S model
competitive in terms of WER [17]. We used the OpenNMT
package built on Pytorch [18] and employed 3 bi-directional
encoder and decoder layers with 500 units each, a learning
rate of 0.001, and Luong’s global attention [19] with dropout
of 0.1. The networks were trained with mini-batches of 64
and optimised with ADAM. The BiLSTM converged after
50,000 training steps.

1www.github.com/MadDanWithABox/lexicon
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G = graphemes
P = phonemes
M = with morphology

Regression: Tacotron
Waveform generation: neural vocoder

Naturalness of  TTS using various forms of input
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Morphological boundaries improve pronunciation learning

G input GM input G Pronunciation (Incorrect) GM Pronunciation (Correct)
coathanger {coat}{hang}>er> [k2T"@InÃ@] [koUt"hæN@]

pothole {pot}{hole} [p6"T@l] [p6t"h6l]
goatherd {goat}{herd} ["g6D@d] ["g@Utheôd]
loophole {loop}{hole} [lu"f6l] ["luph@Ul]
upheld {up}{held} ["2fEld] [2p"hEld]

cowherd {cow}{herd} ["kaUEôd] [kaU"hEôd"]
gigabytes <giga<{byte}>s> [gI"ga:bIts] [gIg@"baIts]
wobbliest {wobble}>y>>est> ["w6blIst] [w6"bliEst]
optimisers {optim==ise}>er>> ["optImIz@z] [optI"maIz@z]

synchronizable {syn==chron==ize}>able> [�sI"ÙôaIz@bë] [�siNkreU"naIz@bë]

Table 3. Improvements in TTS pronunciation by adding morphology: systems G and GM. The IPA is used to broadly transcribe
synthetic speech samples.

Fig. 2. Range of scores from MUSHRA listening test of each
system with phones or grapheme-based input with or without
morphology

of such words as coathanger, upheld, and wobbliest5.
System P system outperformed system G, repeating our

previous findings from [13] with a different Tacotron imple-
mentation and vocoder. This is because phones map pronun-
ciations directly unlike letters, leading to fewer ambiguities
at training and test time. In this respect, it is also remark-
able that system GM outperformed system P, which suggests
knowledge of word formation from morphology contributes
more to TTS quality than using phones.

3.3. How useful are phones?

Our results indicate system GM performed almost equally
to system PM. The MUSHRA evaluates systems generally,
and improvements in phrasing due to morphological bound-
aries lead to similar sounding systems. This suggests sim-
ple morphological boundaries could replace the expensive-
to-maintain pipeline of generating accurate phone sequences

5Listen at: http://homepages.inf.ed.ac.uk/s1649890/morph/

Word GM (Incorrect) PM (Correct)
untypable ["2ntIp@bì] [2n"taIp@bì]

pyjama ["paÃ@m@] [pI"Ãam@]
flaubert ["fl6b@t] [fl@U"bE]
karate [k@"r@It] [k@"rati]

eduardo [E"dOôdu] [E"dwaôd@U]
macao [meI"keU] [m@"kaU]
crimea ["kraImi] [kraI"mi@]

labyrinth ["leIb@ôInT] ["læb@ôInT]
ASCII [@"si] ["aski]

Table 4. Improvements in TTS pronunciation by using
phones: systems GM and PM

for a training transcript. Moreover in [24], a Bi-LSTM with
grapheme input predicted morphological boundaries with an
accuracy of 91.1% for Uniysn and 93.8% for Combilex. Simi-
lar results were found in other languages in [25]. We intend to
evaluate the effect of using predicted-, and gold-, morpholog-
ical boundaries as input to neural S2S TTS systems in future
work.

However, at test time or in deployment, specific cases of
letter-to-sound (LTS) ambiguities still require disambiguation
via phones. This is particularly true with rare LTS relations
as in foreign names. Table 4 shows some examples of where
the system GM outputted an incorrect pronunciation.

4. CONCLUSIONS

We have measured the effect of splitting words into mor-
phemes to improve neural S2S G2P and TTS models. First,
we showed morphological boundaries improved G2P perfor-
mance. Next, we found they significantly improved the qual-
ity of synthetic speech produced by Tacotron in a MUSHRA.
The pronunciation and phrasing of speech was improved to
such a level that system GM surpassed system P, suggest-
ing morphological information may contribute more to TTS
quality than phones. Nonetheless, only accurate phones can
ensure correct pronunciation for all IV words at test time.

More samples: http://homepages.inf.ed.ac.uk/s1649890/morph/Copyright Simon King, University of Edinburgh, 2019. Personal use only. Not for re-use or redistribution.



Morphological boundaries improve pronunciation learning

G input GM input G Pronunciation (Incorrect) GM Pronunciation (Correct)
coathanger {coat}{hang}>er> [k2T"@InÃ@] [koUt"hæN@]

pothole {pot}{hole} [p6"T@l] [p6t"h6l]
goatherd {goat}{herd} ["g6D@d] ["g@Utheôd]
loophole {loop}{hole} [lu"f6l] ["luph@Ul]
upheld {up}{held} ["2fEld] [2p"hEld]

cowherd {cow}{herd} ["kaUEôd] [kaU"hEôd"]
gigabytes <giga<{byte}>s> [gI"ga:bIts] [gIg@"baIts]
wobbliest {wobble}>y>>est> ["w6blIst] [w6"bliEst]
optimisers {optim==ise}>er>> ["optImIz@z] [optI"maIz@z]

synchronizable {syn==chron==ize}>able> [�sI"ÙôaIz@bë] [�siNkreU"naIz@bë]

Table 3. Improvements in TTS pronunciation by adding morphology: systems G and GM. The IPA is used to broadly transcribe
synthetic speech samples.

Fig. 2. Range of scores from MUSHRA listening test of each
system with phones or grapheme-based input with or without
morphology

of such words as coathanger, upheld, and wobbliest5.
System P system outperformed system G, repeating our

previous findings from [13] with a different Tacotron imple-
mentation and vocoder. This is because phones map pronun-
ciations directly unlike letters, leading to fewer ambiguities
at training and test time. In this respect, it is also remark-
able that system GM outperformed system P, which suggests
knowledge of word formation from morphology contributes
more to TTS quality than using phones.

3.3. How useful are phones?

Our results indicate system GM performed almost equally
to system PM. The MUSHRA evaluates systems generally,
and improvements in phrasing due to morphological bound-
aries lead to similar sounding systems. This suggests sim-
ple morphological boundaries could replace the expensive-
to-maintain pipeline of generating accurate phone sequences

5Listen at: http://homepages.inf.ed.ac.uk/s1649890/morph/

Word GM (Incorrect) PM (Correct)
untypable ["2ntIp@bì] [2n"taIp@bì]

pyjama ["paÃ@m@] [pI"Ãam@]
flaubert ["fl6b@t] [fl@U"bE]
karate [k@"r@It] [k@"rati]

eduardo [E"dOôdu] [E"dwaôd@U]
macao [meI"keU] [m@"kaU]
crimea ["kraImi] [kraI"mi@]

labyrinth ["leIb@ôInT] ["læb@ôInT]
ASCII [@"si] ["aski]

Table 4. Improvements in TTS pronunciation by using
phones: systems GM and PM

for a training transcript. Moreover in [24], a Bi-LSTM with
grapheme input predicted morphological boundaries with an
accuracy of 91.1% for Uniysn and 93.8% for Combilex. Simi-
lar results were found in other languages in [25]. We intend to
evaluate the effect of using predicted-, and gold-, morpholog-
ical boundaries as input to neural S2S TTS systems in future
work.

However, at test time or in deployment, specific cases of
letter-to-sound (LTS) ambiguities still require disambiguation
via phones. This is particularly true with rare LTS relations
as in foreign names. Table 4 shows some examples of where
the system GM outputted an incorrect pronunciation.

4. CONCLUSIONS

We have measured the effect of splitting words into mor-
phemes to improve neural S2S G2P and TTS models. First,
we showed morphological boundaries improved G2P perfor-
mance. Next, we found they significantly improved the qual-
ity of synthetic speech produced by Tacotron in a MUSHRA.
The pronunciation and phrasing of speech was improved to
such a level that system GM surpassed system P, suggest-
ing morphological information may contribute more to TTS
quality than phones. Nonetheless, only accurate phones can
ensure correct pronunciation for all IV words at test time.

More samples: http://homepages.inf.ed.ac.uk/s1649890/morph/

coathanger
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Morphological boundaries improve pronunciation learning

G input GM input G Pronunciation (Incorrect) GM Pronunciation (Correct)
coathanger {coat}{hang}>er> [k2T"@InÃ@] [koUt"hæN@]

pothole {pot}{hole} [p6"T@l] [p6t"h6l]
goatherd {goat}{herd} ["g6D@d] ["g@Utheôd]
loophole {loop}{hole} [lu"f6l] ["luph@Ul]
upheld {up}{held} ["2fEld] [2p"hEld]

cowherd {cow}{herd} ["kaUEôd] [kaU"hEôd"]
gigabytes <giga<{byte}>s> [gI"ga:bIts] [gIg@"baIts]
wobbliest {wobble}>y>>est> ["w6blIst] [w6"bliEst]
optimisers {optim==ise}>er>> ["optImIz@z] [optI"maIz@z]

synchronizable {syn==chron==ize}>able> [�sI"ÙôaIz@bë] [�siNkreU"naIz@bë]

Table 3. Improvements in TTS pronunciation by adding morphology: systems G and GM. The IPA is used to broadly transcribe
synthetic speech samples.

Fig. 2. Range of scores from MUSHRA listening test of each
system with phones or grapheme-based input with or without
morphology

of such words as coathanger, upheld, and wobbliest5.
System P system outperformed system G, repeating our

previous findings from [13] with a different Tacotron imple-
mentation and vocoder. This is because phones map pronun-
ciations directly unlike letters, leading to fewer ambiguities
at training and test time. In this respect, it is also remark-
able that system GM outperformed system P, which suggests
knowledge of word formation from morphology contributes
more to TTS quality than using phones.

3.3. How useful are phones?

Our results indicate system GM performed almost equally
to system PM. The MUSHRA evaluates systems generally,
and improvements in phrasing due to morphological bound-
aries lead to similar sounding systems. This suggests sim-
ple morphological boundaries could replace the expensive-
to-maintain pipeline of generating accurate phone sequences

5Listen at: http://homepages.inf.ed.ac.uk/s1649890/morph/

Word GM (Incorrect) PM (Correct)
untypable ["2ntIp@bì] [2n"taIp@bì]

pyjama ["paÃ@m@] [pI"Ãam@]
flaubert ["fl6b@t] [fl@U"bE]
karate [k@"r@It] [k@"rati]

eduardo [E"dOôdu] [E"dwaôd@U]
macao [meI"keU] [m@"kaU]
crimea ["kraImi] [kraI"mi@]

labyrinth ["leIb@ôInT] ["læb@ôInT]
ASCII [@"si] ["aski]

Table 4. Improvements in TTS pronunciation by using
phones: systems GM and PM

for a training transcript. Moreover in [24], a Bi-LSTM with
grapheme input predicted morphological boundaries with an
accuracy of 91.1% for Uniysn and 93.8% for Combilex. Simi-
lar results were found in other languages in [25]. We intend to
evaluate the effect of using predicted-, and gold-, morpholog-
ical boundaries as input to neural S2S TTS systems in future
work.

However, at test time or in deployment, specific cases of
letter-to-sound (LTS) ambiguities still require disambiguation
via phones. This is particularly true with rare LTS relations
as in foreign names. Table 4 shows some examples of where
the system GM outputted an incorrect pronunciation.

4. CONCLUSIONS

We have measured the effect of splitting words into mor-
phemes to improve neural S2S G2P and TTS models. First,
we showed morphological boundaries improved G2P perfor-
mance. Next, we found they significantly improved the qual-
ity of synthetic speech produced by Tacotron in a MUSHRA.
The pronunciation and phrasing of speech was improved to
such a level that system GM surpassed system P, suggest-
ing morphological information may contribute more to TTS
quality than phones. Nonetheless, only accurate phones can
ensure correct pronunciation for all IV words at test time.

More samples: http://homepages.inf.ed.ac.uk/s1649890/morph/

upheld
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Make use of rich linguistic structure
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Choose what to optimise at each stage

Encoder VocoderDecoder
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Regain controllability in waveform generation

Encoder VocoderDecoder
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